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Let E-HAY be Heyting arithmetic in all finite types with
extensionality (as in Benno's talk). We consider E-HAY', the
extension of E-HA® with types o* for finite sequences of elements
of type o and a new predicate st for each type o. Also assume
the following axioms

External quantifiers axioms:
> VStx d(x) < Vx(st(x) = D(x)).
> Fx d(x) < Ix(st(x) A P(x))
Standardness axioms:
> x =,y Ast?(x) = st?(y);
> st?(t) for each closed term t;
> st777T(F) Ast?(x) — st (x);

External induction:
(®(0) AR (®(n) — D(n+ 1)) — V'n &(n)



Herbrand realizability

Assign to each formula ® ofNE—HA‘S‘f: the formulas ®" and ®y,.(a)
of E-HAY" such that ®" = J5t3dy,(a) according to the following
clauses :

1. ®" := [®] for internal atomic formulas ®;

2. st(t)m = Fa[t € a);
If &P = Fta by, (a) and W™ = Fth Wy (b), then:
(DA =T b Dy, (a) A Wi (b)];
O VW= Tty p[dy(a) vV Wi (b)];
O — W)= It [Vt (g, (1) — Vie(s[t]))];
Vx ) = It 5 [vx by (a)];

3
4
5
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7. (3x )M =I5 [Fx by (a)].
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3t _free formulas

Definition
We say that a formula of E-HAY, is 3% -free if and only if it is built:

from atomic internal formulas s =¢ t;
by conjunctions A;

by disjunctions V;

by implications —;

by quantifications V and 3 ;

I o

by standard universal quantifications V¢ (but not 3¢).



Lemma
> For all 3 -free formulas ®ys of E-HAY", we have
> (@4 = (O )us(a);
> E-HA:}t H (¢§95t)hr 4 q)ﬂst.



Lemma
> For all 3 -free formulas ®ys of E-HAY", we have
> (©30)" = (G5 )uula);
> E-HAG F (Pt )nr <> Ppoe.
> For all formulas ® of E-HAY, the formula ®y,(a) is 3 -free.



Caracteristic Principles

Definition
(HAC) = V'x Fty d(x,y) — FFVSIx Ty € Fx d(x,y).
(HIPgst) = (Pt — FxW(x)) — Fy (Pt — Ix € y W(x)).
(NCR) = Vx 'y d(x,y) = FzVy Ix € zd(x,y).



Soundness

Theorem (soundness theorem of hr)
For all formulas ® of E-HAY,, if

E-HAY +P - o,
then there are closed terms t of appropriate types such that
E-HAZ™ | &y, (t).

Abbreviation
P := HAC + NCR + HIPs.



Characterization

Theorem (Characterization theorem of hr)
For all formulas ® of E-HAY, we have

E-HAY +PF &« oM

Abbreviation
P := HAC + NCR + HIPy.
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Majorizability

Let E-HA“ be Heyting arithmetic in all finite types with full
extensionality and with primitive equality only at type O.
Definition
» The Howard-Bezem strong majorizability <7 is defined by:
> s<jt:=s5s<pt;
> s <i L, ti=VvVu <Ev(su <5ty A tu <5 tv).
» <’ is not reflexivel We say that x? is monotone if and only if
x <X x.
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Majorizability

Proposition
LEHAYEx < y -y <y,
2. EBEHA" Ex <E y ANy <l z—x <) z.

Theorem (Howard's majorizability theorem)

For all closed terms t° of E-HAY, there is a closed term s° of
E-HAY such that E-HA® -t <! s.
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Enrich the language and the axioms of E-HA® as follows.
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» Standardness axioms:

>

>
>
>

X =g y Ast?(x) = st?(y);
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E-HA®

Enrich the language and the axioms of E-HA® as follows.

> st7(t?) (for each finite type o).
» Standardness axioms:
> x =,y Ast?(x) — st?(y);
> st7(y) Ax <k y —st?(x);
> st7(t) for each closed term t;
> st777T(F) Ast?(x) — st7(fx);
» External induction:
(®(0) AR (®(n) — &(n+1))) — Va0 d(n)



Some abbreviations

> Vx d(x) abbreviates Vx(x <* x — ®(x)).

> Jx ®(x) abbreviates Ix(x <* x A D(x)).

