Hurewicz Fibrations in Toposes

Facets of Realisability, ENS Cachan 2019

KRZYSZTOF WORYTKIEWICZ

Laboratoire des Mathématiques Université Savoie-MtBlanc

Overview

- Goal: realisability models of HoTT
- Inspiration: A Notion of Homotopy for the Effective Topos, J.v.Oosten 2013
- So far: structure of category with fibrant objects from a notion of interval (on a topos equipped with a such)
- AmSud Math project Categories, Complexity and Logic

The lore of toposes

Definition 1. A topos is a finitely complete CCC with a subobject classfier Ω .

Definition 2. Let \mathbb{T} be a topos and $X \in \mathbb{T}$. X's powerobject is the exponential Ω^X .

Theorem 3. (Paré, 1974) The contravariant powerobject functor $\Omega^{(-)}: \mathbb{T}^{op} \longrightarrow \mathbb{T}$ is monadic.

Remark 4. A monadic functor $\mathbb{C} \to \mathbb{D}$ creates limits in \mathbb{D} (essentially: any limiting cone in \mathbb{D}) is the image of a limiting cone in \mathbb{C}). Hence a topos is finitely cocomplete.

Definition 5. Let \mathbb{T} be a topos. A natural number object \mathbb{N} , if it exists, is an initial object in the category of sequences $1 \rightarrow X \rightarrow X$.

Remark 6. An NNO $1 \xrightarrow{\text{zero}} \mathbb{N} \xrightarrow{\text{succ}} \mathbb{N}$ implements Peano arithmetic internally.

Definition 7. An arithmetic topos is a topos equipped with an NNO.

Definition 8. A countable family of subobjects of $X \in \mathbb{T}$ is a morphism $\phi: \mathbb{N} \to \Omega^X$.

Notation. We shall write $(X_n \triangleleft X)_{n:\mathbb{N}}$ for a countable family bounded by X when the indexing morphism ϕ is unambigous (or arbitrary).

Remark 9. $(X_n \triangleleft X)_{n:\mathbb{N}}$ be a countable bounded family in \mathbb{T} .

1. $(X_n \triangleleft X)_{n:\mathbb{N}}$ admits a bounded product

$$\prod_{n:\mathbb{N}} X_n = \{\theta: X^{\mathbb{N}} \mid \forall n: \mathbb{N}.\theta(n) \in X_n\}$$

with *n*-th projection $\pi_n = \lambda \theta. \theta(n)$.

2. Essentially by Paré's argument, $(X_n)_{n:\mathbb{N}}$ admits a bounded coproduct $\coprod_{n:\mathbb{N}} X_n$ as well. [As suggested by Jaap, this needs to be made more precise]

Definition 10. Let $X \in \mathbb{T}$. The object

$$\operatorname{List}(X) \stackrel{\text{def.}}{=} \{ x \colon (\star + X)^{\mathbb{N}} \mid \exists n \colon \mathbb{N}. \forall k \colon \mathbb{N}. (x_k \in X \Longleftrightarrow k < n) \}$$

is called list object over X.

Remark 11. List(-) is a submonad of the *maybe monad* $(\star + (-))$.

Eff

Definition 12. An effective set (X, \approx) is a set equipped with an effective equality, that is a non-standard predicate $|-\approx -|: X \times X \to \mathcal{PN}$ which is

- *i.* symmetric: $|x \approx x'| \vdash |x' \approx x|$
- *ii.* transitive: $|x \approx x'| \land |x' \approx x''| \vdash |x \approx x''|$

Remark 13. Notice that we do not alway have reflexivity, that is $\mathcal{P}\mathbb{N} \models |x \approx x|$. In fact, the latter assert's x's existence. Accordingly, $E(x) \stackrel{\text{def.}}{=} |x \approx x|$ is called the existence predicate on (X, \approx) . Call $x \in X$ ghost if its existence is empty... In particular two equal inhabitants cannot be ghosts:

 $|x \approx x'| \vdash E(x) \land E(x')$

Definition 14. Let (X, \approx) and (Y, \approx) be effective sets. A functional relation

