
May 18, 2020
Atsushi Hori, Balazs Gerofi ,Yutaka Ishikawa
Riken CCS (R-CCS)
JAPAN

An Implementation of User-Level
Processes using Address Space
Sharing

IPDPS/RADR 2020 (virtual meeting)

RADR2020 (virtual meeting)

1. Put an end to the long-term discussion
• Kernel-Level Thread vs. User-Level Thread

• Advantages and disadvantages
2. Proposing Bi-Level Thread

• To take the best of the two worlds
• User-level thread can be kernel-level thread and vice versa
• User-level (thread) context switching
• Blocking system-call can be called as a kernel-level thread

3. Combining Bi-Level Thread with Address Space Sharing
• User-Level Process

• Process context switching at user-level
4. Evaluation

Outline

2

RADR2020 (virtual meeting)

• Thread models (1:1, N:1, and M:N)

• KC: Kernel Context, UC: User Context

• What if KCs and UCs in 1:1 model can be decoupled and
coupled again ?
• The 1:1 model and M:N (M==N) model can be interchangeable

Re-thinking Thread Models

3

(a) Kernel-Level Threads (1:1)

KL
T

KL
T

KC0

UC0

KC2

UC2UC1

KC1
KL

T

(b) User-Level Threads (N:1)

KC

UC0 UC1 UC2

U
LT

U
LT

U
LT

ctx sw

(c) User-Level Threads (M:N)

UC0 UC1 UC2

U
LT

U
LT

U
LT

ctx sw

KC1KC0

RADR2020 (virtual meeting)

• What if a UC is decoupled from KC ?

• Decoupled UC can be scheduled by another KC
• What happens on the decoupled KC ?

• It has nothing to do (idling or blocked in some way)

• This is transition for a KLT (Kernel-Level Thread)
to be a ULT (User-Level Thread)

• What if the decoupled UC wants to be coupled again ?

• The idling KC now schedules the UC
• This is the transition for a ULT to be a KLT

• However, KC must always be associated with a UC
• A KC cannot be idling without a UC
• But the UC has to be decoupled so that it can be scheduled by
another KC…

Decoupling and Coupling

4

RADR2020 (virtual meeting)

• This problem can be resolved by introducing another small
context (Trampoline Context)

Trampoline Context

5

Decoupling

Coupling

(1) swaps UC0 and TC0

UC0

KC0

TC0

(2) TC0 and KC0 !
are blocked

UC0

KC0

TC0

(3) UC0 is decoupled and!
KC1 can schedule UC0

UC1

KC1

UC0

ctx sw

UC1

KC1

UC0

ctx sw

(4) UC0 unblocks KC0 and !
swaps UC0 and UC1

UC1

KC1

UC0

ctx sw

UC1

KC1

UC0

ctx sw

(6) KC0 and UC0 are !
coupled again

UC0

KC0

TC0

(5) KC0 swaps!
TC0 and UC0

UC0

KC0

TC0

KC0

RADR2020 (virtual meeting)

• Issue
• When a ULT calls a blocking system-call,

• the scheduling KC is also blocked, and

• the other eligible-to-run ULTs have no chance to be scheduled
• Solution by using coupling and decoupling

• Assumption:

• A ULT is going to call a blocking system-call
• The ULT was created with KCo
• The ULT is already decoupled and scheduled by the KCs

1. before the ULT calls the system-call, it is coupled with KCo
2. then the ULT calls the system-call
3. after returning from the system-call, it is decoupled so that KCs
can schedule it

Resolving Blocking System-call Issue

6

RADR2020 (virtual meeting)

• What is Address Space Sharing (ASS) technique ?

• “Processes” share the same address space
• Here “process” is defined as an execution entity having
privatized static variables, and
ASS “processes” may be derived from different programs
• threads share all static variables, and
threads are derived from the same program

• ASS is different from POSIX shared memory (PSM)

• ASS share the whole address space (and a page table)

• PSM shares only some specific memory pages
• Process-in-Process (PiP)

• Pure user-level implementation of ASS

Address Space Sharing

7

A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa, “Process-in-process: Techniques for practical
address-space sharing,” in Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC 18.

