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Overview 2/21

— Goal: realisability models of HoTT
— Inspiration: A Notion of Homotopy for the Effective Topos, J.v.Qosten 2013

— So far: structure of category with fibrant objects from a notion of interval (on a topos
equipped with a such)

— AmSud Math project Categories, Complexity and Logic



The lore of toposes 3/21

Definition 1. A topos is a finitely complete CCC with a subobject classfier ().

Definition 2. Let T be a topos and X € T. X's powerobject is the exponential )-*.
Theorem 3. (Paré, 1974) The contravariant powerobject functor Q(=): T°P — T js monadic.

Remark 4. A monadic functor C — D creates limits in D (essentially: any limiting cone in D
is the image of a limiting cone in C). Hence a topos is finitely cocomplete.

Definition 5. Let T be a topos. A natural number object IN, if it exists, is an initial object in
the category of sequences 1 — X — X.

zero succ
N

Remark 6. An NNO 1

IN implements Peano arithmetic internally.
Definition 7. An arithmetic topos is a topos equipped with an NNO.

Definition 8. A countable family of subobjects of X € T is a morphism ¢: N — Q.



Notation. We shall write (X,, < X),,.N for a countable family bounded by X when the indexing
morphism ¢ is unambigous (or arbitrary).

Remark 9. (X, <1 X),,.n be a countable bounded family in T.
1. (X, < X),.n admits a bounded product

[ Xn={0: XN |vn:N.0(n) € X,,}

with n-th projection 7, = \0.6(n).
2. Essentially by Paré’s argument, (X,,),.n admits a bounded coproduct [] .. X, as well.

Definition 10. Let X € T'. The object
List(X) = {a: (% + X N [Fn: NVE: N (2 € X <= k <n))
is called list object over X.

Remark 11. List(—) is a submonad of the maybe monad (x+ (—)).



Eff

Definition 12. An effective set (X, ~) is a set equipped with an effective equality, that is a
non-standard predicate |—~—|: X x X — PN which is

i. symmetric: |z ~x'|F |2/~ x|
ii. transitive: |z~ x/| A |o' ~a" ||z~ x|

Remark 13. Notice that we do not alway have reflexivity, that is PN |z~ z|. In fact, the latter

] . def. . . .
assert's x's existence. Accordingly, F(x) = |z~ x|is called the existence predicate on (X, ~).

Call x € X ghost if its existence is empty... In particular two equal inhabitants cannot be ghosts:

lz~a'|F E(x) NE(z')

Definition 14. Let (X ,~) and (Y, =) be effective sets. A functional relation

is a predicate ®: X xY — PN which is
I. extensional: ®(x, y) A|lz~z'|Aly~y'| Ed(x’,y)
i. strict: ®(x,y)F E(x) ANE(y)



jii. single-valued: ®(z,y) AN®(z,y" ) F |y~ 1y/|
iv. total: E(x)F UyEyE(y) AN®(z,y)

Two functional relations ®,W: (X ~)~~ (Y, =) are equivalent if ®—+ .
Definition 15. A map of effective sets is an equivalence class of functional relations.
Notation 16. We shall write R for an arbitrary but fixed representant of the map f.

We shall use this notation as a concise way to indicate that a property of a map formulated in
terms of an arbitrary representant is well-defined.

Proposition 17. Let f: (X ,~)— (Y ,~) and g: (Y ,~) — (Z,~) be maps. Their composition
is given by

(RyoRy)(x, 2) =3y Rs(x,y) ANRy(y, 2)

in £ff’s internal logic.

So in layman’s terms this is

(RgoRp)(x,2) = | BEly) ARs(x,y) ARy(y, 2)

yeyY



Proposition 18. Let idx: (X ,~)— (X ,~) be the map represented by
Ridy (T, 2') = v~ 2’|

We have f =idxo f and f=idy o f forany map f: (X,~)— (Y, =).

Theorem 19. (Hyland) Effective sets and their maps aggregate to the category Eff. This
category Is a topos.

Definition 20. An assembly or w-set is an object (X ,~) € Eff such that |x~x'|=9 if v+’

Example 21.
1. The assembly ({x}, N) is terminal in Eff.
2. The assembly (N, n+— {n}) is an NNO in £ff.

3. Non-example: ().

_ def.
Remark 22. Assume (X,~). Let X = {z € X|E(z)+ @}. The relation ~ is an equivalence
relation on X. Call equality class an element of the quotient. A global section x — (X, ~) selects
an equality class in X.



Definition 23. Let (X ,=~),(Y,~)ecEff. A function f: X — Y is effective is there is a tracking
code or tracker t € N such that , for all v, 2" € X andn €|x~z'| we havet-nec|f(x)~ f(z')].