 $\Phi{:}\left(X,\approx\right){\leadsto}\left(Y,\approx\right)$

is a predicate $\Phi: X \times Y \rightarrow \mathcal{PN}$ which is

i. extensional: $\Phi(x, y) \wedge |x \approx x'| \wedge |y \approx y'| \vdash \Phi(x', y')$

ii. strict: $\Phi(x, y) \vdash E(x) \land E(y)$

- *iii.* single-valued: $\Phi(x, y) \land \Phi(x, y') \vdash |y \approx y'|$
- iv. total: $E(x) \vdash \bigcup_{y \in Y} E(y) \land \Phi(x, y)$

Two functional relations $\Phi, \Psi: (X, \approx) \rightsquigarrow (Y, \approx)$ are equivalent if $\Phi \dashv \!\!\! \vdash \Psi$.

Definition 15. A map of effective sets is an equivalence class of functional relations.

Notation 16. We shall write \mathfrak{R}_f for an arbitrary but fixed representant of the map f.

We shall use this notation as a concise way to indicate that a property of a map formulated in terms of an arbitrary representant is well-defined.

Proposition 17. Let $f: (X, \approx) \to (Y, \approx)$ and $g: (Y, \approx) \to (Z, \approx)$ be maps. Their composition is given by

$$(\mathfrak{R}_g \circ \mathfrak{R}_f)(x,z) := \exists y. \mathfrak{R}_f(x,y) \land \mathfrak{R}_g(y,z)$$

in $\mathcal{E}ff$'s internal logic.

So in layman's terms this is

$$(\mathfrak{R}_g \circ \mathfrak{R}_f)(x, z) = \bigcup_{y \in Y} E(y) \wedge \mathfrak{R}_f(x, y) \wedge \mathfrak{R}_g(y, z)$$

Proposition 18. Let $id_X: (X, \approx) \to (X, \approx)$ be the map represented by

 $\mathfrak{R}_{\mathrm{id}_X}(x, x') := |x \approx x'|$

We have $f = \operatorname{id}_X \circ f$ and $f = \operatorname{id}_Y \circ f$ for any map $f: (X, \approx) \to (Y, \approx)$.

Theorem 19. (Hyland) Effective sets and their maps aggregate to the category $\mathcal{E}ff$. This category is a topos.

Definition 20. An assembly or ω -set is an object $(X, \approx) \in \mathcal{E}ff$ such that $|x \approx x'| = \emptyset$ if $x \neq x'$.

Example 21.

- 1. The assembly $(\{\star\}, \mathbb{N})$ is terminal in $\mathcal{E}ff$.
- 2. The assembly $(\mathbb{N}, n \mapsto \{n\})$ is an NNO in $\mathcal{E}ff$.
- 3. Non-example: Ω .

Remark 22. Assume (X, \approx) . Let $\overline{X} \stackrel{\text{def.}}{=} \{x \in X | E(x) \neq \emptyset\}$. The relation \approx is an equivalence relation on \overline{X} . Call equality class an element of the quotient. A global section $\star \to (X, \approx)$ selects an equality class in X.

Definition 23. Let $(X, \approx), (Y, \approx) \in \mathcal{E}ff$. A function $f: X \to Y$ is effective is there is a tracking code or tracker $t \in \mathbb{N}$ such that , for all $x, x' \in X$ and $n \in |x \approx x'|$ we have $t \cdot n \in |f(x) \approx f(x')|$.

Remark 24. A effective function induces a morphism $(X, \approx) \rightarrow (Y, \approx)$ represented by

$$\mathfrak{R}_f(x,y) = \bigcup_{x' \in X} \{ \langle m,n \rangle \, | \, m \in |x \approx x'|, n \in |f(x') \approx y| \}$$

Proposition 25. Any map to an assembly is induced by a unique effective function.

Corollary 26. A map $f: (X, \approx) \to (Y, \approx)$ among assemblies is induced by a supereffective function $f: X \to Y$ for which there exists a tracking code or tracker $t \in \mathbb{N}$ such that, for all $x \in X$ and $n \in E(x)$, we have $t \cdot n \in E(f(x))$.