RADR2020 (virtual meeting)

• ASS allows for a process to context-switch one to the other
at user-level => Fast context switching

• The differences between ULT and ULP
• Threads share most OS kernel resources while processes do not
• Example: getpid()

• threads have the same PID
• each process has its own unique PID

• In ULP
• System-call consistency must be preserved

• by using decouple and couple
• Thread Local Storage (TLS) must also be switched when switching
contexts
• In most ULT implementations, TLS switching is ignored

BLT + ASS = User-Level Process (ULP)

8

RADR2020 (virtual meeting)

• Machines: Wallaby - x86_64, Albireo - AArch64

Evaluation Results

9

TABLE I
DETAILED PROCEDURE OF couple AND decouple

Seq.# User Code KC1 KC0
(UC0) Library Code User Context Library Code User Context

0 : [running] UC0 [being blocked] TC0
1 couple() enqueue(UC0,KC0) : : :
2 unblock(KC0) UC0 [unblocked] :
3 swap ctx(UC0,UCi) UC0 ! UCi UC0 = dequeue() TC0
4 [running] UCi swap ctx(TC0,UC0) TC0 ! UC0
5 system call() : : system call() UC0
6 decouple() : : enqueue(UC0,KC1) UC0
7 [yield or suspend] : swap ctx(UC0,TC0) UC0 ! TC0
8 UC0 = dequeue() UCi [blocking itself] TC0
9 swap ctx(UCi,UC0) UCi ! UC0 [being blocked] :

10 : [running] UC0 : :

TABLE II
EVALUATION ENVIRONMENT

Name Wallaby Albireo
Architecture x86 64 AArch64
CPU Type Intel Xeon E5-2650 v2 AMD Opteron A1170⇤

#Cores x #Sock 8 x 2 8 x 1
Clock 2.6 GHz 2.0 GHz

Linux Kernel 3.10.0-327.36.3.el7 4.14.0-115.2.2.el7a
GCC 4.8.5 20150623

⇤ARM Cortex-A57 based on ARMv8-A

TABLE III
CONTEXT SWITCH AND LOAD TLS

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

Context Sw. 3.34E-8 86 2.45E-8
Load TLS 1.09E-7 284 2.50E-9

a system-call must be called on Wallaby. On AArch64 this
time is only a few nanosecond and much faster than that of
x86 64.

Table IV shows the times of yielding two threads. The
times in this table is normalized to the times of one yield.
On ULP-PiP, yielding two ULPs and the time should be the
same with sum of the times of context switching and loading
TLS register shown in Table III ideally. The column titled
as “sched_yield() on 1 core” means that two PThreads
running and yielding on one CPU core, and another one titled
as “sched_yield() on 2 cores” means that two PThreads
bound to different CPU cores. When the two PThreads running
on one core, the call of sched_yield(), more precisely
pthread_yield(), results in actual context switching be-

TABLE IV
YIELDING TIME (2 ULPS OR PTHREADS)

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

ULP-PiP yield 1.50E-7 387 1.20E-7
sched_yield() on 1 core 2.66E-7 - 1.22E-6
sched_yield() on 2 cores 7.79E-8 - 3.48.E-7

TABLE V
TIME OF getpid()

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

Linux 6.71E-8 174 3.85E-7
ULP-PiP: BUSYWAIT 1.33E-6 3452 2.71E-6
ULP-PiP: BLOCKING 2.91E-6 6172 4.48E-6

tween the threads. Whereas the case running on two cores,
the yield system-call results in doing nothing since there is no
other threads running on the same core. Thus, yielding time of
two threads on one core takes longer time than that of the two
core case because of the context switch overhead. Comparing
the x86 64 case of ULP-PiP and sched_yield() on two
cores, the sched_yield() is faster than that of ULP-PiP.
This is because the slow TLS loading is involved on x86 64.

