System Software for Resource Arbitration
on Future Many-* Architectures

2nd Workshop on Resource Arbitration for Dynamic Runtimes (RADR)

2020-05-18

Florian Schmaus* Sebastian Maier* Tobias Langer®
Jonas Rabenstein? Timo Honig* Lars Bauer? Jorg Henkel?
Wolfgang Schroder-Preikschat?

LFriedrich-Alexander-Universitat Erlangen-Niirnberg (FAU)
2Karlsruhe Institute of Technology (KIT)

FRIEDRICH-ALEXANDER
T UNIVERSITAT
Chair in Distributed Systems = & '="== ERLANGEN-NURNBERG
and Operating Systems

Supported by German Research Council (DFG): CRC/TRR 89 (InvasIC, Project C1)

Computing Evolution

As every ecosystem, the computing one is subject to
evolution. This includes:

m Application Development
m Computing Requirements
m Computer Architecture

Prie

© M. Garde / Wikimedia Commons / CC-BY-SA-3.0 / GFDL 1

Computer Architecture

~1-10 core(s) ~100 cores ~10° cores ~10“ cores

Past Present Future

Many-Core Era
m Distances increase, incl. computation to data

® In- and near-memory computing

Computer Architecture (cont.)

Global Cache-Coherency Tile-Based Architecture
Pure Shared-Memory Hybrid Shared-Memory
System (e.g., Numascale) and Message-Passing

Trend towards Heterogenity
m Accelerators (Tensor PU, ...)
= big.LITTLE
m Mixing basic and extended instruction set cores

m Dynamically reconfigurable cores / processing elements

New Challenges

Energy/Power Heterogenity
Dependability

React in real-time to unpredictable input sizes

Monitor and enforce non-functional properties
like latency, throughput, ...

Many-* Architecture Hardware @

m Concurrency and parallelism become necessary
= Where to perform the computation? Data Locality

m Heterogenity: Which and how many * to use? 4

Invasive Computing

Invasive Computing (InvasIC)

m Fudamental research of future
many-core systems
= 3 phases a 4 years and ~9M €
m Tackles the challenges on every
layer of the technology stack
= Hardware Architecture
; = Operating System
B = Runtime Environment
= Compiler

3 L-.L,n Lg%
BE EE rﬁ,

,, A o m Collaboration between layers

= = is decisive

Tiled Inva§IC Hardware = HW/SW Co-Design
Architecture

Find out more about at
invasic.de

https://invasic.de

Invasive Run-Time Support System
(iRTSS)

System Software Needs to Adapt

Application

System Software Needs to Adapt

Application

m Satisfy intrinsic constraints/requirements @

= Counter extrinsic uncertainties @

Hardware

® Many-* Architecture @

System Software Needs to Adapt

Satisfy intrinsic constraints/requirements @

Counter extrinsic uncertainties @

System Software

Adjust Architecture and Design?

Hardware

m Many-* Architecture @

System Software Needs to Adapt

Satisfy intrinsic constraints/requirements @

Counter extrinsic uncertainties @

System Software

m Allow variable and dynamic application demand
m Ensure user constraints

m Support plentiful and heterogenous hardware resources
m Provide inter-tile communication primitives

m Many-* Architecture @

Invasive Run-Time Support System

Tile 1 Tile 2
‘ libC, x10, MPI, Cilk ‘ ‘ libC, x10, MPI, Cilk ‘
‘ Agent System ‘ ‘ Agent System ‘
iRTSS
‘ OctoPOS ‘ ‘ OctoPOS ‘
[leru] [roen] [FGoe]| 1 ogencous [Leeu] [cpu] [1cpal
[T wemoy] 4 HW-Resources || [LI Memoy [T |
C

iNoC

iNoC

m One instance per tile

m Distributed state

Sharing Resources

Batch Processing

Past

Batch Processing

© Hannes Grobe/AW! / Wikimedia Commons / CC-BY-SA-3.0

Sharing Resources

Batch Processing Temporal M.plex.

Past Present

Temporal Multiplexing
B Ncores < Napps

m Only solution if you have more applications than cores

= Source of interference ®

Sharing Resources

Batch Processing Temporal M.plex. Spatial M.plex.

@ L o
Past Present Future
Spatial Multiplexing

® Ratio Ncores t0 Napps Will flip in the future
m |nherent part of OctoPOS’s execution model
m Granting exclusive access to cores/resources

m Reduces side-channels

= Minimized interference ©

Hardware/Software Co-Design Example: iCore

6
a 5
2 4
0 3
u! 2
’ | H B
, 1N | _
LEONGM LEONTLM i-Core GM i-Core TLM
B Speedup 1 1,75 2,01 4,82
Execution time [ms] 2049 1169 1017 425

X10 Tsunami simulation on the Invasic FPGA prototype using
the iCore

Alexander P6ppl, Marvin Damschen, Florian Schmaus, et al. “Shallow Water Waves on a Deep Technology Stack:
Accelerating a Finite Volume Tsunami Model Using Reconfigurable Hardware in Invasive Computing”. In: Euro-Par
2017: Parallel Processing Workshops. Ed. by Dora B. Heras, Luc Bougé, Gabriele Mencagli, et al. Cham: Springer
International Publishing, 2018, pp. 676-687. ISBN: 978-3-319-75178-8

