Representation of Borel Probability Measures and Characterization of computability of Brownian motion

Hyunwoo Lee, Sewon Park, Donghyun Lim, Martin Ziegler

KAIST

July 1, 2019

Table

- 2 Computability of measure
- Brownian motion
- 4 Computability of Brownian motion

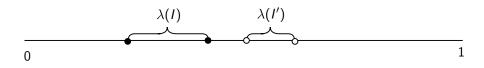
Definition

Let (X, μ) and (Y, ν) be measure space and F be measurable partial mapping $F :\subseteq X \to Y$. ν is called **push forward measure** if $\mu(F^{-1}[V]) = \nu(V)$. We say F **realizes** ν on μ and write $\nu \preccurlyeq \mu$.

- Consider X = [0, 1] equipped with Lebesgue measure λ .
- Consider Cantor space $\mathcal{C}=\{0,1\}^{\mathbb{N}}$ equipped with canonical fair measure γ .
- Binary representation $\rho_b : \mathcal{C} \to X$ realizes λ on $\gamma : \lambda \preccurlyeq \gamma$.

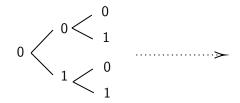
Definition

Let (X, μ) and (Y, ν) be measure space and F be measurable partial mapping $F :\subseteq X \to Y$. ν is called **push forward measure** if $\mu(F^{-1}[V])$ $= \nu(V)$. We say F **realizes** ν on μ and write $\nu \preccurlyeq \mu$.



Definition

Let (X, μ) and (Y, ν) be measure space and F be measurable partial mapping $F :\subseteq X \to Y$. ν is called **push forward measure** if $\mu(F^{-1}[V]) = \nu(V)$. We say F **realizes** ν on μ and write $\nu \preccurlyeq \mu$.



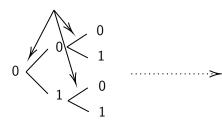
Definition

Let (X, μ) and (Y, ν) be measure space and F be measurable partial mapping $F :\subseteq X \to Y$. ν is called **push forward measure** if $\mu(F^{-1}[V]) = \nu(V)$. We say F **realizes** ν on μ and write $\nu \preccurlyeq \mu$.

- Consider X = [0, 1] equipped with Lebesgue measure λ .
- Consider Cantor space $\mathcal{C}=\{0,1\}^{\mathbb{N}}$ equipped with canonical fair measure γ .
- Binary representation $\rho_b : \mathcal{C} \to X$ realizes λ on $\gamma : \lambda \preccurlyeq \gamma$.

Fact (Schröder, Simpson 2006)

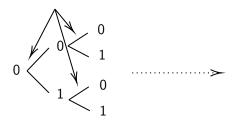
Let X be second countable T_0 space with Borel probability measure μ . Then there exists Borel probability measure $\bar{\gamma}$ on C s.t. μ has continuous partial realizer over $\bar{\gamma}$.



Fact (Schröder, Simpson 2006)

Let X be second countable T_0 space with Borel probability measure μ . Then there exists Borel probability measure $\bar{\gamma}$ on C s.t. μ has continuous partial realizer over $\bar{\gamma}$.

Using different unfair coin every time!



Fact (Schröder, Simpson 2006)

Let X be second countable T_0 space with Borel probability measure μ . Then there exists Borel probability measure $\bar{\gamma}$ on C s.t. μ has continuous partial realizer over $\bar{\gamma}$.

We want fair probability measure instead of arbitrary one!

Fact (Schröder, Simpson 2006)

Let X be second countable T_0 space with Borel probability measure μ . Then there exists Borel probability measure $\bar{\gamma}$ on C s.t. μ has continuous partial realizer over $\bar{\gamma}$.

We want fair probability measure instead of arbitrary one!

First main result

Fact (Schröder, Simpson 2006)

Let X be second countable T_0 space with Borel probability measure μ . Then there exists Borel probability measure $\bar{\gamma}$ on C s.t. μ has continuous partial realizer over $\bar{\gamma}$.

Theorem (First main result)

$$(\mathcal{C},\gamma) \xrightarrow{F} (\mathcal{C},\overline{\gamma}) \xrightarrow{G} (X,\mu)$$
$$\xrightarrow{\gamma(F^{-1}(G^{-1}(V)))} \mu(V) = \overline{\gamma(G^{-1}(V))}$$

First main result

Fact (Schröder, Simpson 2006)

Let X be second countable T_0 space with Borel probability measure μ . Then there exists Borel probability measure $\bar{\gamma}$ on C s.t. μ has continuous partial realizer over $\bar{\gamma}$.