Elementary interval

Definition 27. An object $X \in \mathbb{C}$ in a category \mathbb{C} is well-pointed if, given (arbitrary) morphisms $f, g: X \to Y$, f(x) = g(x) for all global sections $x: \star \to X$ implies f = g.

Remark 28. A boolean topos can be characterised as a topos where every object is well-pointed.

Definition 29. Let \mathbb{T} be a topos. $I \in \mathbb{T}$ is an elementary interval provided it

- *i. is well-pointed;*
- ii. has precisely two global sections $\#0, \#1: \star \rightarrow I$.

Example 30. Consider the *effective topos* $\mathcal{E}ff$ and the assembly

$$I \stackrel{\text{def.}}{=} (\{i_0, i_1\}; E(i_0) = \{0, 1\}, E(i_1) = \{1, 2\})$$

Notice that $I \cong \Delta \mathbf{2}$. Assume $(X, \approx) \in \mathcal{E}ff$. A morphism $s: I \to (X, \approx)$ determines and is determined by global sections $\lceil x \rceil, \lceil x' \rceil: \star \to (X, \approx)$ such that there are $x_0, x'_0 \in X$ verifying

- i. $\lceil x \rceil = \lceil x_0 \rceil;$
- ii. $\lceil x' \rceil = \lceil x'_0 \rceil$;
- iii. $E(x_0) \cap E(x'_0) \neq \emptyset$.

The latter item follows from the fact that \Re_s is total. The morphism s is thus determined by the global sections $s \circ \lceil i_0 \rceil$ and $s \circ \lceil i_1 \rceil$, which entails in particular that I is well-pointed.

Paths

Definition 31. Let \mathbb{T} be a topos and I an elementary interval in \mathbb{T} . Elementary intervals of length n are obtained by gluing copies of I

$$I_0 \stackrel{\text{def.}}{=} \star$$
$$I_{n+1} \stackrel{\text{def.}}{=} I_n + I$$

by pushout

Let $X \in \mathbb{T}$. We shall call a morphism $I_n \to X$ (rigid) path (of length n) in X and X^{I_n} the object of paths of length n.

Example 32. In $\mathcal{E}ff$ we can construct I_n as the assembly

$$\left(\left\{i_{0}^{(n)}, \cdots, i_{n-1}^{(n)}\right\}; E\left(i_{k}^{(n)}\right) = \left\{k, k+1\right\}\right)$$

A morphism $s: I_n \to (X, \approx)$ determines and is determined by a list $[\lceil x_0 \rceil; \dots, \lceil x_{n-1} \rceil]$ of global sections of (X, \approx) such that for all $0 \leq i < n-1$ there is x'_i verifying

- i. $\lceil x_i \rceil = \lceil x'_i \rceil$;
- ii. $E(x'_i) \cap E(x'_{i+1}) \neq \emptyset$.

Remark 33. Let $X \in \mathbb{H}$ and $n \in \mathbb{N}$. We have

$$X^{I_n} \cong \{l: \operatorname{List}(X) | \exists \omega: X^{I_n}. \forall i: [n]. l(i) = \omega_{\#i} \}$$

since I_n is well-pointed, so in particular $X^{I_n} \triangleleft \text{List}(X)$ for all $n \in \mathbb{N}$. Hence the bounded coproduct $\prod_{n:\mathbb{N}} X^{I_n}$ exists.

Notation. When convenient, we shall use the list notation $[\omega_{\#0}; \cdots, \omega_{\#(n-1)}]$ for a path ω .