Remark 24. A effective function induces a morphism (X, ~) — (Y, ~) represented by

Re(z,y)= |J {(m.n)|melama’|,ne|f(z)=yl}
z'eX

Proposition 25. Any map to an assembly is induced by a unique effective function.

Corollary 26. A map f: (X, ~) — (Y, =) among assemblies is induced by a supereffective
function f: X — Y for which there exists a tracking code or tracker ¢t € N such that, for all x € X
andn € E(x), we havet-ne E(f(x)).



Elementary interval 5/21

Definition 27. An object X € C in a category C is well-pointed if, given (arbitrary) morphisms
f,g: X =Y, f(x)= g(x) for all global sections x:*— X implies f = g.

Remark 28. A boolean topos can be characterised as a topos where every object is well-pointed.

Definition 29. Let T be a topos. I €T is an elementary interval provided it
I. is well-pointed;

ii. has precisely two global sections #0, #1: % — 1.

Example 30. Consider the effective topos £ff and the assembly

IS ({io,ir}; Elio) = {0, 1}, E(i1) ={1,2})

Notice that [ = A2. Assume (X, ~) € Eff. A morphism s: I — (X, ~) determines and is
determined by global sections [x], [2"]: x — (X, ~) such that there are z¢, 23 € X verifying

i [x] = [zo];
i. [z']=zp];
ii. E(xo)NE(xp) + 9.

The latter item follows from the fact that A, is total. The morphism s is thus determined by
the global sections so [ig]| and so [i1], which entails in particular that I is well-pointed.



Definition 31. Let T be a topos and I an elementary interval in T'. Elementary intervals of

length n are obtained by gluing copies of I

def.
I() = %

def.
In—|—1 — In +1 I

by pushout

*&[

#(nl)l l
-

Iy 111

Let X € T.We shall call a morphism I,,— X (rigid) path (of length n) in X and X'~ the object

of paths of length n.
Example 32. In £ff we can construct I,, as the assembly

({387 i) Y B(5) = (k. k1))



A morphism s: I, — (X, ~) determines and is determined by a list [[x¢]; -, [x,_1]] of global
sections of (X, ~) such that for all 0 <7 <n —1 there is x; verifying

i [z = [xl];
i. BE(x))NE(xiyq)+ 9.

Remark 33. Let X € H and n € N. We have
XIn > ] List(X)|Fw: X1 Vi: [n].1(i) = wa}

since I,, is well-pointed, so in particular X’» <List(X) for all n € N. Hence the bounded
coproduct ]_[n:]NXI" exists.

Notation. When convenient, we shall use the list notation [wq; -+, Wy (n—1)| for a path w.



Cosimplicial interval 7/21

Remark 34. Let I be an elementary interval. For any n >0 and 0 <7 < n there is the i-th
coface function

5D T(I1,) — T(Ins1)

[ # j<i
#J {#U+&) P>

Similarly, for any n >1 and 0 <7 <n — 1 there is the i-th codegeneracy function

c:T(I,41) — T(I,)

o # ji<i
#J {#U—l) >

Definition 35. An elementary interval I is cosimplical provided coface functions ¢ (") and code-

generacy functions o' uniquely determine coface operators 0;: I,, — I,,+1 and codegeneracy
operators o;: I,, 1 — I,,, respectively.



Example 36. The elementary interval A2 in £ff is cosimplicial. The I,,'s are assemblies, so a
global section x—1,, is uniquely determined by an element of the underlying set while a morphism
f:1,,— I, is uniquely determined by a tracked function on the underlying sets. The i-th coface
function

6D T(I,) — T(I,41)
admits the tracker

Aj.if j <ithen jelse j+1

when seen as a function {ig, -+, 4,1} — {ig, -+, i, }. Similarly, the i-th codegenacy function

cD:T(I,11) — T'(I,)
admits the tracker

Aj.if j<ithen jelsej —1

when seen as a function {ig, -+, i} — {70, I —1}-



Simplicial resolution by paths 8/21

Remark 37. Let [ be a cosimplicial interval and I C T be the subcategory with objects the
I,,'s and monotone morphisms (the latter are generated by coface and codegeneracy operators
modulo cosimplicial identities). I is a monoidal category with tensor given by pushout

#0
* ——1,

]|
r

[m I, @I, = m—+n

Any morphism in T admits a normal form. In other words, T is equivalent to A™ (the “algebraist’s
simplicial category”).

Remark 38. Let X € H. The (bounded) family Path(X) d;f'(XI”)n;N is a simplicial object

with faces and degeneracies given by precomposition

di = )\w:Path(X)n.wo&-
s; = Aw:Path(X),.woo;

we shall call the path complex of X. Notice that Path(X)o= X0~ X as [, .