> VStx ®(x) abbreviates Vx(st(x) — ®(x)).
)-

> Ftx d(x) abbreviates Ix(st(x) A P(x)
> ...



Intuitionistic nonstandard bounded modified realizability

Assign to each formula ® of E-HA; the formulas P and dy(a) of
E-HA% such that ®P = 3%'a dy,(a) according to the following
clauses :

1. ®P := [®] for internal atomic formulas ®;
2. st(t)P = Ftat <*aj;
If ®P = Jtady(a) and WP = FthWy(b), then:
3. (P AW = Tta b[dp(a) A Wy(b)];
4. (v W)P = Ista b[dy(a) v Wi (b)];
5. (¢ — V)P = FB[Va (dp(a) — Wp(Ba))];
6. (Vx ®)P = Fta[vx dp(a)];
7. (3x ®)" = Fta[Ix dy(a)].



Monotonicity

Lemma (monotonicity of b)

For all formulas ® of E-HAY, we have

E-HAZ F ®p(a) Aa <*c — dp(c).



Tt _free formulas

Definition )

We say that a formula of E-HAY, is 3'-free if and only if it is built:
1. from atomic internal formulas s = t;

by conjunctions A;

by disjunctions V;

by implications —;

by quantifications V and 3 (so also ¥ and §I);

ok wnN

by monotone standard universal quantifications V** (but not
§|St).



Tt _free formulas

Lemma
» For all t_free formulas Pz of E-HA%, we have

> (®5.)" = (Pz.)0(a);
> E—HA; F (¢%st)b <> (D%st.



Tt _free formulas

Lemma
» For all 3t-free formulas ¢%St of E-HAY,, we have
> (®5.)" = (Pz.)0(a);
> E-HAZ + (¢%st)b < Py
» For all formulas ® of E-HAY,

w  the formula ®y(a) is 3-free.
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Caracteristic Principles

Definition
> mACY = ¥tx Pty & — Ity ix Ty <* Yx o;
> RY =Vx Pty d — Fzvx Iy <*z d;
> IP%fSt = (CID%St — Fx W) — Tty (<I>%st — Ax <Fy W),
> MAJY = Vstx Ity (x <*y).

Proposition
The principle R implies the principle MAJ¥, that is E-HAY + R¥
proves all instances of MAJ®



Soundness

Theorem (soundness theorem of b)
For all formulas ® of E-HAY,, if

E-HAY + P o,

then there are closed monotone terms t of appropriate types such
that
E-HAZ F &y (t).

Abbreviation
P := E-HAE + mAC* +R¥ + IP%St + MAJ“.



Characterization

Theorem (Characterization theorem of b)
For all formulas ® of E-HAY;, we have

E-HAY + P & ¢+ 0P,

Abbreviation
P := E-HAY + mAC* + R¥ + IP,, + MAJ“.
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Intuitionistic nonstandard bounded functional
interpretation

Assign to each formula ® of E-HA the formulas B and ®p(a; b)
of E-HA% such that ®B = F*aVs'b dp(a; b) according to the
following clauses.

OB = [®] for internal atomic formulas &;
st(t)B = Fta[t <*a).



Intuitionistic nonstandard bounded functional
interpretation

Assign to each formula ® of E-HA the formulas B and ®p(a; b)
of E-HA% such that ®B = F*aVs'b dp(a; b) according to the
following clauses.
®B := [®] for internal atomic formulas ®;
st(t)B = Fta[t <*a|.
If &8 = ﬁStaQStLZCDB(aLb) and WB = Jtc ¥t d Wy(c; d) then:
(PAW)B =ty cvth, d [Pp(a; b) A VE(c; d)];

(PVW)B =Tt cFte, f [Vb <*edp(a; b) v Vd <*f Wp(c; d)];
(& = W)B = 3C BVta, d [Vb <* Bad dp(a; b) — Wg(Ca; d)];
(Vx®)B = TFtavsth [vx dp(a; b)];

(Bxd)B = FtaPtc [3x Vb <* c dp(a; b))



Monotonicity

Lemma (monotonicity of B)

For all formulas ® of E-HAY, we have

E-HAZ F ®p(a; b) A a <*c — dp(c; b).