Cosimplicial interval

Remark 34. Let I be an elementary interval. For any $n \ge 0$ and $0 \le i \le n$ there is the *i*-th coface function

$$\delta^{(i)}: \Gamma(I_n) \longrightarrow \Gamma(I_{n+1})$$

$$\#j \mapsto \begin{cases} \#j & j < i \\ \#(j+1) & j \ge i \end{cases}$$

Similarly, for any $n \ge 1$ and $0 \le i \le n-1$ there is the *i*-th codegeneracy function

$$\sigma^{(i)}: \Gamma(I_{n+1}) \longrightarrow \Gamma(I_n)$$

$$\# j \mapsto \begin{cases} \# j & j \leq i \\ \# (j-1) & j > i \end{cases}$$

Definition 35. An elementary interval I is cosimplical provided coface functions $\delta^{(i)}$ and codegeneracy functions $\sigma^{(i)}$ uniquely determine coface operators $\delta_i: I_n \to I_{n+1}$ and codegeneracy operators $\sigma_i: I_{n+1} \to I_n$, respectively. **Example 36.** The elementary interval $\Delta 2$ in $\mathcal{E}ff$ is cosimplicial. The I_n 's are assemblies, so a global section $* \rightarrow I_n$ is uniquely determined by an element of the underlying set while a morphism $f: I_m \rightarrow I_n$ is uniquely determined by a tracked function on the underlying sets. The *i*-th coface function

$$\delta^{(i)}: \Gamma(I_n) \to \Gamma(I_{n+1})$$

admits the tracker

 $\Lambda j.$ if j < i then j else j + 1

when seen as a function $\{i_0, \dots, i_{n-1}\} \rightarrow \{i_0, \dots, i_n\}$. Similarly, the *i*-th codegenacy function

$$\sigma^{(i)}: \Gamma(I_{n+1}) \longrightarrow \Gamma(I_n)$$

admits the tracker

 Λj .if $j \leq i$ then j else j - 1

when seen as a function $\{i_0, \dots, i_n\} \rightarrow \{i_0, \dots, i_{n-1}\}$.

Simplicial resolution by paths

Remark 37. Let I be a cosimplicial interval and $\mathbb{I} \subset \mathbb{T}$ be the subcategory with objects the I_n 's and monotone morphisms (the latter are generated by coface and codegeneracy operators modulo cosimplicial identities). \mathbb{I} is a monoidal category with tensor given by pushout

Any morphism in I admits a normal form. In other words, I is equivalent to Δ^+ (the "algebraist's simplicial category").

Remark 38. Let $X \in \mathbb{H}$. The (bounded) family $\operatorname{Path}(X) \stackrel{\text{def.}}{=} (X^{I_n})_{n:\mathbb{N}}$ is a simplicial object with faces and degeneracies given by precomposition

$$d_i = \lambda \omega: \operatorname{Path}(X)_n . \omega \circ \delta_i$$

$$s_i = \lambda \omega: \operatorname{Path}(X)_n . \omega \circ \sigma_i$$

we shall call the path complex of X. Notice that $Path(X)_0 = X^{I_0} \cong X$ as $I_0 \cong \star$.

[Unilke the claim in the version projected during the talk, the Eilenberg-Zilber lemma does not hold in this setting. As recalled by Benno, it is not constructive, which is a fact this speaker was embarassingly not aware.]

"Weak" geometric realisation

Definition 39. Let $X \in \mathbb{H}$, I a cosimplicial interval and \sim_0 be the relation on $\coprod_{n:\mathbb{N}} \operatorname{Path}(X)_n$ such that $u \sim_0 v$ if t is a degeneracy of s. The path object $X^{\langle I \rangle}$ is the quotient

$$X^{\langle I \rangle} \stackrel{\text{def.}}{=} \coprod_{n:\mathbb{N}} \operatorname{Path}(X)_n / \sim$$

of $\prod_{n:\mathbb{N}} \operatorname{Path}(X)_n$ by the equivalence relation generated by \sim_0 .

Notation. Given $\omega: X^{\langle I \rangle}$, we shall write $\omega \langle n \rangle$ for a representative of ω of length n and $\tilde{\omega}$ for the whole equivalence class.

Definition 40. A path $\omega: X^{\langle I \rangle}$ is constant if its canonical representative is of length 0.

Remark 41. $\star^{\langle I \rangle} \cong \star$ as there is only the trivial path up to degeneracy, so the quotient collapses.

Path object or fundamental category?