[Unilke the claim in the version projected during the talk, the Eilenberg-
Zilber lemma does not hold in this setting. As recalled by Benno, it

is not constructive, which is a fact this speaker was embarassingly not
aware. ]



“Weak'" geometric realisation

Definition 39. Let X €, I a cosimplicial interval and ~ be the relation on || . Path(X),
such that u~qv if t is a degeneracy of s. The path object X ) s the quotient

XS T Path(X),, /~
n:IN

of [], ., Path(X), by the equivalence relation generated by ~.

Notation. Given w: X‘), we shall write w(n) for a representative of w of length n and & for
the whole equivalence class.

Definition 40. A path w: X'!) is constant if its canonical representative is of length 0.

Remark 41. x{7) > x as there is only the trivial path up to degeneracy, so the quotient collapses.



Path object or fundamental category?

Remark 42. Let w: Path(X),, and w: Path(X), be paths such that @w = s(w) for some

degeneracy s: Path(X),, — Path(X),,. Assume m,n: N. Then

w(n)y = w{m)g

w<n>n—1 = w<m>m—1

hence the source and target morphisms Jx, 0% X X given by

05 = A XD .w(n)uo

oF = A X w(n) -1

are well-defined. Hence

— 9y, 0%: X = X is an internal graph in H;

— composition “by concatenation” ®x: X x5 x s well-defined:

def.

— the constant path morphism tx = Az: X .ing(z): X — X7 (with # being z's equivalence

class) is a section of both Jy and 0.



Theorem 43.
1. XU js an internal category with composition @ x and unit vx.
2. There is an involution rev: (—): X1V — X gjven by list reversal.

3. The assignment (—)Y):TH — T is an endofunctor acting by postcomposition
g

fU ()= fou

4. The morphisms vx, Ox and 0% are natural in X.



Face filtrations 11/21

Definition 44. A finite face filtration (of length n) is a sequence d = (d))g<;—, of face
operators

(0) (1) (n—1)
Path(X)m<0) ﬂ Path(X)m(l) L d% Path(X)m(n)

Remark 45. Assume n:IN and w: Path(X),,. If we see w as a list, the first face of w is the tail
do(w) = |wgr; w5 wWe(n-1)]
while it's last face is the maximal prefix
dn-1(w) = |wgo;waa; 3 Wg(n—2)
We have in particular the tail filtration t = (tg)) given by

o ... Path(X),

Path(X)o <2 Path(X);



and the prefix filtration p= (p;i)) given by

do

Path(X)o <2 Path(X); <2 ... ©= Path(X),

Notation. Assume X € T and x,x’: X. We shall write w: x ~~ 2" as an abbreviation for a path
w: X1 such that 0~ (w) =z and 0 (w)=1'. Let f: X —Y be a morphism. We shall abuse

notation and write f(w): f(x)~ f(z') for £ (s).



The Hurewicz property 12/21

Notation. Assume a finite face filtration d = (d'))g<;<,. We shall write dy(;y for the face
operator

Definition 46.

1. A cosimplicial interval has the Hurewicz property if for any w: Path(X),,(,) and any finite
face filtration the list

[y 0y (W) dy1y(W); -5 dy(n—1)(w); W]

determines a path in X ‘1),

2. A Hurewicz topos is an arithmetic topos equipped with a Hurewicz interval (part of the
data).

Example 47. (£ff, A2) is Hurewicz. Paths can be characterised in terms of equalities and
existence predicates (c.f. Example 32). A2 is cosimplicial (c.f. Example 36). To see that it is

Hurewicz, recall that the set underlying an exponential (Y, /)X ) in £ff is {¢: X x Y — PN},



while existence is the set of quadruplets (k,[,m,n) witnessing that ¢ is a functional relation.
Now a face operator d: X'm — X! is given by precomposition

for some coface operator 9: I,, — I, so we have F(wod)C E(w).



Homotopy 13/21

Definition 48. Let f, g: X — Y be morphisms. A homotopy H: f & g from f to g is given by

a commuting diagram
X
/ lﬁN

I

H is constant on a subobject X' <1 X provided H(x)=1(x) for any x: X such that x € X'.

Remark 49. A homotopy H: f % ¢ informs us that for any z: X there is H(z): Y/’ such that
f(x)= 07 (wz) and g(x) =0T (wy).

Definition 50. A homotopy equivalence is a morphism u: X — 'Y which has an up-to-homotopy
inverse v:Y — X.

Remark 51. The morphism v is a homotopy equivalence as well, called the inverse homotopy
equivalence.

Remark 52. Homotopy equivalences verify 3-for-2.



