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Measure Space and Realization

Definition

Let (X , µ) and (Y , ν) be measure space and F be measurable partial
mapping F :⊆ X → Y . ν is called push forward measure if µ

(
F−1[V ]

)
= ν(V ). We say F realizes ν on µ and write ν 4 µ.

Example

Consider X = [0, 1] equipped with Lebesgue measure λ.

Consider Cantor space C = {0, 1}N equipped with canonical fair
measure γ .

Binary representation ρb : C → X realizes λ on γ: λ 4 γ.
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Canonical measure and Realizer

Fact (Schröder,Simpson 2006)

Let X be second countable T0 space with Borel probability measure µ.
Then there exists Borel probability measure γ̄ on C s.t. µ has continuous
partial realizer over γ̄.
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First main result

Fact (Schröder,Simpson 2006)

Let X be second countable T0 space with Borel probability measure µ.
Then there exists Borel probability measure γ̄ on C s.t. µ has continuous
partial realizer over γ̄.

Theorem (First main result)

For every Borel probability measure γ̄ on C, there exists an partial
continuous realizer F which realizes γ̄ on fair measure γ.

(X , µ)(C, γ)(C, γ)
F G

µ(V ) = γ(G−1(V ))γ
(
F−1

(
G−1(V )

))
= γ(G−1(V ))
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First main result

Fact (Schröder,Simpson 2006)

Let X be second countable T0 space with Borel probability measure µ.
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Theorem (First main result)

For every Borel probability measure γ̄ on C, there exists an partial
continuous realizer F which realizes γ̄ on fair measure γ.

Corollary

Let X be second countable T0 space with Borel probability measure µ.
Then there exists an partial continuous realizer F which realizes µ on γ.

12 / 43



Proof sketch of theorem

Theorem

For every Borel probability measure γ̄ on C, there exists an almost surely
continuous realizer F : C → C which realizes γ̄ on fair measure γ.
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ρ−1b (I ) ⊆ (C, γ)
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Proof sketch of theorem

Theorem

For every Borel probability measure γ̄ on C, there exists an almost surely
continuous realizer F : C → C which realizes γ̄ on fair measure γ.
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Proof sketch of theorem

Theorem

For every Borel probability measure γ̄ on C, there exists an almost surely
continuous realizer F : C → C which realizes γ̄ on fair measure γ.

1

{0, 1}3

γ(010C)

010 011

γ(011C)

Fn+1 (~w0) ∪ Fn+1 (~w1) ⊆ Fn (~w)

=> lim
n

Fn is well defined!
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Proof sketch of theorem

Theorem

For every Borel probability measure γ̄ on C, there exists an almost surely
continuous realizer F : C → C which realizes γ̄ on fair measure γ.

Proof (Cont.)

So, γ(ρ−1b (F (~wC))) = γ̄(~wC) for every ~w ∈ {0, 1}∗. And we can extend
this result to hold for every Borel subset of C. It means (ρ−1b ◦ F )−1

realizes γ̄ on γ.
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Computability of measure

Definition

Let (X , µ) be measure space and ξ be representation of X .
A mapping G :⊆ C → dom(ξ) is said to be ξ − realizer of µ if
ξ ◦ G :⊆ C → X realizes µ on γ, which is canonical fair measure of C.
If G is computable, then we’ll call µ is ξ-computable measure.

(C, γ)

dom(ξ) (X , µ)

G
ξ◦G

ξ
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Example of Realizer

Example

1 The identity on dom(ρb)⊆ C is ρb-realizer of the Lebesgues measure
µ on [0, 1].

2 Dirac distribution δr is ρ-computable iff r is ρ-computable.

3 Let F be Gaussian CDF. Its inverse F−1 is realizer of Gaussian
measure µ on Lebesgue measure λ. Then the mapping G below is
F−1 ◦ ξ-realizer of Gaussian measure µ.

r

δr
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Example of Realizer

Example

1 The identity on dom(ρb)⊆ C is ρb-realizer of the Lebesgues measure
µ on [0, 1].

2 Dirac distribution δr is ρ-computable iff r is ρ-computable.

3 Let F be Gaussian CDF. Its inverse F−1 is realizer of Gaussian
measure µ on Lebesgue measure λ. Then the mapping G below is
F−1 ◦ ξ-realizer of Gaussian measure µ.

(C, γ)

dom(ξ) ([0, 1], λ) (R, µ)

G
F−1◦ξ◦G

ξ F−1
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Semi-inverse of CDF

Definition

Let (R,A, µ) be measure space. Recall cumulative distribution function of
µ is R 3 s 7→ µ

(
(−∞, s]

)
∈ [0, 1]. The upper and lower semi-inverse of

cumulative distribution function are

Fµ> : (0, 1) 3 t 7→ inf
{
s ∈ R

∣∣ µ((−∞, s)
)
> t
}

Fµ< : (0, 1) 3 t 7→ sup
{
s ∈ R

∣∣ µ((−∞, s]
)
< t
}
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Semi-inverse of CDF

Lemma

Fµ> is upper-semicontinuous and Fµ< is lower-semicontinuous. Both of
them realize (R,A, µ) on

(
[0, 1],B, λ

)
.