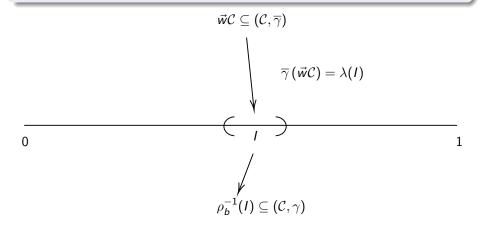
Theorem (First main result)

For every Borel probability measure $\bar{\gamma}$ on C, there exists an partial continuous realizer F which realizes $\bar{\gamma}$ on fair measure γ .

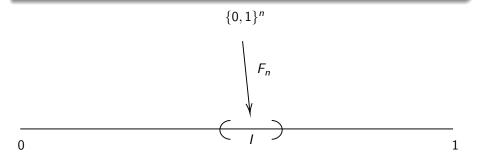
Corollary

Let X be second countable T_0 space with Borel probability measure μ . Then there exists an partial continuous realizer F which realizes μ on γ .

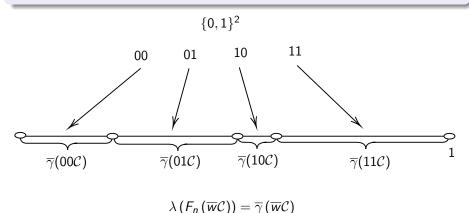
Theorem



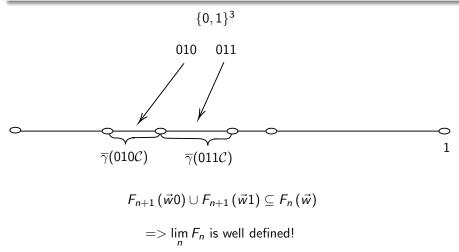
Theorem



Theorem



Theorem



Theorem

For every Borel probability measure $\bar{\gamma}$ on C, there exists an almost surely continuous realizer $F : C \to C$ which realizes $\bar{\gamma}$ on fair measure γ .

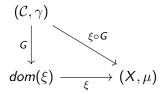
Proof (Cont.)

So, $\gamma(\rho_b^{-1}(F(\vec{w}\mathcal{C}))) = \bar{\gamma}(\vec{w}\mathcal{C})$ for every $\vec{w} \in \{0,1\}^*$. And we can extend this result to hold for every Borel subset of \mathcal{C} . It means $(\rho_b^{-1} \circ F)^{-1}$ realizes $\bar{\gamma}$ on γ .

Computability of measure

Definition

Let (X, μ) be measure space and ξ be representation of X. A mapping $G :\subseteq \mathcal{C} \to dom(\xi)$ is said to be $\xi - realizer$ of μ if $\xi \circ G :\subseteq \mathcal{C} \to X$ realizes μ on γ , which is canonical fair measure of \mathcal{C} . If G is computable, then we'll call μ is ξ -computable measure.

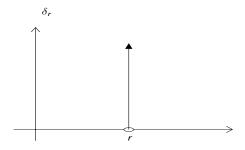


Example of Realizer

- The identity on dom $(\rho_b) \subseteq C$ is ρ_b -realizer of the Lebesgues measure μ on [0, 1].
- **2** Dirac distribution δ_r is ρ -computable iff r is ρ -computable.
- Let F be Gaussian CDF. Its inverse F⁻¹ is realizer of Gaussian measure μ on Lebesgue measure λ. Then the mapping G below is F⁻¹ ο ξ-realizer of Gaussian measure μ.

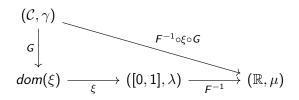
Example of Realizer

- The identity on dom $(\rho_b) \subseteq C$ is ρ_b -realizer of the Lebesgues measure μ on [0, 1].
- **②** Dirac distribution δ_r is ρ -computable iff r is ρ -computable.
- Let F be Gaussian CDF. Its inverse F⁻¹ is realizer of Gaussian measure μ on Lebesgue measure λ. Then the mapping G below is F⁻¹ ο ξ-realizer of Gaussian measure μ.



Example of Realizer

- The identity on dom(ρ_b)⊆ C is ρ_b-realizer of the Lebesgues measure μ on [0, 1].
- **2** Dirac distribution δ_r is ρ -computable iff r is ρ -computable.
- Let F be Gaussian CDF. Its inverse F⁻¹ is realizer of Gaussian measure μ on Lebesgue measure λ. Then the mapping G below is F⁻¹ ξ-realizer of Gaussian measure μ.

