

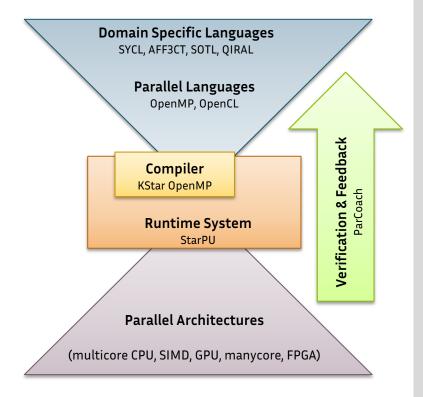
Resource Management and Interoperability with the StarPU Task-Based Runtime System

Olivier Aumage

Inria — LaBRI Bordeaux, France

RADR 2021

Team STORM


STatic Optimizations, Runtime Methods

Joint Team in Bordeaux, France

- > Inria Bordeaux Research Center
- > LaBRI Laboratory

• Parallelism in HPC

- > Express
- > Adapt
- > Optimize

High-Performance Computing

Supercomputers Hardware Evolution

Fast paced

- > Short lifetime: 5 10 years
- Increasing complexity
 - > RIKEN Fugaku Computer: ~160K nodes, ~7M cores
- Increasing heterogeneity
 - > Accelerators devices, FPGA, processing offload
- Increasingly diverse purposes and designs
 - > Graph / Green / Top 500, HPCG

					1	CPU 🔶
Name 💠	Start year 🔶	Performance (PFLOPS) ^[note 1] *	TOP500 ranking \$	CPU/GPU vendor ¢	CPU	A64FX
Fugaku	2020	415	June 2020 1st	Fujitsu	A64FX	
Summit	2018	148	June 2018 to November 2019 1st			POWER9, Tesla
Sierra	2018	94	November 2018 to November 2019 2nd	IBM, NVIDIA	POWER9,	
Sunway TaihuLight	2016	93	June 2016 to November 2017 1st	NRCPC	Sunway SW	Sunway SW26010
к	2011	10	June 2011 – November 2011 1st	Fujitsu	SPARC64	
Wikipedia.org: Fugaku vs some former rank #1 Top500 supercomputers						SPARC64 VIIIfx
wikipedia.org. rugaku vs some former fallk #1 top500 supercomputers						

Task-based runtime systems

Performance portability

• Separate multiple concerns

- > General application algorithmics
- > Low-level task kernel optimization
- > Resource management and work assignment
 - Task scheduling algorithmics

• Concentrate porting efforts

- > [Machine- | Device-] specific routines
 - == Tasks
 - Short term adaptation & optimization effort
- > Mostly fixed application structure
 - Long term stability

Many active projects

> Launched over last decade

StarPU

- > Inria / LaBRI, Bordeaux, 2009
- DuctTeip / SuperGlue
 - > University of Uppsala, 2013

• HPX

> Louisiana State University, 2013

• OCR

- > Specification, 2014
- > Several implementations
 - Intel+Rice University
 - University of Vienna
- OmpSs
 - > BSC, 2008 (StarSs)
- PaRSEC
 - > ICL / UTK, 2012 (DaGUE)
- Regent / Legion
 - > Stanford, 2012
- ... and many others ...

The StarPU runtime system

Task-based Computing Runtime System

Initiated in 2009

> PhD Cédric Augonnet

The StarPU runtime system

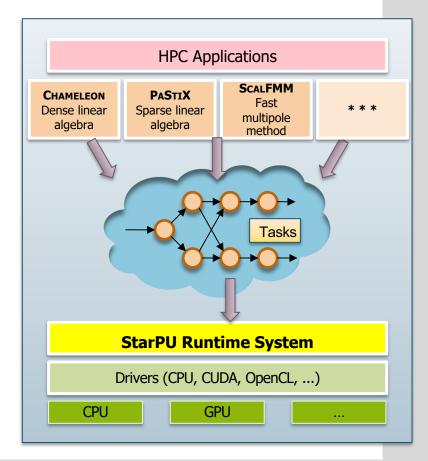
Task-based Computing Runtime System

Initiated in 2009

- > PhD Cédric Augonnet
- Task scheduling on a heterogeneous, accelerated node
 - > General purpose CPU cores
 - > Specialized accelerators
 - Discrete board + embedded memory

