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Measure Space and Realization

Definition
Let (X, ) and (Y, v) be measure space and F be measurable partial

mapping F :C X — Y. v is called push forward measure if p(F~1[V])
= v(V). We say F realizes v on p and write v < .

Example

e Consider X = [0, 1] equipped with Lebesgue measure A.

o Consider Cantor space C = {0, 1}V equipped with canonical fair
measure 7y .

@ Binary representation pp, : C — X realizes A on v: A < 7.
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Canonical measure and Realizer

Fact (Schroder,Simpson 2006)

Let X be second countable Ty space with Borel probability measure .
Then there exists Borel probability measure 74 on C s.t. p has continuous
partial realizer over 7.

Same fair coin flip
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Canonical measure and Realizer

Fact (Schroder,Simpson 2006)

Let X be second countable Ty space with Borel probability measure .
Then there exists Borel probability measure 74 on C s.t. p has continuous
partial realizer over 7.

Using different unfair coin every time!



Canonical measure and Realizer

Fact (Schroder,Simpson 2006)

Let X be second countable Ty space with Borel probability measure .
Then there exists Borel probability measure 74 on C s.t. p has continuous
partial realizer over 7.
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Canonical measure and Realizer

Fact (Schroder,Simpson 2006)

Let X be second countable Ty space with Borel probability measure .
Then there exists Borel probability measure 74 on C s.t. p has continuous
partial realizer over 7.

We want fair probability measure instead of arbitrary one!
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First main result

Fact (Schroder,Simpson 2006)

Let X be second countable Ty space with Borel probability measure .
Then there exists Borel probability measure 4 on C s.t. u has continuous
partial realizer over 7.

Theorem (First main result)

For every Borel probability measure 7 on C, there exists an partial
continuous realizer F which realizes 4 on fair measure ~.

F G
(€,7) (€,7) (X, 1)

v(FH(G7HV))) w(V) =+(6"H(V))

(G7H(V))
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First main result

Fact (Schroder,Simpson 2006)

Let X be second countable Ty space with Borel probability measure L.
Then there exists Borel probability measure 4 on C s.t. u has continuous
partial realizer over 7.

Theorem (First main result)

For every Borel probability measure 74 on C, there exists an partial
continuous realizer F which realizes 7 on fair measure ~.

Corollary

Let X be second countable Ty space with Borel probability measure .
Then there exists an partial continuous realizer F which realizes y on 7.
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Proof sketch of theorem

Theorem

For every Borel probability measure 7 on C, there exists an almost surely
continuous realizer F : C — C which realizes 7 on fair measure ~y.

wC C (C,7)
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Proof sketch of theorem

Theorem

For every Borel probability measure 7 on C, there exists an almost surely
continuous realizer F : C — C which realizes 7 on fair measure ~.
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Proof sketch of theorem

Theorem

For every Borel probability measure 7 on C, there exists an almost surely
continuous realizer F : C — C which realizes & on fair measure +y.
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A(Fy (wC)) =7 (wC)
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Proof sketch of theorem

Theorem

For every Borel probability measure 7 on C, there exists an almost surely
continuous realizer F : C — C which realizes 4 on fair measure ~y.

{0.1)°
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Fn+1 (VVO) U Fn+1 (VV]') g Fn (VV)
=> lim F,, is well defined!

16 /43



Proof sketch of theorem

Theorem

For every Borel probability measure 5 on C, there exists an almost surely
continuous realizer F : C — C which realizes 7 on fair measure ~y.

Proof (Cont.)

So, v(p, (F(WC))) = F(WC) for every w € {0,1}*. And we can extend
this result to hold for every Borel subset of C. It means (p;l oF)7!
realizes 7 on . [

v
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Computability of measure

Definition

Let (X, 1) be measure space and & be representation of X.

A mapping G :C C — dom(§) is said to be £ — realizer of p if

&0 G :CC — X realizes p on ~y, which is canonical fair measure of C.
If G is computable, then we'll call u is &-computable measure.

(C,7)
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Example of Realizer
Example

@ The identity on dom(pp)C C is pp-realizer of the Lebesgues measure
won [0,1].

@ Dirac distribution ¢, is p-computable iff r is p-computable.

© Let F be Gaussian CDF. Its inverse F~1 is realizer of Gaussian

measure p on Lebesgue measure A. Then the mapping G below is
F~1 o &-realizer of Gaussian measure f.
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Example of Realizer

Example

@ The identity on dom(pp)C C is pp-realizer of the Lebesgues measure
w on [0,1].

@ Dirac distribution ¢, is p-computable iff r is p-computable.

© Let F be Gaussian CDF. Its inverse F~1 is realizer of Gaussian

measure u on Lebesgue measure A. Then the mapping G below is
F~1 o &-realizer of Gaussian measure .

