
Realizability for abstract mathematics

Ulrich Berger
Swansea University

j.w.w.

Hideki Tsuiki
Kyoto University

Facets of realizability

Paris-Saclay, July 1-3, 2019

1 / 42

The fundamental idea of program extraction

A proof is a construction, represented by a text or a finite tree,
that convinces us that a formula is true.

But often, a formula can also be understood as a computational
problem.

For example, the formula stating that there are infinitely many
prime numbers,

∀x ∃y (y > x ∧ Prime(y))

can be understood as the problem of computing for every natural
number x a prime number y that is greater than x .

Program extraction is based on the observation that a proof not
only represents an argument why a formula is true but also contains
a program that solves the computational problem it expresses.

2 / 42

Goals

Extract useful and fully verified programs.

Discover the logical and mathematical principles corresponding to
programming paradigms:

logic functional programming
induction recursion
? concurrency
? memory management
? lazyness

. . .

3 / 42

Minlog

http://www.mathematik.uni-muenchen.de/~logik/minlog/

Minlog is an interactive proof system that supports program
extraction form proofs.

Most of the applications of program extraction presented in this
talk have been carried out in Minlog.

Minlog is under active development at the Universities of Munich
(lead), Kyoto and Swansea.

4 / 42

Overview

I Program extraction via realizability

I Intuitionistic fixed point logic (IFP)

I Realizability interpretation of IFP

I Brouwer’s Thesis and Wellfounded Induction

I Archimedian Induction

I Application: From signed digits to inifinit Gray code

I Further applications

5 / 42

Realizability
Realizability attaches meaning to the Curry-Howard
correspondence (in a similar way as Tarskian semantics attaches
meaning to predicate logic).

Intuitively:

If M : A (that is, M codes an intuitionistic ND proof of A),
then M solves the problem A according to the BHK-interpretation.

This intuition is made precise in Kleene’s realizability interpretation
of HA by numbers (’number realizability’, 1945).

Stephen Kleene (1909 - 1994) 6 / 42

Kleene’s number realizability
For every closed formula A and every natural number e one defines
what it means for e to realize A, e rA.

e rA ≡ A (A atomic)

e r (A ∧ B) ≡ e = P(a, b) ∧ a rA ∧ b rB

e r (A→ B) ≡ ∀a (a rA→ {e}(a) rB)

e r (A ∨ B) ≡ (e = P(0, a) ∧ a rA) ∨ (e = P(1, b) ∧ b rB)

e r (∀x A(x)) ≡ ∀n ({e}(n) rA(n))

e r (∃x A(x)) ≡ e = P(n, a) ∧ a rA(n)

where

P : N× N→ N is some computable bijection, and

{e}(a) rB means that the partial recursive function (or Turing
machine) with code e when applied to a terminates with some
number b ∈ N such that b rB.

7 / 42

Soundness Theorem

If HA ` A, then HA ` e rA for some e.

Remarks:

1. The proof of the Soundness Theorem proceeds by induction
on the given derivation of HA ` A.

2. For the logical rules the extracted realizer e is essentially a
code of the lambda-term provided by the Curry-Howard
correspondence.

3. For the induction axiom the extracted realizer codes a
primitive recursion (iterator).

8 / 42

Program extraction for HA
Assume HA ` ∀x ∃y A(x , y) where A(x , y) is atomic.

Then HA ` e r (∀x ∃y A(x , y)), for some e, by Soundness.

This means HA ` ∀n A(n,proj1({e}(n))), that is, the function

f (n)
Def
= proj1({e}(n)) solves the computational problem expressed

by the formula ∀x ∃y A(x , y).

We generalize and improve program extraction by
I permitting abstract structures (instead of only natural

numbers),
I adding stronger axioms (instead of only induction on natural

numbers),
I permitting limited classical logic and choice principles,
I extracting programs in a realistic programming language

(instead of codes e),
I extracting simpler programs.