C. getpid()
Here, The time to call the getpid() system-call is mea-

sured. Since the getpid() system-call is very light, the
overhead of the couple() and decouple() can be mea-
sured. Table V shows the times of getpid() and the time
of getpid() enclosed by couple() and decouple()

in ULP-PiP. There are two ULP-PiP’s cases, one for KC to
busy-wait (denoted as “BUSYWAIT”) and another for blocked
by calling a blocking system-call (denoted as “BLOCKING).
As for the blocking system-call in this evaluation, the Linux
semaphore (implemented by using futex) is used. As shown
in this table, the couple() and decouple() overhead is
only few microseconds. This overhead includes four times
context switching (as shown in Table I) and two times of
loading TLS register. In the ULP-PiP cases, busy-waiting
outperforms blocking. This is because there is no system-call
involved in busy-waiting.

D. AIO vs. ULP
In this subsection, we compared the performance of ULP-

PiP’s couple() and decouple() with the Linux’s AIO.
I/O operations in this evaluation are; 1) open a file on the
tmpfs file system to exclude the variation of actual disk
access, 2) write one block, and 3) close. Note that the

TABLE I
DETAILED PROCEDURE OF couple AND decouple

Seq.# User Code KC1 KC0
(UC0) Library Code User Context Library Code User Context

0 : [running] UC0 [being blocked] TC0
1 couple() enqueue(UC0,KC0) : : :
2 unblock(KC0) UC0 [unblocked] :
3 swap ctx(UC0,UCi) UC0 ! UCi UC0 = dequeue() TC0
4 [running] UCi swap ctx(TC0,UC0) TC0 ! UC0
5 system call() : : system call() UC0
6 decouple() : : enqueue(UC0,KC1) UC0
7 [yield or suspend] : swap ctx(UC0,TC0) UC0 ! TC0
8 UC0 = dequeue() UCi [blocking itself] TC0
9 swap ctx(UCi,UC0) UCi ! UC0 [being blocked] :

10 : [running] UC0 : :

TABLE II
EVALUATION ENVIRONMENT

Name Wallaby Albireo
Architecture x86 64 AArch64
CPU Type Intel Xeon E5-2650 v2 AMD Opteron A1170⇤

#Cores x #Sock 8 x 2 8 x 1
Clock 2.6 GHz 2.0 GHz

Linux Kernel 3.10.0-327.36.3.el7 4.14.0-115.2.2.el7a
GCC 4.8.5 20150623

⇤ARM Cortex-A57 based on ARMv8-A

TABLE III
CONTEXT SWITCH AND LOAD TLS

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

Context Sw. 3.34E-8 86 2.45E-8
Load TLS 1.09E-7 284 2.50E-9

a system-call must be called on Wallaby. On AArch64 this
time is only a few nanosecond and much faster than that of
x86 64.

Table IV shows the times of yielding two threads. The
times in this table is normalized to the times of one yield.
On ULP-PiP, yielding two ULPs and the time should be the
same with sum of the times of context switching and loading
TLS register shown in Table III ideally. The column titled
as “sched_yield() on 1 core” means that two PThreads
running and yielding on one CPU core, and another one titled
as “sched_yield() on 2 cores” means that two PThreads
bound to different CPU cores. When the two PThreads running
on one core, the call of sched_yield(), more precisely
pthread_yield(), results in actual context switching be-

TABLE IV
YIELDING TIME (2 ULPS OR PTHREADS)

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

ULP-PiP yield 1.50E-7 387 1.20E-7
sched_yield() on 1 core 2.66E-7 - 1.22E-6
sched_yield() on 2 cores 7.79E-8 - 3.48.E-7

TABLE V
TIME OF getpid()

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

Linux 6.71E-8 174 3.85E-7
ULP-PiP: BUSYWAIT 1.33E-6 3452 2.71E-6
ULP-PiP: BLOCKING 2.91E-6 6172 4.48E-6

tween the threads. Whereas the case running on two cores,
the yield system-call results in doing nothing since there is no
other threads running on the same core. Thus, yielding time of
two threads on one core takes longer time than that of the two
core case because of the context switch overhead. Comparing
the x86 64 case of ULP-PiP and sched_yield() on two
cores, the sched_yield() is faster than that of ULP-PiP.
This is because the slow TLS loading is involved on x86 64.

