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Overview 2/21

¡ Goal: realisability models of HoTT

¡ Inspiration: A Notion of Homotopy for the E�ective Topos, J.v.Oosten 2013

¡ So far: structure of category with �brant objects from a notion of interval (on a topos
equipped with a such)

¡ AmSud Math project Categories, Complexity and Logic



The lore of toposes 3/21

De�nition 1. A topos is a �nitely complete CCC with a subobject class�er 
.

De�nition 2. Let T be a topos and X 2T. X's powerobject is the exponential 
X.

Theorem 3. (Paré, 1974) The contravariant powerobject functor 
(¡):Top¡!T is monadic.

Remark 4. A monadic functor C!D creates limits in D (essentially: any limiting cone in D
is the image of a limiting cone in C). Hence a topos is �nitely cocomplete.

De�nition 5. Let T be a topos. A natural number object N, if it exists, is an initial object in
the category of sequences 1!X!X.

Remark 6. An NNO 1¡!zero N¡!succ N implements Peano arithmetic internally.

De�nition 7. An arithmetic topos is a topos equipped with an NNO.

De�nition 8. A countable family of subobjects of X 2T is a morphism �:N!
X.



Notation. We shall write (XnCX)n:N for a countable family bounded by X when the indexing
morphism � is unambigous (or arbitrary).

Remark 9. (XnCX)n:N be a countable bounded family in T.

1. (XnCX)n:N admits a bounded productY
n:N

Xn= f�:XN j8n:N:�(n)2Xng

with n-th projection �n=��:�(n).

2. Essentially by Paré's argument, (Xn)n:N admits a bounded coproduct
`

n:NXn as well.

[As sugested by Jaap, this needs to be made more precise]

De�nition 10. Let X 2T. The object

List(X) =
def: fx: (?+X )N j9n:N:8k:N:(xk2X() k <n)g

is called list object over X.

Remark 11. List(¡) is a submonad of the maybe monad (?+(¡)).



E� 4/21

De�nition 12. An e�ective set (X;�) is a set equipped with an e�ective equality, that is a
non-standard predicate j¡�¡j:X �X!PN which is

i. symmetric: jx�x0j ` jx0�xj

ii. transitive: jx�x0j ^ jx0�x00j ` jx�x00j

Remark 13. Notice that we do not alway have re�exivity, that is PN� jx�xj. In fact, the latter

assert's x's existence. Accordingly, E(x) =
def:jx�xj is called the existence predicate on (X;�).

Call x2X ghost if its existence is empty... In particular two equal inhabitants cannot be ghosts:

jx�x0j `E(x)^E(x0)

De�nition 14. Let (X;�) and (Y ;�) be e�ective sets. A functional relation

�: (X;�) (Y ;�)

is a predicate �:X �Y!PN which is

i. extensional: �(x; y)^ jx�x0j ^jy� y 0j `�(x0; y 0)

ii. strict: �(x; y)`E(x)^E(y)



iii. single-valued: �(x; y)^�(x; y 0)` jy� y 0j

iv. total: E(x)`
S
y2YE(y)^�(x; y)

Two functional relations �;	: (X;�) (Y ;�) are equivalent if �a`	.

De�nition 15. A map of e�ective sets is an equivalence class of functional relations.

Notation 16. We shall write Rf for an arbitrary but �xed representant of the map f.

We shall use this notation as a concise way to indicate that a property of a map formulated in
terms of an arbitrary representant is well-de�ned.

Proposition 17. Let f : (X;�)! (Y ;�) and g: (Y ;�)! (Z;�) be maps. Their composition
is given by

(Rg �Rf)(x; z) :=9y:Rf(x; y)^Rg(y; z)

in Eff's internal logic.

So in layman's terms this is

(Rg �Rf)(x; z) =
[
y2Y

E(y)^Rf(x; y)^Rg(y; z)



Proposition 18. Let idX: (X;�)! (X;�) be the map represented by

RidX(x; x0) := jx�x0j

We have f = idX � f and f = idY � f for any map f : (X;�)! (Y ;�).