Remark 42. Let ω : $Path(X)_m$ and ϖ : $Path(X)_n$ be paths such that $\varpi = s(\omega)$ for some degeneracy s: $Path(X)_m \rightarrow Path(X)_n$. Assume m, n: \mathbb{N} . Then

$$\varpi \langle n \rangle_0 = \omega \langle m \rangle_0 \varpi \langle n \rangle_{n-1} = \omega \langle m \rangle_{m-1}$$

hence the source and target morphisms $\partial_X^-, \partial_X^+: X^{\langle I \rangle} \to X$ given by

$$\partial_X^- \stackrel{\text{def.}}{=} \lambda \omega \colon X^{\langle I \rangle} \cdot \omega \langle n \rangle_{\#0}$$
$$\partial_X^+ \stackrel{\text{def.}}{=} \lambda \omega \colon X^{\langle I \rangle} \cdot \omega \langle n \rangle_{\#(n-1)}$$

are well-defined. Hence

- $\partial_X^-, \partial_X^+: X^{\langle I \rangle} \rightrightarrows X \text{ is an internal graph in } \mathbb{H};$
- composition "by concatenation" $\otimes_X : X^{\langle I \rangle} \times X^{\langle I \rangle} \to X^{\langle I \rangle}$ is well-defined;
- the constant path morphism $\iota_X \stackrel{\text{def.}}{=} \lambda x: X. \widetilde{\text{in}_0(x)}: X \to X^{\langle I \rangle}$ (with \tilde{x} being x's equivalence class) is a section of both ∂_X^- and ∂_X^+ .

Theorem 43.

- 1. $X^{\langle I \rangle}$ is an internal category with composition \otimes_X and unit ι_X .
- 2. There is an involution $\mathbf{rev}: (-): X^{\langle I \rangle} \to X^{\langle I \rangle}$ given by list reversal.

3. The assignment $(-)^{\langle I \rangle}: \mathbb{H} \to \mathbb{H}$ is an endofunctor acting by postcomposition

 $f^{\langle I \rangle}(u) = f \circ u$

4. The morphisms ι_X , ∂_X^- and ∂_X^+ are natural in X.

Face filtrations

Definition 44. A finite face filtration (of length n) is a sequence $d = (d^{(i)})_{0 \le i < n}$ of face operators

$$\operatorname{Path}(X)_{m(0)} \xleftarrow{d^{(0)}} \operatorname{Path}(X)_{m(1)} \xleftarrow{d^{(1)}} \cdots \xleftarrow{d^{(n-1)}} \operatorname{Path}(X)_{m(n)}$$

Remark 45. Assume $n: \mathbb{N}$ and $\omega: \operatorname{Path}(X)_n$. If we see ω as a list, the first face of ω is the tail

$$d_0(\omega) = [\omega_{\#1}; \omega_{\#2}; \cdots; \omega_{\#(n-1)}]$$

while it's last face is the maximal prefix

$$d_{n-1}(\omega) = [\omega_{\#0}; \omega_{\#2}; \cdots; \omega_{\#(n-2)}]$$

We have in particular the tail filtration $t = (t_n^{(i)})$ given by

$$\operatorname{Path}(X)_0 \xleftarrow{d_0} \operatorname{Path}(X)_1 \xleftarrow{d_0} \cdots \xleftarrow{d_0} \operatorname{Path}(X)_n$$

and the prefix filtration $p\!=\!\left(\,p_n^{(i)}\,\right)$ given by

$$\operatorname{Path}(X)_0 \xleftarrow{d_1} \operatorname{Path}(X)_1 \xleftarrow{d_2} \cdots \xleftarrow{d_{n-1}} \operatorname{Path}(X)_n$$

Notation. Assume $X \in \mathbb{T}$ and x, x': X. We shall write $\omega: x \rightsquigarrow x'$ as an abbreviation for a path $\omega: X^{\langle I \rangle}$ such that $\partial^{-}(\omega) = x$ and $\partial^{+}(\omega) = x'$. Let $f: X \to Y$ be a morphism. We shall abuse notation and write $f(\omega): f(x) \rightsquigarrow f(x')$ for $f^{\langle I \rangle}(s)$.