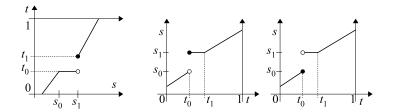


Semi-inverse of CDF

Definition

Let $(\mathbb{R}, \mathcal{A}, \mu)$ be measure space. Recall cumulative distribution function of μ is $\mathbb{R} \ni s \mapsto \mu((-\infty, s]) \in [0, 1]$. The upper and lower semi-inverse of cumulative distribution function are

$$egin{array}{ll} F^{\mu}_{>}:(0,1) \
i \ t \ \mapsto \ \infig\{s\in \mathbb{R} \ ig| \ \muig((-\infty,s)ig)>tig\} \ F^{\mu}_{<}:(0,1) \
i \ t \ \mapsto \ \supig\{s\in \mathbb{R} \ ig| \ \muig((-\infty,s]ig)$$



Semi-inverse of CDF

Lemma

 $F^{\mu}_{>}$ is upper-semicontinuous and $F^{\mu}_{<}$ is lower-semicontinuous. Both of them realize $(\mathbb{R}, \mathcal{A}, \mu)$ on $([0, 1], \mathcal{B}, \lambda)$.

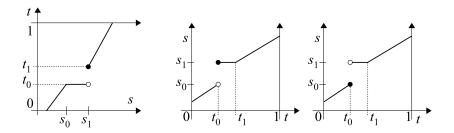


Figure: Cumulative distribution function with upper/lower semi-inverse

Characterization of computable measure on Reals

Lemma

 $F^{\mu}_{>}$ is upper-semicontinuous and $F^{\mu}_{<}$ is lower-semicontinuous. Both of them realize $(\mathbb{R}, \mathcal{A}, \mu)$ on $([0, 1], \mathcal{B}, \lambda)$.

Theorem (Our result)

Let μ be the Borel probability measure on \mathbb{R} and $F_{<}^{\mu}$, $F_{>}^{\mu}$ be lower and upper semi inverse of its cumulative distribution function. μ is ρ -computable iff $F_{<}^{\mu}$ is ($\rho|^{[0,1]}$, $\rho_{<}$)-computable and $F_{>}^{\mu}$ is ($\rho|^{[0,1]}$, $\rho_{>}$)-computable

Brownian motion

Definition

1D Brownian motion, or Wiener process, or Wiener measure is Borel probability measure on the space C[0, 1] which satisfies following conditions.

- W(0) = 0 with probability 1.
- **2** For every $0 \le r < s < t$, W(t) W(s) is independent of W(r).
- **3** W(t) W(s) is normally distributed with mean 0 and variance |t s|.

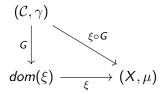
Main question : Is this probability measure computable?

Sample path of Brownian motion

Computability of measure

Definition

Let (X, μ) be measure space and ξ be representation of X. A mapping $G :\subseteq \mathcal{C} \to dom(\xi)$ is said to be $\xi - realizer$ of μ if $\xi \circ G :\subseteq \mathcal{C} \to X$ realizes μ on γ , which is canonical fair measure of \mathcal{C} . If G is computable, then we'll call μ is ξ -computable measure.

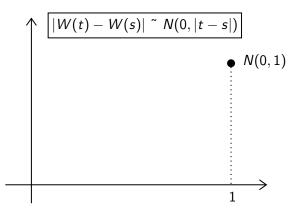


Canonical representation of C[0,1] (Wei00,§6.1) contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.

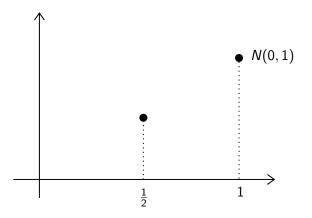
Canonical representation of C[0,1] (Wei00,§6.1) contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



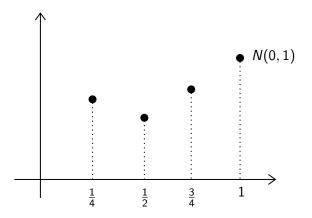
Canonical representation of $\mathcal{C}[0,1](\text{Wei00},\S6.1)$ contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



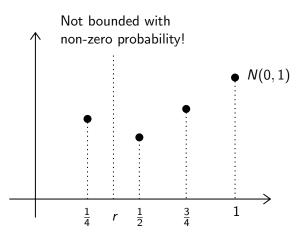
Canonical representation of $\mathcal{C}[0,1]$ (Wei00,§6.1) contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



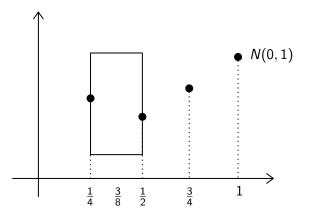
Canonical representation of $\mathcal{C}[0,1](\text{Wei00},\S6.1)$ contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