Theorem 19. (Hyland) E�ective sets and their maps aggregate to the category Eff. This
category is a topos.

De�nition 20. An assembly or !-set is an object (X;�)2Eff such that jx�x0j=? if x=/ x0.

Example 21.

1. The assembly (f?g;N) is terminal in Eff .

2. The assembly (N; n 7! fng) is an NNO in Eff .

3. Non-example: 
.

Remark 22. Assume (X;�). Let X� =
def: fx2X jE(x)=/ ?g. The relation � is an equivalence

relation onX� . Call equality class an element of the quotient. A global section ?! (X;�) selects
an equality class in X.



De�nition 23. Let (X;�); (Y ;�)2Eff. A function f :X!Y is e�ective is there is a tracking
code or tracker t2N such that , for all x;x02X and n2jx�x0j we have t �n2jf(x)� f(x0)j.

Remark 24. A e�ective function induces a morphism (X;�)! (Y ;�) represented by

Rf(x; y)=
[
x02X

fhm;ni jm2jx�x0j; n2jf(x0)� y jg

Proposition 25. Any map to an assembly is induced by a unique e�ective function.

Corollary 26. A map f : (X;�)! (Y ;�) among assemblies is induced by a supere�ective
function f :X!Y for which there exists a tracking code or tracker t2N such that, for all x2X
and n2E(x), we have t �n2E(f(x)).



Elementary interval 5/21

De�nition 27. An object X 2C in a category C is well-pointed if, given (arbitrary) morphisms
f ; g:X!Y, f(x)= g(x) for all global sections x: ?!X implies f = g.

Remark 28. A boolean topos can be characterised as a topos where every object is well-pointed.

De�nition 29. Let T be a topos. I 2T is an elementary interval provided it

i. is well-pointed;

ii. has precisely two global sections #0;#1: ?! I.

Example 30. Consider the e�ective topos Eff and the assembly

I =
def:

(fi0; i1g;E(i0)= f0; 1g; E(i1)= f1; 2g)

Notice that I =��2. Assume (X;�) 2 Eff . A morphism s: I! (X;�) determines and is
determined by global sections dxe; dx0e: ?! (X;�) such that there are x0; x0

0 2X verifying

i. dxe= dx0e;
ii. dx0e= dx00e;
iii. E(x0)\E(x00)=/ ?.
The latter item follows from the fact that Rs is total. The morphism s is thus determined by
the global sections s � di0e and s � di1e, which entails in particular that I is well-pointed.



Paths 6/21

De�nition 31. Let T be a topos and I an elementary interval in T. Elementary intervals of
length n are obtained by gluing copies of I

I0 =
def:

?

In+1 =
def:

In+1 I

by pushout

? I

In+1

#0

#(n¡1)

In

Let X 2T.We shall call a morphism In!X (rigid) path (of length n) in X and XIn the object
of paths of length n.

Example 32. In Eff we can construct In as the assembly

¡�
i0
(n)
; ���; in¡1

(n) 	
;E

¡
ik
(n)�= fk; k+1g

�



A morphism s: In! (X;�) determines and is determined by a list [dx0e; ���; dxn¡1e] of global
sections of (X;�) such that for all 06 i <n¡ 1 there is xi

0 verifying

i. dxie= dxi0e;

ii. E(xi0)\E(xi+10 )=/ ?.

Remark 33. Let X 2H and n2N. We have

XIn =� fl:List(X)j9!:XIn:8i: [n]: l(i)=!#ig

since In is well-pointed, so in particular XIn CList(X) for all n 2N. Hence the bounded
coproduct

`
n:NX

In exists.

Notation. When convenient, we shall use the list notation [!#0; ���; !#(n¡1)] for a path !.