(C,7)

F~lotoG
GJ f

dom(¢) —— (10,1],)) ——— (R, )

21/43




Semi-inverse of CDF

Definition

Let (R, A, 1) be measure space. Recall cumulative distribution function of
pis R s p((—o0,s]) €[0,1]. The upper and lower semi-inverse of
cumulative distribution function are

FL:(0,1) > t = inf{s e R|u((—o0,s)) >t}
FE:(0,1) > t = sup{s € R| p((—o0,s]) < t}




Semi-inverse of CDF

Lemma

FL is upper-semicontinuous and F£ is lower-semicontinuous. Both of
them realize (R, A, 1) on ([0,1], B, )).

Figure: Cumulative distribution function with upper/lower semi-inverse
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Characterization of computable measure on Reals

Lemma

F% is upper-semicontinuous and F£ is lower-semicontinuous. Both of
them realize (R, A, i) on ([0,1], B, \).

Theorem (Our result)

Let pu be the Borel probability measure on R and F2,FY be lower and
upper semi inverse of its cumulative distribution function. p is
p-computable iff F¥ is (p|l%Y, p_)-computable and F% is

(p|®Y] ps.)-computable
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Brownian motion

Definition
1D Brownian motion, or Wiener process, or Wiener measure is Borel

probability measure on the space C[0, 1] which satisfies following
conditions.

@ W/(0) = 0 with probability 1.
@ Forevery 0 <r <s<t, W(t)— W(s) is independent of W(r).

@ W(t)— W(s) is normally distributed with mean 0 and variance |t —s|.

Main question : Is this probability measure computable?
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Sample path of Brownian motion

Wiener Sample
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Computability of measure

Definition

Let (X, 1) be measure space and & be representation of X.

A mapping G :C C — dom(§) is said to be £ — realizer of p if

&0 G :CC — X realizes p on ~y, which is canonical fair measure of C.
If G is computable, then we'll call u is &-computable measure.

(C,7)
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

[W(t) - W(s)| " N(O, [t — s])

° N(0,1)
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

o N(0,1)

N|=
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

e N(0,1)
° :
b 5 :
1 1 3 1
4 2 4
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Algorithm to compute Brownian motion
Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
o Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

Not bounded with

non-zero probability!
e N(0,1)
° ?
* : 5
; o : :
1 1 3 1
3 7
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

o N(0,1)

=
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

Violate moc!
®
° ?
| : :
e
1 3 1 3 1
14 8 2 4
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.
@ Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

Sample again!
e N(0,1)
¢ )
IR T
1 3 1 3 1
4 8 2 4
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Computability of Brownian motion

Canonical representation of C[0, 1] contains two information.
e Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.
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Computability of Brownian motion

Canonical representation of C[0, 1] contains two information.

e Value of function f(a/2") for every dyadic rationals.

@ A binary modulus of continuity moc.

Fact (Levy's modulus of continuity theorem)

[W(s) - W(t)| _

lim
h—>0\s—t|§h 2hIn l/h
with probability 1.
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Parameterized modulus of continuity

Fact (Levy's modulus of continuity theorem)

[W(s) — W(t)]

lim sup —————=1
h—0|s_¢/<h 2hinl/h

with probability 1.

Lemma

Let y. = \/2In(ec)/c. For every W € (C[0,1], ), W has parameterized
modulus of continuity w with the smallest parameter ¢ = c(W) > 1 s.t.

olh C)_{ 2chin (1/h) ch<1/ec
" \ye+ (h—1/ec)-c-In(c)/ye :h>1/ec
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Parameterized modulus of continuity

Lemma
Let y. = \/2In(ec)/c. For every W € (C[0,1], ), W has parameterized
modulus of continuity w with the smallest parameter ¢ = c(W) > 1 s.t.

(h,c) = 2chin(1/h) ch<1/ec
e ye+(h—1/ec)-c-In(c)/ye :h>1/ec
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Characterization of Computability

Lemma

Let yc = \/2In(ec)/c. For every W € (C[0,1], ), W has parameterized
modulus of continuity w with smallest parameter ¢ = c¢(W) > 1 s.t.

w(h C):{\/2ch|n(1/h) ch<1/ec

y+(h—1/ec)-c-In(c)/y :h>1/ec
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Characterization of Computability

Lemma

Let y. = \/2In(ec)/c. For every W € (C[0,1], ), W has parameterized
modulus of continuity w with smallest parameter ¢ = c(W) > 1 s.t.

w(h )_{\/2ch|n(1/h) ch<1/ec

ly+(h—1/ec)-c-In(c))y :h>1/ec

Theorem (Second main result)

The Wiener measure is computable iff the random variable ¢ has a
computable probability distribution.
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Characterization of Computability

Lemma

For every W € (C[0, 1], ), W has parameterized modulus of continuity
w(e, c) with smallest parameter c = c(W) > 1.

Theorem (Second main theorem)

The Wiener measure is computable iff the random variable ¢ has a
computable probability distribution.

Theorem

Let & :[0,1] x [1,00) — [0,00) denote any strictly increasing computable
which works as parameterized modulus of continuity of Wiener process.
The Wiener measure is computable if and only if there exists a random
variable ¢ with computable probability distribution.
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Thank you!
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