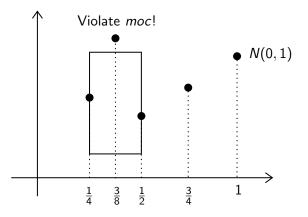
Canonical representation of C[0,1] (Wei00,§6.1) contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



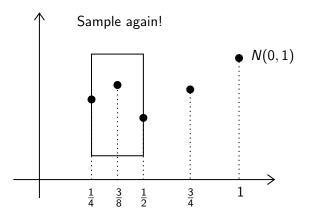
Canonical representation of C[0,1] (Wei00,§6.1) contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



Canonical representation of C[0, 1] (Wei00, §6.1) contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.



Computability of Brownian motion

Canonical representation of $\mathcal{C}[0,1]$ contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.

Computability of Brownian motion

Canonical representation of $\mathcal{C}[0,1]$ contains two information.

- Value of function $f(a/2^n)$ for every dyadic rationals.
- A binary modulus of continuity moc.

Fact (Lèvy's modulus of continuity theorem)

$$\lim_{h \to 0} \sup_{|s-t| \le h} \frac{|W(s) - W(t)|}{\sqrt{2h \ln 1/h}} = 1$$

with probability 1.

Parameterized modulus of continuity

Fact (Lèvy's modulus of continuity theorem)

$$\lim_{h\to 0} \sup_{|s-t|\leq h} \frac{|W(s)-W(t)|}{\sqrt{2h\ln 1/h}} = 1$$

with probability 1.

Lemma

Let $y_c = \sqrt{2 \ln (ec)/c}$. For every $W \in (\mathcal{C}[0,1],\mu)$, W has parameterized modulus of continuity ω with the smallest parameter $c = c(W) \ge 1$ s.t.

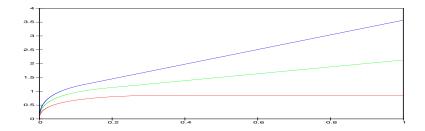
$$\omega(h,c) = \begin{cases} \sqrt{2ch\ln(1/h)} & : h \le 1/ec\\ y_c + (h-1/ec) \cdot c \cdot \ln(c)/y_c & : h \ge 1/ec \end{cases}$$

Parameterized modulus of continuity

Lemma

Let $y_c = \sqrt{2 \ln (ec)/c}$. For every $W \in (\mathcal{C}[0,1],\mu)$, W has parameterized modulus of continuity ω with the smallest parameter $c = c(W) \ge 1$ s.t.

$$\omega(h,c) = \begin{cases} \sqrt{2ch\ln(1/h)} & : h \le 1/ec\\ y_c + (h-1/ec) \cdot c \cdot \ln(c)/y_c & : h \ge 1/ec \end{cases}$$



Characterization of Computability

Lemma

Let $y_c = \sqrt{2 \ln(ec)/c}$. For every $W \in (\mathcal{C}[0,1],\mu)$, W has parameterized modulus of continuity ω with smallest parameter $c = c(W) \ge 1$ s.t.

$$\omega(h,c) = \begin{cases} \sqrt{2ch\ln(1/h)} & : h \le 1/ec\\ y + (h - 1/ec) \cdot c \cdot \ln(c)/y & : h \ge 1/ec \end{cases}$$

Characterization of Computability

Lemma

Let $y_c = \sqrt{2 \ln(ec)/c}$. For every $W \in (\mathcal{C}[0,1],\mu)$, W has parameterized modulus of continuity ω with smallest parameter $c = c(W) \ge 1$ s.t.

$$\omega(h,c) = \begin{cases} \sqrt{2ch\ln(1/h)} & : h \le 1/ec\\ y + (h - 1/ec) \cdot c \cdot \ln(c)/y & : h \ge 1/ec \end{cases}$$

Theorem (Second main result)

The Wiener measure is computable iff the random variable c has a **computable probability distribution**.

Characterization of Computability

Lemma

For every $W \in (C[0,1], \mu)$, W has parameterized modulus of continuity $\omega(\bullet, c)$ with smallest parameter $c = c(W) \ge 1$.

Theorem (Second main theorem)

The Wiener measure is computable iff the random variable c has a **computable probability distribution**.

Theorem

Let $\tilde{\omega} : [0,1] \times [1,\infty) \to [0,\infty)$ denote any strictly increasing computable which works as parameterized modulus of continuity of Wiener process. The Wiener measure is computable if and only if there exists a random variable \tilde{c} with computable probability distribution.

Thank you!