The Hurewicz property

Notation. Assume a finite face filtration $d = (d^{(i)})_{0 \le i < n}$. We shall write $d_{\flat(i)}$ for the face operator

$$d^{(i)} \circ d^{(i+1)} \circ \dots \circ d^{(n-1)}$$

Definition 46.

1. A cosimplicial interval has the Hurewicz property if for any ω : $Path(X)_{m(n)}$ and any finite face filtration the list

$$[d_{\flat(0)}(\omega); d_{\flat(1)}(\omega); \cdots; d_{\flat(n-1)}(\omega); \omega]$$

determines a path in $X^{\langle I \rangle}$.

2. A Hurewicz topos is an arithmetic topos equipped with a Hurewicz interval (part of the data).

Example 47. $(\mathcal{E}ff, \Delta 2)$ is Hurewicz. Paths can be characterised in terms of equalities and existence predicates (c.f. Example 32). $\Delta 2$ is cosimplicial (c.f. Example 36). To see that it is Hurewicz, recall that the set underlying an exponential $(Y, \approx)^{(X, \approx)}$ in $\mathcal{E}ff$ is $\{\phi: X \times Y \to \mathcal{P}\mathbb{N}\}$,

while existence is the set of quadruplets $\langle k, l, m, n \rangle$ witnessing that ϕ is a functional relation. Now a face operator $d: X^{I_m} \to X^{I_n}$ is given by precomposition

for some coface operator $\delta: I_n \rightarrow I_m$, so we have $E(\omega \circ \delta) \subseteq E(\omega)$.

Homotopy

Definition 48. Let $f, g: X \to Y$ be morphisms. A homotopy $H: f \hookrightarrow g$ from f to g is given by a commuting diagram

H is constant on a subobject $X' \lhd X$ provided $H(x) = \iota(x)$ for any x: X such that $x \in X'$.

Remark 49. A homotopy $H: f \hookrightarrow g$ informs us that for any x: X there is $H(x): Y^{\langle I \rangle}$ such that $f(x) = \partial^{-}(\omega_x)$ and $g(x) = \partial^{+}(\omega_x)$.

Definition 50. A homotopy equivalence is a morphism $u: X \to Y$ which has an up-to-homotopy inverse $v: Y \to X$.

Remark 51. The morphism v is a homotopy equivalence as well, called *the inverse homotopy equivalence*.

Remark 52. Homotopy equivalences verify 3-for-2.

Hurewicz fibrations

Definition 53. A section h of the canonical morphism $\langle f^{\langle I \rangle}, \partial_X^- \rangle$ in

is called connection. A morphism which admits a connection is called Hurewicz fibration. A Hurewicz fibration which is also a homotopy equivalence is called trivial.

Notation. We shall write \mathcal{H} for the class of Hurewicz fibrations.

Remark 54. A Hurewicz fibration $f: X \to Y$ is thus a morphism with a strong path lifting property: for any path $v: y \rightsquigarrow y'$ in Y and any $x \in X$ such that f(x) = y there is a path u in X such that $f \circ u = v$ along with an explicit construction of one such lift for any pair (x, v) such that $f(x) = \partial^{-}(v)$.

Some generic Hurewicz fibrations

Proposition 55. Projections from products are Hurewicz fibrations.

Proposition 56. $\langle \partial^-, \partial^+ \rangle : X^{\langle I \rangle} \to X \times X$ is a Hurewicz fibration for any $X \in \mathbb{H}$.

Corollary 57. The source map $\partial_X^-: X^{\langle I \rangle} \to X$ and the target map $\partial_X^+: X^{\langle I \rangle} \to X$ are Hurewicz fibrations for any $X \in \mathbb{H}$.

Stability properties

Proposition 58. Hurewicz fibrations are stable under pullback.

Definition 59. X is a deformation retract of Y if there is a map $e: X \to Y$ admitting a retraction $r: Y \to X$ such that there is a homotopy $H: e \circ r \hookrightarrow id_Y$. We call the split epi r deformation retraction and the split mono e deformation insertion, respectively.

Remark 60. A deformation insertion is a homotopy equivalence.

Proposition 61. Trivial Hurewicz fibrations are stable under pullback.