Characteristic principles

Definition

>

>
>
>
>
>
>

mAC* = Vstx Ity & — Ity vstx Jy <* Yx &;

RY = Vx Pty & — Itz Vx Ty <*z o;

| = ¥tz IxVy <*z ¢ — IxVty ¢;

IPE,, = (Ptx p — Pty W) — Itz (PBix p — Ty <*z W),
M® = (Vtx p — ) — Pty (Vx <ty ¢ — 1h);

BUD® = ¥'u, v (Vx <*ug V Vy <*vip) — Vixp v Wty oh;
MAJY = Wtx Pty (x <*y).



Proposition
> E-HAZ + ¥+ BUD".
> E-HAY + R F MAJ®,



Soundness

Theorem (soundness theorem of B)
For all formulas ® of E-HAY,, if

E-HAY + P o,

then there are closed monotone terms t of appropriate types such
that
E-HAY - V'b dp(t; b).

Abbreviation

P :=mACY + R + ¥ 4 IPg,

g T M¥ + BUD + MAJ¥.



Characterization

Theorem (characterization theorem of B)
For all formulas ® of E-HA,

ot we have

E-HAY + P I & < ¢B.

Abbreviation

P := mAC* + R¥ 4+ I“ + IPg,

¢ +M¥ + BUD” + MAJ®.



Transfer Principles

Definition
1. (Ty) = V' (V' ¢ — Vx ¢);
2. (T3) =V (Ix ¢ — F'x 9);

where f are all the free variables in the internal formula ¢.



Adding Transfer

Theorem

1. Adding Ty or T3 to E-HAY™ 4+ R + HGMPS® leads to
nonconservativity over HA.

2. Adding Ty or T3 to E-HAZ leads to inconsistency.



Recovering standard interpretations

If we restrict ourselves to the purely external fragment (only
quantifiers of the form 3% and V') then we recover the bounded
functional interpretation.



Diamond translation

Definition
The diamond translation ¢ assigns to each formula ¢ of HAY the
formula ¢° of E-HAY accordingly to the following clauses. For

atomic formulas, we define:
1. (s=ot)°:=s=0t;
2. (sg,t)°i=s <kt
For the remaining formulas, we define:
3. (poh)®:i=¢° 0t for o € {V,A,—};
4. (Ix Dt @) := Ix <"t ¢° for 4 € {V, I};
5. (Ix ¢)° := Ftx ¢° for 4 € {V, I} .



Recovering standard interpretations

Theorem
For all formulas ¢ of HAY, we have:

1. E-HAY F ¢pi(a; b)° <> (¢°)B(a; b);
2. E-HA% + (¢P')° & (¢°)B.



Krivine's negative translation

AK .= Ak (P, is an atomic formula)

Theorem (Soundness and characterization of K)
For all formulas  of the language of E-PAY;, we have:
1. E-PAY & = E-HAY 4 I-LEM I- ®X;
2. E-PAY - & <« oK,



Factorization U = KB

Theorem (factorisation U = K B)

For all formulas & of the language of E-PAZ,
1. E-HAY + I-LEM | VYa, b (dy(a; b) <> —Vc <* b (Pk)B(a; ¢));
2. E-HAY + I-LEM F Va, B (dy(a; Ba) +» (¢¥)p(a; B));

3. E-HAY + I-LEM + mACY I oV < (&K)B,

we have:



Application

» Using the factorization U = K B and the soundness theorem
of B one gets new proofs of the soundness and
characterization theorems of U.
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Realizability with g-truth

Assigns to each formula ® of E-HAg; the formula
¢Pba = Flady,q(a) of E-HAY according to the following clauses,
PP = Pty (a) and VP9 = Fth Wy, (b)):

¢" = [4],

st(t )bq = Pty [t <*a,

(& A W)L = T pdp,(a) A Wpg(b)],

(& vV W)P9 = T, b[(Phe(a) A D) V (Wing(b) A W),
(& — V)9 = FEB P (D, (a) A © — Wy (Ba)],
(Vx ®)P4 1= Fa [¥x o (a)],
(Ix ®)P4 1= T3 [Fx (Dq(a) A D))



Realizability with t-truth

¢ = [g],

st(t)Pt := Fta [t <*a),

(& A W)PL = Tt p[dy(a) A Wi (b)],

(& VWPt = Tt b Dy (a) V Wi (b)],

(& — WPt .= BT [(Dpe(a) = Wpe(Ba)) A (& — W),
(Vx ®)Pt := Fta [vx by (a)],

(Ax ®)Pt := Tt a[Ix dpe(a)].



bt = bq A id

Theorem
For all formulas ® of E-HAY;, we have

E-HAY b V*a (dh(a) < Ppg(a) A D).