Cosimplicial interval 7/21

Remark 34. Let I be an elementary interval. For any n> 0 and 06 i6 n there is the i-th
coface function

�(i): ¡(In) ¡! ¡(In+1)

#j 7!
�
#j j < i
#(j+1) j> i

Similarly, for any n> 1 and 06 i6n¡ 1 there is the i-th codegeneracy function

�(i): ¡(In+1) ¡! ¡(In)

#j 7!
�
#j j6 i
#(j ¡ 1) j > i

De�nition 35. An elementary interval I is cosimplical provided coface functions �(i) and code-
generacy functions �(i) uniquely determine coface operators �i: In! In+1 and codegeneracy
operators �i: In+1! In, respectively.



Example 36. The elementary interval �2 in Eff is cosimplicial. The In's are assemblies, so a
global section �!In is uniquely determined by an element of the underlying set while a morphism
f : Im! In is uniquely determined by a tracked function on the underlying sets. The i-th coface
function

�(i): ¡(In) ! ¡(In+1)

admits the tracker

�j:if j < i then j else j+1

when seen as a function fi0; ���; in¡1g!fi0; ���; ing. Similarly, the i-th codegenacy function

�(i): ¡(In+1) ¡! ¡(In)

admits the tracker

�j:if j6 i then j else j ¡ 1

when seen as a function fi0; ���; ing!fi0; ���; in¡1g.



Simplicial resolution by paths 8/21

Remark 37. Let I be a cosimplicial interval and I�T be the subcategory with objects the
In's and monotone morphisms (the latter are generated by coface and codegeneracy operators
modulo cosimplicial identities). I is a monoidal category with tensor given by pushout

#0
? In

Im
 In= Im+nIm

#(m¡1)

Any morphism in I admits a normal form. In other words, I is equivalent to�+ (the �algebraist's
simplicial category�).

Remark 38. Let X 2H. The (bounded) family Path(X) =
def:

(XIn)n:N is a simplicial object
with faces and degeneracies given by precomposition

di = �!:Path(X)n:! � �i
si = �!:Path(X)n:! ��i

we shall call the path complex of X. Notice that Path(X)0=XI0=�X as I0=� ?.



[Unilke the claim in the version projected during the talk, the Eilenberg-
Zilber lemma does not hold in this setting. As recalled by Benno, it
is not constructive, which is a fact this speaker was embarassingly not
aware.]



�Weak� geometric realisation 9/21

De�nition 39. Let X 2H, I a cosimplicial interval and �0 be the relation on
`

n:NPath(X)n
such that u�0 v if t is a degeneracy of s. The path object XhI i is the quotient

XhI i =
def:a

n:N

Path(X)n /�

of
`

n:NPath(X)n by the equivalence relation generated by �0.

Notation. Given !:XhI i, we shall write !hni for a representative of ! of length n and !~ for
the whole equivalence class.

De�nition 40. A path !:XhI i is constant if its canonical representative is of length 0.

Remark 41. ?hI i=�? as there is only the trivial path up to degeneracy, so the quotient collapses.



Path object or fundamental category? 10/21

Remark 42. Let !: Path(X)m and $: Path(X)n be paths such that $ = s(!) for some
degeneracy s:Path(X)m!Path(X)n. Assume m;n:N. Then

$hni0 = !hmi0
$hnin¡1 = !hmim¡1

hence the source and target morphisms @X
¡; @X

+:XhI i!X given by

@X
¡ =

def:
�!:XhI i:!hni#0

@X
+ =

def:
�!:XhI i:!hni#(n¡1)

are well-de�ned. Hence

¡ @X
¡; @X

+:XhI i�X is an internal graph in H;

¡ composition �by concatenation� 
X:XhI i�XhI i!XhI i is well-de�ned;

¡ the constant path morphism �X =
def:

�x:X: in0(x):X!XhI i (with x~ being x's equivalence
class) is a section of both @X

¡ and @X
+.



Theorem 43.

1. XhI i is an internal category with composition 
X and unit �X.

2. There is an involution rev: (¡):XhI i!XhI i given by list reversal.

3. The assignment (¡)hI i:H!H is an endofunctor acting by postcomposition

f hI i(u)=f �u

4. The morphisms �X, @X
¡ and @X

+ are natural in X.