Proof. Assume $p: E \to B$ Hurewicz, witnessed by connection h_p . Assume $f: A \to B$. Now $p_0 \stackrel{\text{def.}}{=} f^*p$ is Hurewicz by the previous prop, so we only need to establish that it is a homotopy equivalence. Assume a homotopy inverse $u: B \to E$ of, p witnessed by homotopies

Assume a: A. We have

But p is Hurewicz, so we have the lift $h_p(u(f(a)), H(f(a)))$. Let

$$e_a \stackrel{\text{def.}}{=} \partial^+(h_p(u(f(a)), H(f(a))))$$

As $p(e_a) = f(a)$, the term $\lambda a: A.(a, e_a)$ constructs a section $u_0: A \to f^*E$ of p_0 . We claim that u_0 is a deformation insertion. Assume $(a, e): f^*E$. We have $u_0(p_0(a, e)) = u_0(a) = (a, e_a)$ and paths

$$K(e): u(p(e)) \quad \rightsquigarrow \quad e$$

$$K(e_a): u(p(e_a)) \quad \rightsquigarrow \quad e_a$$

But p(e) = f(a) by hypothesis and $p(e_a) = f(a)$ by construction so $u(p(e)) = u(p(e_a))$. Hence the term

 $\lambda(a, e): f^*E. \operatorname{\mathbf{zip}}(\iota_a, \operatorname{\mathbf{rev}}(K(e_a)) \otimes K(e))$

constructs a homotopy $H': u_0 \circ p_0 \hookrightarrow \mathrm{id}_{f^*E}$.

Proposition 62. Any object $X \in \mathbb{H}$ is Hurewicz fibrant.

Proposition 63. Hurewicz fibrations are stable under composition.

Anodyne morphisms

Definition 64. X is a strong deformation retract of Y if it is a deformation retract admitting a witnessing homotopy constant on X. We call the split epi r strong deformation retraction and the split mono e strong deformation insertion, respectively.

Definition 65. A morphism $f \in {}^{\pitchfork} \mathcal{H}$ is anodyne.

Theorem 66. A strong deformation insertion is anodyne.

Proposition 67. The constant path map $\iota_X: X \to X^{\langle I \rangle}$ is a strong deformation insertion.

Remark 68. The diagonal factors through $X^{\langle I \rangle}$ as

with ι_X anodyne and $\langle \partial_X^-, \partial_X^+ \rangle$ Hurewicz.

Category of Fibrant Objects

Definition 69. (K.S.Brown, 1973) A category \mathbb{F} with finite limits equipped with a class of fibrations \mathcal{F} and a class of weak equivalences \mathcal{W} is a category of fibrant objects provided

- i. $\mathcal{I} \subset \mathcal{F} \cap \mathcal{W}$;
- ii. $\mathcal W$ verifies 3-for-2;
- iii. \mathcal{F} and $\mathcal{F} \cap \mathcal{W}$ are stable under pullback;
- iv. for any $X \in \mathbb{F}$ there is a an object $X^{\langle I \rangle}$ such that there is a factorisation

Theorem 70. Let I be a Hurewicz interval. (\mathbb{H}, I) with $\mathcal{F} = \{\text{Hurewicz fibrations}\}$ and $\mathcal{W} = \{\text{homotopy equivalences}\}$ is a category of fibrant objects.

A more general factorisation

Definition 71. Let $f: X \to Y$ be a morphism in \mathbb{H} . The object M_f given by the pullback

is called f's mapping track.

Remark 72. $M_f = \{(x, \omega) : X \times Y^{\langle I \rangle} | f(x) = \partial_Y^-(\omega) \}$ is the object of paths that begin in the image of f.

Theorem 73. A morphism $f: X \rightarrow Y$ factors through the mapping track as an anodyne morphism followed by a Hurewicz fibration.

- Are Hurewicz fibrations stable under \prod_f for f Hurewicz? (Joyal's π -tribe)
- If so, is a "Hurewicz tribe" a model of HoTT? How about univalence?
- Is there a notion of cofibration? Model category?

That's all folks