Figure: Cumulative distribution function with upper/lower semi-inverse
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Characterization of computable measure on Reals

Lemma

Fµ> is upper-semicontinuous and Fµ< is lower-semicontinuous. Both of
them realize (R,A, µ) on

(
[0, 1],B, λ

)
.

Theorem (Our result)

Let µ be the Borel probability measure on R and Fµ<,Fµ> be lower and
upper semi inverse of its cumulative distribution function. µ is
ρ-computable iff Fµ< is (ρ|[0,1], ρ<)-computable and Fµ> is
(ρ|[0,1], ρ>)-computable
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Brownian motion

Definition

1D Brownian motion, or Wiener process, or Wiener measure is Borel
probability measure on the space C[0, 1] which satisfies following
conditions.

1 W (0) = 0 with probability 1.

2 For every 0 ≤ r < s < t, W (t)−W (s) is independent of W (r).

3 W (t)−W (s) is normally distributed with mean 0 and variance |t− s|.

Main question : Is this probability measure computable?
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Sample path of Brownian motion
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Computability of measure

Definition

Let (X , µ) be measure space and ξ be representation of X .
A mapping G :⊆ C → dom(ξ) is said to be ξ − realizer of µ if
ξ ◦ G :⊆ C → X realizes µ on γ, which is canonical fair measure of C.
If G is computable, then we’ll call µ is ξ-computable measure.

(C, γ)

dom(ξ) (X , µ)

G
ξ◦G

ξ
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.

Value of function f (a/2n) for every dyadic rationals.

A binary modulus of continuity moc.

1

N(0, 1)

|W (t)−W (s)| ˜ N(0, |t − s|)
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Algorithm to compute Brownian motion
Canonical representation of C[0, 1](Wei00,§6.1) contains two information.

Value of function f (a/2n) for every dyadic rationals.

A binary modulus of continuity moc.

1

N(0, 1)

1
2

3
4

1
4

r

Not bounded with
non-zero probability!
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Algorithm to compute Brownian motion

Canonical representation of C[0, 1](Wei00,§6.1) contains two information.

Value of function f (a/2n) for every dyadic rationals.

A binary modulus of continuity moc.

1

N(0, 1)

1
2

3
4

1
4

3
8

Sample again!
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Computability of Brownian motion

Canonical representation of C[0, 1] contains two information.

Value of function f (a/2n) for every dyadic rationals.

A binary modulus of continuity moc.

Fact (Lèvy’s modulus of continuity theorem)

lim
h→0

sup
|s−t|≤h

|W (s)−W (t)|√
2h ln 1/h

= 1

with probability 1.
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Parameterized modulus of continuity

Fact (Lèvy’s modulus of continuity theorem)

lim
h→0

sup
|s−t|≤h

|W (s)−W (t)|√
2h ln 1/h

= 1

with probability 1.

Lemma

Let yc =
√

2 ln (ec)/c. For every W ∈ (C[0, 1], µ), W has parameterized
modulus of continuity ω with the smallest parameter c = c(W ) ≥ 1 s.t.

ω(h, c) =

{√
2ch ln (1/h) : h ≤ 1/ec

yc + (h − 1/ec) · c · ln (c)/yc : h ≥ 1/ec

38 / 43



Parameterized modulus of continuity

Lemma

Let yc =
√

2 ln (ec)/c. For every W ∈ (C[0, 1], µ), W has parameterized
modulus of continuity ω with the smallest parameter c = c(W ) ≥ 1 s.t.

ω(h, c) =

{√
2ch ln (1/h) : h ≤ 1/ec

yc + (h − 1/ec) · c · ln (c)/yc : h ≥ 1/ec

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

39 / 43



Characterization of Computability

Lemma

Let yc =
√

2 ln (ec)/c. For every W ∈ (C[0, 1], µ), W has parameterized
modulus of continuity ω with smallest parameter c = c(W ) ≥ 1 s.t.

ω(h, c) =

{√
2ch ln (1/h) : h ≤ 1/ec

y + (h − 1/ec) · c · ln (c)/y : h ≥ 1/ec

Theorem (Second main result)

The Wiener measure is computable iff the random variable c has a
computable probability distribution.
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Characterization of Computability

Lemma

For every W ∈ (C[0, 1], µ), W has parameterized modulus of continuity
ω(•, c) with smallest parameter c = c(W ) ≥ 1.

Theorem (Second main theorem)

The Wiener measure is computable iff the random variable c has a
computable probability distribution.

Theorem

Let ω̃ : [0, 1]× [1,∞)→ [0,∞) denote any strictly increasing computable
which works as parameterized modulus of continuity of Wiener process.
The Wiener measure is computable if and only if there exists a random
variable c̃ with computable probability distribution.
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Thank you!
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