9 / 42

Including abstract mathematics
Kleene realizability is chained to concrete computational structures
since in the clauses for quantifiers the elements of the structure are

I used as inputs of programs:

e r (∀x A(x)) ≡ ∀n ({e}(n) rA(n))

I and returned as outputs of programs:

e r (∃x A(x)) ≡ e = P(n, a) ∧ a rA(n)

Abstract structures can be included by interpreting quantifiers
uniformly:

a r ∀x A(x) ≡ ∀x a rA(x)

a r ∃x A(x) ≡ ∃x a rA(x)

This uniform interpretation of quantifiers is also used for
interpreting second-order arithmetic and set theory.

Kleene’s interpretation of quantifiers can be recovered by
relativization: ∀x (x ∈ N→ A(x)), ∃x (x ∈ N ∧ A(x)).

10 / 42

Induction
Recall induction on natural numbers:

P(0) ∀x (P(x)→ P(x + 1))

∀x ∈ NP(x)

Assume “n rN(x)” is defined as “n is the unary representation of
x ∈ N”.
Then induction is realized as follows:

a rP(0) f r (∀x (P(x)→ P(x + 1)))

It(a, f) r (∀x ∈ NP(x))

where

I a : τ(P) (τ(P) = type of realizers of P) ,

I f : τ(P)→ τ(P)

and It(a, f) : N→ τ(P) is defined recursively by

It(a, f)(0) = a

It(a, f)(n + 1) = f (It(a, f)(n))

11 / 42

Other forms of induction

Induction on natural numbers is a special case of a more general
form of induction which also includes, for example:

Induction on lists, trees, . . .

P([]) ∀x ∈ A∀l (P(l)→ P(x : l))

∀x ∈ List(A)P(x)

Induction on ordinals (or any wellfounded relation <)

∀x ((∀y < x P(y))→ P(x))

∀x < αP(x)

Bar induction

. . .

12 / 42

A unifying approach: Monotone induction

Let U be a set and P(U) the powerset of U.

An operator Φ : P(X)→ P(X) is monotone if for all X ,Y ∈ P(U)

X ⊆ Y → Φ(X) ⊆ Φ(Y)

Every monotone operator Φ : P(X)→ P(X) has a least fixed
point, µ(Φ) ∈ P(U), which can be defined by

µ(Φ)
Def
=

⋂
{X ∈ P(U) | Φ(X) ⊆ X}

but also by

µ(Φ)
Def
=

⋃
{Φα(∅) | α ∈ Ordinals}

13 / 42

Closure and induction

One can show that indeed µ(Φ) is a fixed point of Φ, that is,

Φ(µ(Φ)) = µ(Φ),

and it is the least element of the set {X ∈ P(U) | Φ(X) ⊆ X}.

Therefore the following rules hold:

Cl
Φ(µ(Φ)) ⊆ µ(Φ)

Φ(X) ⊆ X
Ind

µ(Φ) ⊆ X

Similarly for coinduction:

Cocl
ν(Φ) ⊆ Φ(ν(Φ))

X ⊆ Φ(X)
Coind

X ⊆ ν(Φ)

No guardedness condition.

14 / 42

Intuitionistic Fixed Point logic (IFP)

I Intuitionistic first-order logic with equality.

I Constants, function symbols and atomic predicates (not
necessarily decidable), depending on applications.

I Free predicate variables X ,Y ,

I Inductive and coinductive definitions as least and largest fixed
points of monotone predicate transformers.
Monotonicity is enforced by strict positivity.

I Axioms consisting of non-computational (nc), that is,
disjunction-free, formulas that are (classically) true. The
choice of axiom depends on applications.

