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Computing Evolution

As every ecosystem, the computing one is subject to
evolution. This includes:

Application Development
Computing Requirements
Computer Architecture
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Computer Architecture

∼1-10 core(s)

Past

∼100 cores

Present

∼103 cores ∼104 cores

Future

Many-Core Era

Distances increase, incl. computation to data
In- and near-memory computing
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Computer Architecture (cont.)

Global Cache-Coherency
Pure Shared-Memory
System (e.g., Numascale)

Tile-Based Architecture
Hybrid Shared-Memory
and Message-Passing

Trend towards Heterogenity

Accelerators (Tensor PU, …)
big.LITTLE
Mixing basic and extended instruction set cores
Dynamically reconfigurable cores / processing elements
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New Challenges

Satisfy intrinsic constraints/requirements Application C2

Energy/Power
Dependability

Heterogenity
…

Counter extrinsic uncertainties Application C3

React in real-time to unpredictable input sizes
Monitor and enforce non-functional properties
like latency, throughput, …

Many-* Architecture Hardware C1

Concurrency and parallelism become necessary
Where to perform the computation? Data Locality
Heterogenity: Which and how many * to use? 4



Invasive Computing



Invasive Computing (InvasIC)
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Tiled InvasIC Hardware
Architecture

Fudamental research of future
many-core systems

3 phases á 4 years and ~9M €
Tackles the challenges on every
layer of the technology stack

Hardware Architecture
Operating System
Runtime Environment
Compiler

Collaboration between layers
is decisive
HW/SW Co-Design

Find out more about at
invasic.de
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Invasive Run-Time Support System
(iRTSS)



System Software Needs to Adapt

Application

Hardware
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System Software Needs to Adapt

Application

Satisfy intrinsic constraints/requirements C2

Counter extrinsic uncertainties C3

Hardware

Many-* Architecture C1
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System Software Needs to Adapt

Application

Satisfy intrinsic constraints/requirements C2

Counter extrinsic uncertainties C3

System Software

Adjust Architecture and Design?

Hardware

Many-* Architecture C1
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System Software Needs to Adapt

Application

Satisfy intrinsic constraints/requirements C2

Counter extrinsic uncertainties C3

System Software

Allow variable and dynamic application demand
Ensure user constraints
Support plentiful and heterogenous hardware resources
Provide inter-tile communication primitives

Hardware

Many-* Architecture C1
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Invasive Run-Time Support System (iRTSS)

Heterogeneous
HW-Resources

iRTSS

Applica�ons

iNoC iNoC

Tile 1

App 1 App 2

Agent System

OctoPOS

CPU TCPA i-CoreCPU

Memory

libC, x10, MPI, Cilk

Tile 2

App 2 App 3

Agent System

OctoPOS

CPU CPU TCPACPU

Memory

libC, x10, MPI, Cilk

One instance per tile Distributed state
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Sharing Resources

Batch Processing

Past

Batch Processing
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Sharing Resources

Batch Processing

Past

Temporal M.plex.

Present

Temporal Multiplexing

NCores < NApps
Only solution if you have more applications than cores

⇒ Source of interference☹
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Sharing Resources

Batch Processing

Past

Temporal M.plex.

Present

Spatial M.plex.

Future

Spatial Multiplexing

Ratio NCores to NApps will flip in the future
Inherent part of OctoPOS’s execution model
Granting exclusive access to cores/resources
Reduces side-channels

⇒ Minimized interference☺
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Hardware/Software Co-Design Example: iCore

X10 Tsunami simulation on the Invasic FPGA prototype using
the iCore

Alexander Pöppl, Marvin Damschen, Florian Schmaus, et al. “Shallow Water Waves on a Deep Technology Stack:
Accelerating a Finite Volume Tsunami Model Using Reconfigurable Hardware in Invasive Computing”. In: Euro-Par
2017: Parallel Processing Workshops. Ed. by Dora B. Heras, Luc Bougé, Gabriele Mencagli, et al. Cham: Springer

International Publishing, 2018, pp. 676–687. isbn: 978-3-319-75178-8
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Execution Model

Processes

Past

Heavy-weight Processes

fork();
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Execution Model

Processes

Past

Threads

Yesterday

Light-weight Processes

pthread_create();
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Execution Model

Processes

Past

Threads

Yesterday

Fibers

Present

Feather-weight Processes
Concurrency Platforms: Go, Cilk, …

for i := 0; i < 10; i++ {
go f(i)

}
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Execution Model

Processes

Past

Threads

Yesterday

Fibers

Present

i-let

Future

i-lets — OctoPOS’s control-flow abstraction

Run-to-completion
Lazy context allocation
Small footprint: 4 machine words
Every layer is i-let aware (App, Runtime, OS, HW)

⇒ Allows massive µ-parallelism☺
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Hardware/Software Co-Design Example: SHARQ
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NAS Parallel Benchmarks (NPB)

Sven Rheindt, Sebastian Maier, Florian Schmaus, et al. “SHARQ: Software-Defined Hardware-Managed Queues for
Tile-Based Manycore Architectures”. In: Proceedings of the 19th International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS). 2019
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Dynamic Resource Management via Agent System

Constraints Agent System Resource Allocation

1. Gather Application Constraints

Scalability curve(s)
Desired accelerators
Communication properties

3. Resource Allocation

Position/Amount
Resources now available to application

4. Repeat (on demand)
Application transitions into another phase
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Dynamic Resource Management via Agent System

Constraints Agent System Resource Allocation

2. Agent System

One agent per application
Optmize resource assignment
for all applications
Distributed Constraint Optimization
Problem (DCOP)
Maximum Gain Message (MGM)
(any-time algorithm)
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Runtime Requirement-Monitoring and Enforcement (RRM/RRE)
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Runtime Requirement-Monitoring and Enforcement (RRM/RRE)

Execution Place

lead’s core causing core specific core any core

Execution Priority

interrupt priority i-let priority

Execution Context

asynchronous synchronous

Execution Privilege

kernel privileged application unprivileged

Execution Trigger

event triggered time triggered time trig. (inexact)
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Conclusion

Satisfy intrinsic constraints/requirements Application C2

Agent System
Explicit enumeration of constraints

Counter extrinsic uncertainties Application C3

RRM/RRE (Squads)

Many-* Architecture Hardware C1

Invasive Run-Time Support System (iRTSS)
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