Face �ltrations 11/21

De�nition 44. A �nite face �ltration (of length n) is a sequence d = (d(i))06i<n of face
operators

Path(X)m(0) ¡
d(0) Path(X)m(1) ¡

d(1) ���  ¡d(n¡1)Path(X)m(n)

Remark 45. Assume n:N and !:Path(X)n. If we see ! as a list, the �rst face of ! is the tail

d0(!) = [!#1;!#2; ���;!#(n¡1)]

while it's last face is the maximal pre�x

dn¡1(!) = [!#0;!#2; ���;!#(n¡2)]

We have in particular the tail �ltration t=
¡
tn
(i)� given by

Path(X)0 ¡
d0 Path(X)1 ¡

d0 ��� ¡d0 Path(X)n



and the pre�x �ltration p=
¡
pn
(i)� given by

Path(X)0 ¡
d1 Path(X)1 ¡

d2 ���  ¡dn¡1Path(X)n

Notation. Assume X 2T and x; x0:X. We shall write !:x x0 as an abbreviation for a path
!:XhI i such that @¡(!) = x and @+(!) = x0. Let f :X! Y be a morphism. We shall abuse
notation and write f(!): f(x) f(x0) for f hI i(s).



The Hurewicz property 12/21

Notation. Assume a �nite face �ltration d= (d(i))06i<n. We shall write d[(i) for the face
operator

d(i) � d(i+1) � ��� � d(n¡1)

De�nition 46.

1. A cosimplicial interval has the Hurewicz property if for any !:Path(X)m(n) and any �nite
face �ltration the list

[d[(0)(!); d[(1)(!); ���; d[(n¡1)(!);!]

determines a path in XhI i.

2. A Hurewicz topos is an arithmetic topos equipped with a Hurewicz interval (part of the
data).

Example 47. (Eff ;�2) is Hurewicz. Paths can be characterised in terms of equalities and
existence predicates (c.f. Example 32). �2 is cosimplicial (c.f. Example 36). To see that it is
Hurewicz, recall that the set underlying an exponential (Y ;�)(X;�) in Eff is f�:X�Y!PNg,



while existence is the set of quadruplets hk; l;m; ni witnessing that � is a functional relation.
Now a face operator d:XIm!XIn is given by precomposition

d:XIm ¡! XIn

! 7! ! � �

for some coface operator �: In� Im, so we have E(! � �)�E(!).



Homotopy 13/21

De�nition 48. Let f ; g:X!Y be morphisms. A homotopy H: f# g from f to g is given by
a commuting diagram

X

Y hI i

gf H

@+@¡
Y Y

H is constant on a subobject X 0CX provided H(x)= �(x) for any x:X such that x2X 0.

Remark 49. A homotopy H: f# g informs us that for any x:X there is H(x):Y hI i such that
f(x)= @¡(!x) and g(x)= @+(!x).

De�nition 50. A homotopy equivalence is a morphism u:X!Y which has an up-to-homotopy
inverse v:Y !X.

Remark 51. The morphism v is a homotopy equivalence as well, called the inverse homotopy
equivalence.

Remark 52. Homotopy equivalences verify 3-for-2.



Hurewicz �brations 14/21

De�nition 53. A section h of the canonical morphism hf hI i; @X¡i in

X

Y

( @Y
¡)�X

XhI i

Y hI i

hfhIi;@X
¡i

h

@X
¡

@Y
¡

fhIi f

is called connection. A morphism which admits a connection is called Hurewicz �bration. A
Hurewicz �bration which is also a homotopy equivalence is called trivial.

Notation. We shall write H for the class of Hurewicz �brations.

Remark 54. A Hurewicz �bration f :X! Y is thus a morphism with a strong path li�ting
property: for any path v: y y 0 in Y and any x2X such that f(x)= y there is a path u in X
such that f �u= v along with an explicit construction of one such lift for any pair (x; v) such
that f(x)= @¡(v).



Some generic Hurewicz �brations 15/21

Proposition 55. Projections from products are Hurewicz �brations.