15 / 42

Programs
Programs are type free lambda terms with constructors, pattern
matching and recursion:

Programs 3 M,N ::= a, b variables

| Nil | L(M) | R(M) | P(M,N)

| caseM of {Cl1; . . . ;Cln}
| λa.M

| M N

| recM

Programs are interpreted lazily in the Scott domain D defined by
the recursive domain equation

D = (Nil + L(D) + R(D) + P(D × D) + F(D → D))⊥

and have an adequate lazy operational semantics.

Assigning them recursive types we get a fragment of Haskell.
16 / 42

Realizability for non-Harrop formulas
A formula is Harrop if it contains no disjunction or free predicate
variables at a strictly positive position.

H(A) is realizability by Nil for Harrop formulas (next slide).

a rA = (a = Nil ∧H(A)) (A Harrop)

a rP(~t) = R(P)(~t, a) (P non-H.)

c r (A ∧ B) = ∃a, b (c = P(a, b) ∧ a rA ∧ b rB) (A,B non-H.)

a r (A ∧ B) = a rA ∧H(B) (B Harrop, A non-H.)

b r (A ∧ B) = H(A) ∧ b rB (A Harrop, B non-H.)

c r (A ∨ B) = ∃a (c = L(a) ∧ a rA) ∨ ∃b (c = R(b) ∧ b rB)

c r (A→ B) = ∀a (a rA→ (c a) rB) (A,B non-H.)

b r (A→ B) = H(A)→ b rB (A Harrop, B non-H.)

a r♦x A = ♦x (a rA) (♦ ∈ {∀, ∃}, A non-H.)

17 / 42

Realizability for non-Harrop predicates

To every predicate variable X is assigned a predicate variable X̃
with an extra argument for realizers.

R(P) means λ(~x , a) . a rP(~x).

R(X) = X̃

R(λ~x A) = λ(~x , a) (a rA) (A non-H.)

R(�(Φ)) = �(R(Φ)) (� ∈ {µ, ν}, Φ non-H.)

R(λX P) = λX̃ R(P) (P non-H.)

18 / 42

Realizability for Harrop formulas and predicates

rA
Def
= ∃a . a rA.

H(P(~t)) = H(P)(~t) (P Harrop)

H(A ∧ B) = H(A) ∧H(B) (A,B Harrop)

H(A→ B) = rA→ H(B) (B Harrop)

H(♦x A) = ♦x H(A) (♦ ∈ {∀, ∃}, A Harrop)

H(P) = P (P a predicate constant)

H(λ~x A) = λ~x H(A) (A Harrop)

H(�(Φ)) = �(H(Φ)) (� ∈ {µ, ν}, Φ Harrop)

H(λY P) = λY HY (P) (P Y -Harrop)

19 / 42

Soundness for IFP

Let RIFP be the extension of IFP by a sort for realizers and
axioms describing the equational theory of programs.

Theorem

If Γ,∆ `IFP A, where Γ are nc- and ∆ Harrop-formulas,
then Γ,H(∆) `RIFP M rA for some program M.

Realizers of induction and coinduction:

s r (Φ(P) ⊆ P)
Ind

rec (λf . s ◦map f) r (µ(Φ) ⊆ P)

s r (P ⊆ Φ(P))
Coind

rec (λf .map f ◦ s) r (P ⊆ ν(Φ))

No guarded recursion.

20 / 42

Example: Real and natural numbers

I Variables x , y , . . . are intended to range over abstract real
numbers

I Constants and function symbols: 0, 1,+,−, ∗, /, | · |,
I Atomic predicates: <,≤,
I Nc axioms: ∀x . x + 0 = x ,

I Inductive predicate defining the natural numbers as a subset

of the reals numbers: N Def
= µΦ, where

Φ = λX λx . x = 0 ∨ X (x − 1).

We write this more intuitively as N(x)
µ
= x = 0 ∨ N(x − 1).

I Coinductive predicate defining those real numbers that can be

approximated by dyadic rationals: A
Def
= ν Ψ, where

Ψ = λX λx .∃n ∈ N |x − n| ≤ 1 ∧ X (2x).
Intuitive notation A(x)

ν
= ∃n ∈ N |x − n| ≤ 1 ∧ A(2x).