C. getpid()
Here, The time to call the getpid() system-call is mea-

sured. Since the getpid() system-call is very light, the
overhead of the couple() and decouple() can be mea-
sured. Table V shows the times of getpid() and the time
of getpid() enclosed by couple() and decouple()

in ULP-PiP. There are two ULP-PiP’s cases, one for KC to
busy-wait (denoted as “BUSYWAIT”) and another for blocked
by calling a blocking system-call (denoted as “BLOCKING).
As for the blocking system-call in this evaluation, the Linux
semaphore (implemented by using futex) is used. As shown
in this table, the couple() and decouple() overhead is
only few microseconds. This overhead includes four times
context switching (as shown in Table I) and two times of
loading TLS register. In the ULP-PiP cases, busy-waiting
outperforms blocking. This is because there is no system-call
involved in busy-waiting.

D. AIO vs. ULP
In this subsection, we compared the performance of ULP-

PiP’s couple() and decouple() with the Linux’s AIO.
I/O operations in this evaluation are; 1) open a file on the
tmpfs file system to exclude the variation of actual disk
access, 2) write one block, and 3) close. Note that the

On x86_64 CPUs a system-call
is required to switch TLS

ULP-PiP:
pip_couple();
open();
write(Size);
close();
pip_decouple();

AIO-return:
open();
aio_write(Size);
do {

aio_return();
} while();
close();

AIO-suspend:
open();
aio_write(Size);
aio_suspend();
close();

In ULP-PiP cases, getpid() call is wrapped by
pip_couple() and pip_decouple()

BUSYWAIT/BLOCKING:
Idling ways of KC w/ TC

comparison between ULP-PiP and AIO might not be fair, since
the series of open-write-close system-calls are done on a KLT
while the actual AIO is only for the writing. On ULP-PiP. the
whole sequence must be done by a KLT otherwise the system-
call consistency is broken. In the Linux’s AIO implementation,
the first AIO call creates a PThread and the same thread is used
in the subsequent AIO calls. Our evaluation programs have a
warming up loop followed by a measurement loop. So the
PThread creation overhead is not included in this evaluation.

0.0

1.0

2.0

3.0

4.0

5.0

1,000 10,000 100,000Sl
ow

do
wn

 R
at

io
 b

as
ed

 o
n

Li
nu

x
sy

nc
. c

al
ls

Size [Bytes] - Wallaby (x86_64)

BUSYWAIT BLOCKING AIO-return AIO-suspend

0.0

1.0

2.0

3.0

4.0

5.0

1,000 10,000 100,000 Sl
ow

do
wn

 R
at

io
 b

as
ed

 o
n

Li
nu

x
sy

nc
. c

al
ls

Size [Bytes] - Albireo (AArch64)

Fig. 7. Slowdown comparison of Open-Write-Close

Figure 7 shows the slowdown ratio based on the time of
the Linux’s open(), write(), and close() system-calls
over the size of the write buffer. Left graph in this figure
shows the results running on Wallaby and the right graph
shows the results running on Albireo. There are two cases for
AIO, one for waiting the done of aio_write() by calling
the aio_return() (denoted as “AIO-return”) and another
is calling the aio_suspend() (denoted as “AIO-suspend”).
As described already, calling aio_return() is suitable for
a ULT to use.

On Wallaby, ULP-PiP outperforms the AIO in all cases. On
Albireo, however, ULP-PiP’s busy-waiting outperforms AIO
slightly if the buffer sizes are less than 32 KiB. In general,
the larger the write buffer, the lower the slowdown ratio, if
the overhead of ULP-PiP’s coupling and decoupling, or the
overhead of AIO, is constant over the size of the write buffer.
This situation can only be seen on the Wallaby cases.