Soundness of bq and bt

Theorem
For all formulas ® of E-HAY,, if

E-HAY + mACY £ R¥ £ IP%?St + MAJ¥Y - o,
then there are closed monotone terms t such that

E-HAY + mAC* £ R¥ + IP%’st + MAJ¥Y F Dy (2),
E-HAY £ mACY £ R¥ £ IP%’St + MAJY = Dy (t).



Characterization of bq and bt

Theorem
For all formulas ® of E-HAY;, we have

E-HAS + mACY + R” + IP%, + MAJ¥ - P 5 b,
E-HAG + mACY + R” + 1P, + MAJ - O & b,
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Intuitionistic nonstandard bounded functional
interpretation with g-truth

Assign to each formula ¢ of E-HAY the

formula ®B9 := Fta dp,(a; b) of E-HA% according to the
following clauses (where ®pq(a; b) is the part inside square
brackets, ¢ is an internal atomic formula, ®B4 = Jstastp Ppq(a)
and WBd = Jtcstd Wy, (b)):

®Ba = [9],

st(t)Ba = Ttalr <* 4,

(P AW)BY = Tta, b, d [Opq(a; b) A Wag(c; d)],

& v W)Ba Eé acV*fef Vb<*e¢B ab/\¢\/Vd<*f\|JB d)AV)],
- q q

® — W)Ba .= 3stC Bt d [Vb <* Bad dpq(a; b) A — Uy Cad
- q q

Vx $)Ba = Ftath [Vx by (a; b
5 ’Bq

(Axd)Ba = Jtate [3x (Vb g*ccbgq(a; b) A ®)].



Intuitionistic nonstandard bounded functional
interpretation with t-truth

Bt = [@],
= Pty [t S* a]7

( = 3%a, ¢ V*'b, d [Ppe(a; b) A Wp(c; d)],

(dVW)Bt = Tta cPte, f [Vb <*edp(a;b) VVd <*f Wpi(c; d)],

(@ - w)Bt = 3 C, Bta, d [Ib <* Bad By (a; b) — Wpe(Ca: d) A (& = W),

(

(

w0

-+

pay

=

=

w

&

HI M1l

asth[vx ®pq(a; b)),
a¥tc[3x Vb <* ¢ dpi(a; b)].

<

X

N

£
il |||

st
It



Factorization Bt = Bq A id

Theorem
For all formulas ® of E-HAY;,, we have

E-HAY - ¥ta, b (dpi(a; b) <> Opy(a; b) A ®).



Soundnesses of Bq and Bt

Theorem
For all formulas ® of E-HAY,, if

PF o,
then there are closed monotone terms t such that

P Vb dpy(t; b),
P - b dpi(t; b).

Abbreviation

P :=E-HAZ £+ mAC*Y £ R¥ £ ¥ £+ IP§St + M¥ £ BUD* + MAJ~.



Unfortunately, we are unable to present a theorem that
characterizes the least theory containing E-HAY, and proving
B4 5 @ for all formulas ¢ of E-HA%) and Bt.



A parametrised approach

Herbrandized functional interpretation (for IL).
Let 7p = Sp = HAZ. We instantiate the three parameters as

follows:
x=sta = Plan(xea)

x=<ra = 7T(a)A(x€a)
VxC aA = VxeaA
W(x) = 7%(x)



Proposition (Herbrandized functional interpretation)

With the parameters instantiated as above we have:
{r(x)}}2 & Ftan(xea)

{{A—BRLE & Vyefxw{{A}s - (B

{ANBE W {A A {BYY

{AVBIyRY & 3z =p b(vy € y{{A}S 0.V w' € w{{B}}Y,)
{37 AR 327y’ € y{{AD

{vz"Aly & VT {Al})
so that {{A}}} can be seen to correspond to Ap,, (x;y).

=
=
=
=
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