One can prove A(x)↔ ∀k ∈ N ∃q ∈ Q |x − q| ≤ 2−k where Q is
the set of the rational numbers, defined as usual.

21 / 42

Accessible induction

The accessible part of a binary relation ≺ is defined inductively by

Acc≺(x)
µ
= ∀y ≺ x Acc≺(y)

that is, Acc≺ = µ(Φ) where Φ
Def
= λX λx ∀y ≺ x X (y).

P is progressive if Φ(P) ⊆ P, that is, Prog≺(P) holds where

Prog≺(P)
Def
= ∀x (∀y ≺ xP(y)→ P(x)) .

Accessible induction, is an instance of the rule of s.p. induction:

Prog≺(P)

Acc≺ ⊆ P
AccI≺(P)

22 / 42

Realizing accessible induction

Assume P is non-Harrop and ≺ is Harrop (the most common
case).

s r Prog≺(P)

(rec s) r (Acc≺ ⊆ P)
WfI≺(P)

23 / 42

Brouwer’s Thesis and Wellfounded induction
Elements beginning an infinite descending sequence can be
characterized coinductively by

Path≺(x)
ν
= ∃y ≺ x Path≺(y)

¬Path≺(x) and Acc≺(x) are equivalent and both are Harrop
formulas (provided ≺ is disjunction-free).
Therefore we can postulate the axiom

BT≺ ∀x (¬Path≺(x)→ Acc≺(x))

which can be viewed as an abstract version of Brouwer’s Thesis
(stating that barred sequences of natural numbers are inductively
barred). BT≺ implies Wellfounded Induction:

Prog≺(P)

¬Path≺ ⊆ P
WfI≺(P)

Wellfounded induction has the same realizer as accessible
induction.

24 / 42

The Archimedean property

The Archimedean property of real numbers can be expressed by
stating that there are no infinite numbers:

AP ∀x ¬∞(x)

where infinite numbers are characterized coinductively:

∞(x)
ν
= x ≥ 0 ∧∞(x − 1) .

Lemma
∀x (∞(x)↔ ∀y ∈ N y ≤ x).

Proof
∀y ∈ N ∀x (∞(x)→ y ≤ x), by induction.

∀x ((∀y ∈ N y ≤ x)→∞(x)), by coinduction.

25 / 42

Archimedean Induction

Setting y ≺ x
Def
= x ≥ 0 ∧ y = x − 1, clearly ∞(x)↔ Path≺(x).

Therefore, by the Archimedean property, Path≺ is empty, and
hence, by wellfounded induction,

∀x ((x ≥ 0→ P(x − 1))→ P(x))

∀x P(x)
AI(P)

We call this Archimedean Induction.

Equivalent (more useful) form (q is any fixed positive rational):

∀x ∈ B \ {0} (P(x) ∨ (|x | ≤ q ∧ B(2x) ∧ (P(2x)→ P(x))))

∀x ∈ B \ {0}P(x)
AIBq(B,P)

26 / 42

Application: From signed digits to infinite Gray code

Coinductive characterizations of reals that have

I a signed digit representation
C(x)

ν
= ∃d ∈ {−1, 0, 1} (|x − d/2| ≤ 1/2 ∧ C(2x − d)),

I an infinite Gray code
G(x)

ν
= (−1 ≤ x ≤ 1)∧(x 6= 0→ x ≤ 0∨x ≥ 0)∧G(1−2|x |).

Realizers of C(x) are total streams of signed digits.

Realizers of G(x) are streams of binary digits (L,R) that may be
undefined at one point.

Both are admissible representations of the reals but infinite Gray
code is in addition unique.

Using Archimedean induction one can show C ⊆ G and extract a
conversion between the two representations.

