An Implementation of User-Level
Processes using Address Space
Sharing

IPDPS/RADR 2020 (virtual meeting)

May 18, 2020

Atsushi Hori, Balazs Gerofi ,Yutaka Ishikawa
Riken CCS (R-CCS)

JAPAN

Qutline

1. Put an end to the long-term discussion
* Kernel-Level Thread vs. User-Level Thread
* Advantages and disadvantages
2. Proposing Bi-Level Thread
* To take the best of the two worlds
* User-level thread can be kernel-level thread and vice versa
* User-level (thread) context switching
* Blocking system-call can be called as a kernel-level thread
3. Combining Bi-Level Thread with Address Space Sharing
* User-Level Process
* Process context switching at user-level
4. Evaluation

RADR2020 (virtual meeting)

Re-thinking Thread Models

* Thread models (1:1, N:1, and M:N)
* KC: Kernel Context, UC: User Context

KCo| [KCq| ®ee
KCo |KC4| |KCo KC o 1
- 000 — = Cxsw = = — Ctxsw = =

UCq |UC4 [UCo ‘ |
vog [vo] [uod ™ Gy ol foc] ewe [oc] [[uc] oo

— — —
— — —
< < < 5 B B 5 5 B
>) > >))
(a) Kernel-Level Threads (1:1) (b) User-Level Threads (N:1) (c) User-Level Threads (M:N)

* What if KCs and UCs in 1:1 model can be decoupled and
coupled again ?

* The 1:1 model and M:N (M==N) model can be interchangeable

RADR2020 (virtual meeting)

Decoupling and Coupling

* What if a UC is decoupled from KC ?
* Decoupled UC can be scheduled by another KC
* What happens on the decoupled KC ?
* It has nothing to do (idling or blocked in some way)

* This is transition for a KLT (Kernel-Level Thread)
to be a ULT (User-Level Thread)

* What if the decoupled UC wants to be coupled again ?
* The idling KC now schedules the UC
* This is the transition for a ULT to be a KLT

* However, KC must always be associated with a UC

* AKC cannot be idling without a UC

* But the UC has to be decoupled so that it can be scheduled by
another KC...

RADR2020 (virtual meeting)

Trampoline Context

* This problem can be resolved by introducing another small
context (Trampoline Context)

KC1
KCo
— 9 <__ctxsw >
UC4
(1) swaps UCq and TCy (2) TCo and KCy 3) UCy is decoupled and
are blocked KC1 can schedule UCy
KCH
KCo KCo
< ctxsw_ > : —
I TCO [UC()] UCo [TC()]
Coupling E E >0 -0
4) UCq unblocks KCq and (5) KCq swaps (6) KCq and UCg are
swaps UCp and UC4 TCp and UCy coupled again

RADR2020 (virtual meeting)

Resolving Blocking System-call Issue

* Issue
* When a ULT calls a blocking system-call,

* the scheduling KC is also blocked, and
* the other eligible-to-run ULTs have no chance to be scheduled
* Solution by using coupling and decoupling
* Assumption:
* AULT is going to call a blocking system-call
* The ULT was created with KCo
* The ULT is already decoupled and scheduled by the KCs

1. before the ULT calls the system-call, it is coupled with KCo

then the ULT calls the system-call

3. after returning from the system-call, it is decoupled so that KCs
can schedule it

D

RADR2020 (virtual meeting) 6

Address Space Sharing

* What is Address Space Sharing (ASS) technique ?
* “Processes” share the same address space

* Here “process” is defined as an execution entity having
privatized static variables, and
ASS “processes” may be derived from different programs

* threads share all static variables, and
threads are derived from the same program

* ASS is different from POSIX shared memory (PSM)
* ASS share the whole address space (and a page table)
* PSM shares only some specific memory pages
* Process-in-Process (PiP)
* Pure user-level implementation of ASS

A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa, “Process-in-process: Techniques for practical
address-space sharing,” in Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC 18.

RADR2020 (virtual meeting)

BLT + ASS = User-Level Process (ULP)

* ASS allows for a process to context-switch one to the other
at user-level => Fast context switching

* The differences between ULT and ULP
* Threads share most OS kernel resources while processes do not
* Example: getpid()
* threads have the same PID
* each process has its own unique PID
* In ULP
* System-call consistency must be preserved
* by using decouple and couple

* Thread Local Storage (TLS) must also be switched when switching
contexts

* In most ULT implementations, TLS switching is ignored

RADR2020 (virtual meeting) 8

Evaluation Results

BUSYWAIT/BLOCKING:

* Machines: Wallaby - x86 64, Albireo — AArch64 Idling ways of KC w/ TC

TABLE

TABLE III TIME OF ggfpi

CONTEXT SWITCH AND LOAD TLS

()

_ /" Wallaby Albireo
___ Wallaby Albireo ime [Sec] Cycles | Time [Sec]
Time [Sec] Cycles | Time [Sec] Linux 6.71E-8 174 3.85E-7
Context Sw. | 3.34E-8 86 2.45E-8 ULP-PiP: BUSYWAIT Y [1.33E-6 3452 271E-6
Load TLS 1.09E-7 284 2.50E-9 ULP-PiP: BLOCKING J\ 2.91E-6 6172 | 4.48E-6

On x86_64 CPUs a system-call

is required to switch TLS In ULP-PiP cases, getpid() call is wrapped by

pip_couple() and pip_decouple()

—m— BUSYWAIT —e— BLOCKING —a— AIO-return

—o— AIlO-suspend

100 ns % 100 ULP-PiP: AlO-return:

%0 = —w —2--o ip_couple(); open();

80 == =4 = e gr?en(); Pey a%_V\(/)rite(Size);
" mnan® i T write(Size); do {
& 60 e g close(); aio_return();
£ % 0 £ pip_decouple(); } while();
5 05 close();

30 30

20 20 AlO-suspend:

10 10 Open();

1%00 10,000 100,000 1,000 10,000 100,800 aio_write(Size);

Size [Bytes] - Wallaby (x86_64)

Size [Bytes] - Albireo (AArch64)

Fig. 8. Comparison of Overlap Ratios
RADR2020 (virtual meeting)

aio_suspend();
close();

Su mmar ULP-PiP will be available at
y https://github.com/RIKEN-SysSoft

* Proposing
* Bi-Level Thread (BLT)
* Decoupling and coupling UC and KC
* Trampoline Context to block decoupled KC
* Able to handle blocking system-calls effectively
* User-Level Process (ULP) by using Address Space Sharing
* Switching Thread Local Storage (TLS)
* System-call consistency
* Coupling and decoupling can be applied to
* resolve the blocking system-call issue, and
* preserve system-call consistency in ULP
* Evaluation (ULP vs. AlO)
* Coupling and decoupling scheme of ULP-PiP outperforms AlO

RADR2020 (virtual meeting) 10