Execution Model

Processes

Past

Heavy-weight Processes
fork();

10

Execution Model

Processes Threads
o @
Past Yesterday

Light-weight Processes

pthread_create();

10

Execution Model

Processes Threads Fibers
@ @ @
Past Yesterday Present

Feather-weight Processes

Concurrency Platforms: Go, Cilk, ...

for 1 := 0; i < 10; 1++ {
go f(1i)

}

10

Execution Model

Processes Threads Fibers i-let
o o o o
Past Yesterday Present Future

i-lets — OctoPOS’s control-flow abstraction
m Run-to-completion
m Lazy context allocation
= Small footprint: 4 machine words
m Every layer is i-let aware (App, Runtime, OS, HW)

= Allows massive p-parallelism ©

10

Hardware/Software Co-Design Example: SHARQ

| |
N] =
— : g — = - — g — g H:..,
s rme mer ms s ms =%
8] & S
50.75— :
A &
<] (e}
Z 051 h
=
o
0.25| .
OJoBASElosSwQlo SHARQ
0 \ T T
CcG EP FT IS MG

NAS Parallel Benchmarks (NPB)

Sven Rheindt, Sebastian Maier, Florian Schmaus, et al. “SHARQ: Software-Defined Hardware-Managed Queues for
Tile-Based Manycore Architectures”. In: Proceedings of the 19th International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). 2019

11

Dynamic Resource Management via Agent System

—T—»Cconstraintg—» Agent System —»@esource Allocation

1. Gather Application Constraints

m Scalability curve(s)
m Desired accelerators

= Communication properties

12

Dynamic Resource Management via Agent System

—T—»Cconstraintg—» Agent System —»@esource Allocation

2. Agent System

m One agent per application
m Optmize resource assignment
for all applications

m Distributed Constraint Optimization
Problem (DCOP)

® Maximum Gain Message (MGM)
(any-time algorithm)

12

Dynamic Resource Management via Agent System

—T—»CconstraintSD—» Agent System —»@esource Allocation

3. Resource Allocation

m Position/Amount
m Resources now available to application

12

Dynamic Resource Management via Agent System

Agent System

—»@esource Allocation

—T—»Gonstraints>—>

3. Resource Allocation

m Position/Amount

m Resources now available to application

4. Repeat (on demand)
Application transitions into another phase

12

Runtime Requirement-Monitoring and Enforcement (RRM/RRE)

.
o
>
=

-
c
o

=
IS

g

=
Q.

<

OS Layer

Hardware

|:| Cores |:| |:|

13

Runtime Requirement-Monitoring and Enforcement (RRM/RRE)

.
o
>
=

-
c
o

=
IS

g

=
Q.

<

X
S nforcement farge,

-

OS Layer

Hardware

|:| Cores |:|

13

Runtime Requirement-Monitoring and Enforcement (RRM/RRE)

-

[X cement tg

7 O enfolm T ke

- -7 BN

5§ o)

= RRE

©

2

Q

o RRM

2 Sw
RRMsy

&

>

o]

-

%2}

o

o

2

3 RRMyy

S

©

T

|:| Cores |:|

13

Runtime Requirement-Monitoring and Enforcement (RRM/RRE)

5] X cement ta
7 O enfolm T ke
- -7 T
c ~
o L
=] RRE
18]
RS
Q.
RRM
= sw
RRMgy
2
I Q,b \bQ/
@ \Q >
squad
g
S
3 RRMpy
(18]
T

[:] Cores [:]

13

Runtime Requirement-Monitoring and Enforcement (RRM/RRE)

lead’s core causing core specific core any core

@ @ @ @
Execution Place

interrupt priority i-let priority
@ @
Execution Priority
asynchronous synchronous
@ @
Execution Context
kernel privileged application unprivileged
@ @ @ @

Execution Privilege

event triggered time triggered time trig. (inexact)

@ @ @
Execution Trigger

14

Conclusion

Satisfy intrinsic constraints/requirements Application @

Many-* Architecture Hardware @

15

Conclusion

Satisfy intrinsic constraints/requirements Application @

= Agent System v

= Explicit enumeration of constraints

Many-* Architecture Hardware @

15

Conclusion

Satisfy intrinsic constraints/requirements Application @

= Agent System v

= Explicit enumeration of constraints

» RRM/RRE (Squads)

Many-* Architecture Hardware @

15

Conclusion

Satisfy intrinsic constraints/requirements Application @

= Agent System v

= Explicit enumeration of constraints

» RRM/RRE (Squads)

Many-* Architecture Hardware @ ‘/

® Invasive Run-Time Support System (iRTSS)

15

Thank you for your attention.

Thank you for your attention.

Questions?

	Invasive Computing
	Invasive Run-Time Support System (iRTSS)