0
10

20
30

40

50
60

70
80

90

100

1,000 10,000 100,000

O
ve

rla
p

[%
]

Size [Bytes] - Wallaby (x86_64)

BUSYWAIT BLOCKING AIO-return AIO-suspend

0
10

20
30

40

50
60

70
80

90

100

1,000 10,000 100,000

O
ve

rla
p

[%
]

Size [Bytes] - Albireo (AArch64)

Fig. 8. Comparison of Overlap Ratios

Figure 8 shows the overlap ratio calculated in the way used
in the Intel MPI benchmarks [23]. As shown in this figure, the

overlap ratios of ULP-PiP are more than 70% on Wallaby and
80% on Albireo whereas the percentages of all AIO cases are
less than 70%.

VII. DISCUSSION

One may argue that enclosing system-call(s) by couple()
and decouple() is not practical. Linux supports this kind
of system-call wrapper in a several ways, such as GNU wrap
(GNU ld option) and LD_PRELOAD. Even with using one
of them, the couple() and decouple() functions still
remain because those functions can enclose a series of system-
calls shown in the previous section.

As described above, ULP-PiP can resolve the blocking
system-call problem found in ULT. However, this is ineffective
when the program is blocked by page faults to create page
table entries (minor page faults) and to allocate physical
memory pages (major page faults). In system software used for
HPC, large (huge) memory pages and/or populated mmap are
prevalent because they can reduce the number of page faults as
well as the number of TLB misses. Therefore in the context of
HPC, we believe that handling of page faults at ULP or ULT
can be ignored if larger page sizes and/or populated mmap are
used.

So far, a BLT is created as KLT to create both UC and
KC. This is because each UC must have an original KC to
preserve system-call consistency. In this sense, our BLT can
be categorized as N:N model. However, it is not difficult to
create a number of ULTs (UCs) having the same original KC
in theory and practice. In this case, the UCs having the same
original KC access the same information in an OS kernel.
This situation is similar to the relation of the conventional
process and thread, since threads of a process access the same
resources in the OS kernel.

Another argument might be that the ULP requires more
OS kernel resources than that of conventional KLT and ULT.
While this is true, as already described in equation 2, the num-
ber of BLTs or ULPs depends on the number of oversubscribed
threads. This resource consumption can be relaxed by having
UCs with the same original KC as described above.

As described in the Section VI, the current ULP-PiP
implementation can choose the way of idling, busy-waiting
or blocking at runtime. As already shown, the busy-waiting
introduces less overhead than blocking, however, busy-waiting
consumes more power. So the choice of the blocking ways
is a trade-off between latency and power. Ideally, one could
determine the way of blocking in an automatic way according
to the application’s behavior or leave this choice as a power
nob to control power consumption while maintaining the
performance. This is left for our future work.

ULP-PiP has one problem on its system-call consistency.
It is signaling. The current implementation uses fcontext
and it does not save and restore signal masks. So if one tries
to send a signal to a UC, then the signal is delivered to
the scheduling KC. To avoid this situation, use ucontext

which saves and restores signal masks. However, to access
the signal mask, we have to call a system-call and this adds

RADR2020 (virtual meeting)

• Proposing
• Bi-Level Thread (BLT)

• Decoupling and coupling UC and KC
• Trampoline Context to block decoupled KC
• Able to handle blocking system-calls effectively

• User-Level Process (ULP) by using Address Space Sharing
• Switching Thread Local Storage (TLS)

• System-call consistency
• Coupling and decoupling can be applied to

• resolve the blocking system-call issue, and
• preserve system-call consistency in ULP

• Evaluation (ULP vs. AIO)

• Coupling and decoupling scheme of ULP-PiP outperforms AIO

Summary

10

ULP-PiP will be available at
https://github.com/RIKEN-SysSoft