27 / 42

Extracted program (C ⊆ G)

stog :: SDrep -> InfGrayCode

stog p = case head p of {

-1 -> L : stog (tail p) ;

1 -> R : nh (nall (tail p)) ;

0 -> let { q = stog (tail p) }

in head q : R : nh (tail q)

}

nall (L : q) = R : neg q

nall (R : q) = L : neg q

nh (L : q) = R : q

nh (R : q) = L : q

28 / 42

Extracted program of the converse inclusion (G ⊆ C)

stog :: InfGrayCode -> SDrep

stog q = case head q of {

L:q’ -> (-1) : gtos p’ ;

R:q’ -> 1 : gtos (nh q’) ;

c:R:q’’ -> 0 : gtos (c : nh q’’)

}

This program can be extracted as well - but not in IFP!

Why?

Because all programs extracted in IFP are executed correctly in
Haskell but this one isn’t.

For a correct result the first two clauses and the last clause must be
executed concurrently resulting in a non-deterministic computation.

29 / 42

Programs and rules for concurrency

I Add a new formula construct S2(A) which admits 2
concurrent processes as realizers . . .

I . . . and add a new program constructor Amb(a1, a2) for the
concurrent execution of the processes ai (motivated by
McCarthy’s Amb).

I Amb(a1, a2) realizes S2(A) iff at least one ai is defined and all
defined ai realize A.

30 / 42

Overview of further applications of program extraction

I Discrete structures

I Quotient and remainder on natural numbers.
I Dijkstra’s algorithm (1997, Benl, Schwichtenberg):

Reachable nodes in a weighted graph
I Warshall Algorithm (2001, Schwichtenberg, Seisenberger, B):

Transitive closure of a relation

I Programs from classical proofs
I GCD (1995, B, Schwichtenberg):

Uses the Friedman/Dragalin A-translation
I Dickson’s Lemma (2001, Schwichtenberg, Seisenberger, B):

F/D A-translation in infinite combinatorics
I Higman’s Lemma (2008, Seisenberger):

Uses F/D A-translation and classical countable choice
I Fibonacci numbers from a classical proofs (2002, Buchholz,

Schwichtenberg, B):
Uses F/D A-translation to obtain fast program

31 / 42

I Lambda calculus:
I Extraction of normalization-by-evaluation (NbE) (2006,

Berghofer, Letouzey, Schwichtenberg, B):
Extraction of NbE from Tait’s proof of strong normalization for
the typed lambda calculus (in Isabelle, Coq, Minlog)

I Real numbers
I Cauchy sequences vs signed digit representation (SD):

Function vs stream representation, arithmetic operations.
I Integration w.r.t. SD (2011, B):

Real functions are given by trees realizing a nested
coinductive/inductive definition

I Lists
I List reversal

Uses F/D A-translation to extract linear program from naive
proof

I In-place Quicksort (2014, Seisenberger, Woods, B):
Extracts an ’imperative’ program

32 / 42

I Satisfiabilty testing
I Extraction of a SAT-solver from completeness proof for DPLL

(2015, B, Forsberg, Lawrence, Seisenberger)

I Parsing
I Extraction of monadic parser combinators and left-recursion

elimination (Jones, Seisenberger, B)

I Extensions: Extraction of
I concurrent programs (Miyamoto, Petrovska, Schwichtenberg,

Spreen, Takayama, Tsuiki, B)
I imperative programs with explicit memory management from

Separation Logic (Reus, B)
I modulus of uniform continuity from Fan Theorem (B)

33 / 42

Concluding remarks

I The Curry-Howard correspondence and program extraction are
usually associated with constructive type theory (CTT), which
is implemented, e.g., in Coq and Agda.

I CTT rejects the classical notions of ’structure’ and ’truth’ and
identifies proofs with programs.

I The agenda of CTT (in particular its homotopic version) is
foundational: CTT proposes a new kind of mathematics.

I In contrast, program extraction is rooted in first-order logic
with a classical Tarskian semantics.