Hurewicz fibrations 14/21

Definition 53. A section h of the canonical morphism (£, 9%) in

FD 9 f
y ) Y

is called connection. A morphism which admits a connection is called Hurewicz fibration. A
Hurewicz fibration which is also a homotopy equivalence is called trivial.

Notation. We shall write H for the class of Hurewicz fibrations.

Remark 54. A Hurewicz fibration f: X — Y is thus a morphism with a strong path lifiting
property: for any path v: y~~ " in Y and any = € X such that f(x)=y thereis a path u in X
such that f owu=wv along with an explicit construction of one such lift for any pair (x,v) such

that f(z)= 0~ (v).



Some generic Hurewicz fibrations

Proposition 55. Projections from products are Hurewicz fibrations.
Proposition 56. (0—,07): X 5 X x X is a Hurewicz fibration for any X € IH.

Corollary 57. The source map Ox: X! — X and the target map 03 X 1) — X are Hurewicz
fibrations for any X € H.



Stability properties 16/21

Proposition 58. Hurewicz fibrations are stable under pullback.

Definition 59. X is a deformation retract of Y if there is a map e: X — Y admitting a retraction
r:Y — X such that there is a homotopy H: eor 4 idy . We call the split epi r deformation
retraction and the split mono e deformation insertion, respectively.

Remark 60. A deformation insertion is a homotopy equivalence.
Proposition 61. Trivial Hurewicz fibrations are stable under pullback.

Proof. Assume p: & — B Hurewicz, witnessed by connection h,. Assume f: A — B. Now

def.
Do = f*p is Hurewicz by the previous prop, so we only need to establish that it is a homotopy

equivalence. Assume a homotopy inverse u: B — FE of, p witnessed by homotopies

H:pou % idp
K:uop & idg

Assume a: A. We have



f*E E u(f(a))

PO p

A ; B H(f(a)):p(u(f(a)))~ f(a)

But p is Hurewicz, so we have the lift h,(u(f(a)), H(f(a))). Let

def.

€a = O (hp(u(f(a)), H(f(a))))

As p(e,) = f(a), the term Aa: A. (a,e,) constructs a section ug: A— f*E of py. We claim that
up is a deformation insertion. Assume (a,e): f*E. We have uy(po(a,e)) =uo(a) = (a,e,) and
paths

K(e):u(p(e)) ~ e
K(eq):u(pleq)) ~~ eq

But p(e) = f(a) by hypothesis and p(e,) = f(a) by construction so u(p(e)) =u(p(e,)). Hence
the term

Ma,e): f*E.zip(tq, rev(K(e,)) @ K(e))



constructs a homotopy H': ugo po % ids+g.
Proposition 62. Any object X € H is Hurewicz fibrant.

Proposition 63. Hurewicz fibrations are stable under composition.



Anodyne morphisms 17/21

Definition 64. X is a strong deformation retract of Y if it is a deformation retract admitting a
witnessing homotopy constant on X. We call the split epi r strong deformation retraction and
the split mono e strong deformation insertion, respectively.

Definition 65. A morphism f €™ H is anodyne.
Theorem 66. A strong deformation insertion is anodyne.
Proposition 67. The constant path map 1x: X — X is a strong deformation insertion.

Remark 68. The diagonal factors through X/’ as

N

X XX

with .x anodyne and (Jy, 0% ) Hurewicz.



Category of Fibrant Objects

Definition 69. (K.S.Brown, 1973) A category I with finite limits equipped with a class of
fibrations F and a class of weak equivalences VV is a category of fibrant objects provided

. LCFNW;
ii. VW verifies 3-for-2;
iii. F and F NV are stable under pullback;

iv. for any X € TF there is a an object X1 such that there is a factorisation

x )
Wow \f
X X X X
Ax

Theorem 70. Let [ be a Hurewicz interval. (H, I) with F = {Hurewicz fibrations} and
W = {homotopy equivalences} is a category of fibrant objects.



A more general factorisation

Definition 71. Let f: X — Y be a morphism in II. The object My given by the pullback

Mf p1 Y<I>

poJ/J lay
Y

X f

is called ['s mapping track.

Remark 72. M;={(z,w): X x Y| f(2) = 0y (w)} is the object of paths that begin in the
image of f.

Theorem 73. A morphism f: X — Y factors through the mapping track as an anodyne morphism
followed by a Hurewicz fibration.



Open questions 20/21

— Are Hurewicz fibrations stable under [[, for f Hurewicz? (Joyal's 7-tribe)

— If so, is a “"Hurewicz tribe” a model of HoTT? How about univalence?

— Is there a notion of cofibration? Model category?
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That's all folks