Proposition 56. h @¡; @+i:XhI i!X �X is a Hurewicz �bration for any X 2H.

Corollary 57. The source map @X
¡:XhI i!X and the target map @X

+:XhI i!X are Hurewicz
�brations for any X 2H.



Stability properties 16/21

Proposition 58. Hurewicz �brations are stable under pullback.

De�nition 59. X is a deformation retract of Y if there is a map e:X!Y admitting a retraction
r: Y !X such that there is a homotopy H: e � r# idY . We call the split epi r deformation
retraction and the split mono e deformation insertion, respectively.

Remark 60. A deformation insertion is a homotopy equivalence.

Proposition 61. Trivial Hurewicz �brations are stable under pullback.

Proof. Assume p: E! B Hurewicz, witnessed by connection hp. Assume f : A! B. Now
p0 =

def:
f�p is Hurewicz by the previous prop, so we only need to establish that it is a homotopy

equivalence. Assume a homotopy inverse u:B!E of, p witnessed by homotopies

H: p �u # idB
K:u � p # idE

Assume a:A. We have



f�E

B

E

A

p u

f

p0

H(f(a)):p(u(f(a))) f(a)

u(f(a))

But p is Hurewicz, so we have the lift hp(u(f(a)); H(f(a))). Let

ea =
def:

@+(hp(u(f(a)); H(f(a))))

As p(ea)= f(a), the term �a:A: (a; ea) constructs a section u0:A! f�E of p0. We claim that
u0 is a deformation insertion. Assume (a; e): f�E. We have u0(p0(a; e))=u0(a)= (a; ea) and
paths

K(e):u(p(e))  e

K(ea):u(p(ea))  ea

But p(e)= f(a) by hypothesis and p(ea)= f(a) by construction so u(p(e))=u(p(ea)). Hence
the term

�(a; e): f�E: zip(�a; rev(K(ea))
K(e))



constructs a homotopy H 0:u0 � p0# idf�E. �

Proposition 62. Any object X 2H is Hurewicz �brant.

Proposition 63. Hurewicz �brations are stable under composition.



Anodyne morphisms 17/21

De�nition 64. X is a strong deformation retract of Y if it is a deformation retract admitting a
witnessing homotopy constant on X. We call the split epi r strong deformation retraction and
the split mono e strong deformation insertion, respectively.

De�nition 65. A morphism f 2tH is anodyne.

Theorem 66. A strong deformation insertion is anodyne.

Proposition 67. The constant path map �X:X!XhI i is a strong deformation insertion.

Remark 68. The diagonal factors through XhI i as

�X

XhI i

X X �X

h@X
¡;@X

+i�X

with �X anodyne and h @X¡; @X+i Hurewicz.



Category of Fibrant Objects 18/21

De�nition 69. (K.S.Brown, 1973) A category F with �nite limits equipped with a class of
�brations F and a class of weak equivalences W is a category of �brant objects provided

i. I �F \W;

ii. W veri�es 3-for-2;

iii. F and F \W are stable under pullback;

iv. for any X 2F there is a an object XhI i such that there is a factorisation

X �X

XhI i

X
�X

W3w f2F

Theorem 70. Let I be a Hurewicz interval. (H; I) with F = fHurewicz �brationsg and
W = fhomotopy equivalencesg is a category of �brant objects.



A more general factorisation 19/21

De�nition 71. Let f :X!Y be a morphism in H. The object Mf given by the pullback

p1Mf Y hI i

YX

p0

f

@Y
¡

is called f's mapping track.

Remark 72. Mf = f(x; !):X � Y hI ijf(x)= @Y
¡(!)g is the object of paths that begin in the

image of f .

Theorem 73. A morphism f :X!Y factors through the mapping track as an anodyne morphism
followed by a Hurewicz �bration.



Open questions 20/21

¡ Are Hurewicz �brations stable under
Q
f for f Hurewicz? (Joyal's �-tribe)

¡ If so, is a �Hurewicz tribe� a model of HoTT? How about univalence?

¡ Is there a notion of co�bration? Model category?
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That's all folks