I Program extraction is a technique to obtain provably correct
programs from proofs in ’ordinary’ mathematics.

34 / 42

Some references

A S Troelstra, D van Dalen, Constructivism in Mathematics, Vol.
I, N-H, 1988.

D van Dalen, Logic and Structure, 3rd edition, Springer, 1994.

B, K Miyamoto, H Schwichtenberg, M Seisenberger, Minlog - A
Tool for Program Extraction for Supporting Algebra and
Coalgebra, LNCS 6859, 2011.

B, From coinductive proofs to exact real arithmetic: theory and
applications, Logical Methods in Comput. Sci. 7, 2011,

35 / 42

H Schwichtenberg, S S Wainer, Proofs and Computations,
Cambridge University Press, 2012.

H Tsuiki. Real Number Computation through Gray Code
Embedding. Theor. Comput. Sci. 284, 2002.

B, A Lawrence, F Nordvall, M Seisenberger. Extracting verified
decision procedures: DPLL and Resolution. Logical Methods in
Computer Science 11, 2015.

B, O Petrovska. Optimized program extraction for induction and
coinduction CiE 2018, LNCS 10936, 2018.

36 / 42

Extracting the fan functional

Given: A continuous functional F : (N→ B)→ N (B = {0, 1})

Since N→ B is compact, F is uniformly continuous (fan theorem).

Wanted: The modulus of uniform continuity of F .

That is, the least n such that for all α, β : N→ B,

if α(k) = β(k) for all k < n, then F (α) = F (β).

The function F 7→ n is called fan functional.

We show that a program computing the fan functional can be
extracted from a proof that F is uniformly continuous.

The proof takes place in an extension of IFP by a ’bang operator’.

37 / 42

Is the fan functional really computable?

Computing the fan functional seems an impossible task since we
have:

Theorem

It is impossible to compute from a continuous functional
F : (N→ N)→ N a modulus of (pointwise) continuity.

38 / 42

The extracted program

Declarations:

type N = Int -- 0,1,2,...

type B = Int -- 0,1

type B1 = N -> B -- Cantor space

type B2 = B1 -> N

(***) :: [B] -> B1 -> B1

s *** alpha = \n-> if n < length s

then s !! n

else alpha (n - length s)

39 / 42

The extracted program

minarg, maxarg :: B2 -> [B] -> B1

-- minarg f s = some alpha s.t. f (s *** alpha) is minimal

minarg f s = let {

s0 = s ++ [0] ; s1 = s ++ [1] ;

alpha0 = minarg f s0 ;

alpha1 = minarg f s1

}

in if f (s0 *** alpha0) <= f (s1 *** alpha1)

then [0] *** alpha0

else [1] *** alpha1

maxarg f s = ...

40 / 42

Fan functional

-- testing constancy

isconst :: B2 -> [B] -> Bool

isconst f s =

f (s *** (minarg f s)) == f (s *** (maxarg f s))

fan :: B2 -> N

fan f = aux []

where

-- aux :: [B] -> N

aux s = if isconst f s

then 0

else 1 + max (aux (s++[0])) (aux (s++[1]))

41 / 42

Bang!
If A is a formula, then !A is a Harrop formula with

a r !A
Def
= a = Nil ∧ ∀a (a rA).

For example, Nil r !(⊥ → A) since, a r (⊥ → A) ≡ ⊥ → a rA.

But !(0 = 0 ∨ 0 = 1) is not realizable.

Intuitively, !A expresses that A is true (realizable) for trivial
reasons.

A realizable version of the law of excluded middle:

¬A→ B A→ !B
!LEM

B

Realizing !LEM:

Assume a r (¬A→ B) and Nil r (A→ !B), that is,
¬∃c c rA→ a rB and ∃c c rA→ ∀b b rB.

Using the (classical) law of excluded middle, we conclude a rB.
42 / 42