Main	Main
Memory CPU CPU	Memory
Embedded Memory GPU	

Heterogeneous computing node

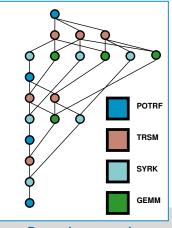

The StarPU runtime system

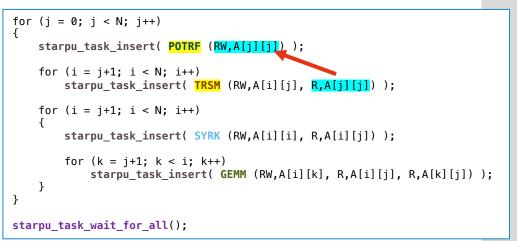
Task-based Computing Runtime System

- Initiated in 2009
 - > PhD Cédric Augonnet
- Task scheduling on a heterogeneous, accelerated node
 - > General purpose CPU cores
 - > Specialized accelerators
 - Discrete board + embedded memory

Usage

- > Direct programming from application
 - C, C++, Fortran
- > Compiler / Language
 - OpenMP, Julia, Python, SkePU
- > Parallel numerical library




Sequential Task Flow

StarPU programming model

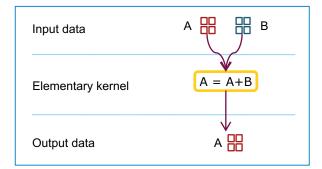
- Tasks submitted sequentially
 - > Deferred execution
- Dependence graph built incrementally
 - > Vertex == task
 - > Edge == data dependence

Dependence graph

Flow of task submissions

Sequential Task Flow

Model assumptions


- Tasks
 - > Annotated kernels
 - $> \rightarrow$ Potential parallelism

Data dependences

- > Set of constraints
 - Input needed
 - Output produced
- > → Degrees of freedom

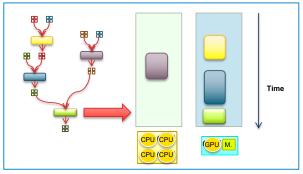
• No hidden dependence

- > Any task schedule fulfilling data dependence constraints is correct
- > Assume pure, stateless task functions

Task == kernel + data dependences

Making hardware dependent decisions on behalf of the programmer

StarPU execution model


- Distributed Shared Memory (DSM) engine
 - > Data management
 - > Data replication and consistency

• Performance modeling engine

- > Task execution time inference
- > Data transfer time inference

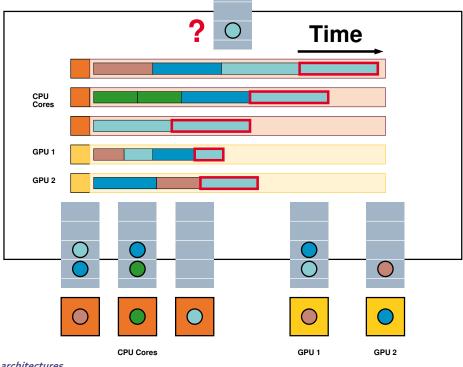
Scheduling engine

- > Programmable policies
 - Theoretical algorithmic corpus
- > Task mapping
 - Reactive (== work stealing)
 - Anticipative (== planning)

Mapping a task graph on hardware resources

Heterogeneous processing resource management

Dynamically planned execution


- Performance estimation
 - > Per kernel
 - > Per device
 - > Per implementation

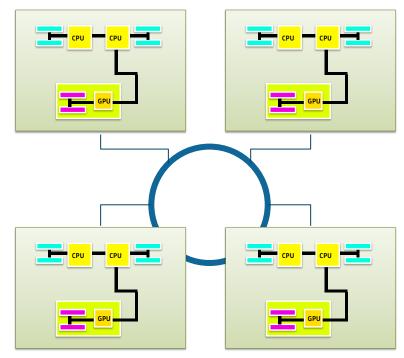
• Task execution time inference

- > History-based
- > Custom cost function

• Data transfer time inference

> Bus sampling

C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier *StarPU: a unified platform for task scheduling on heterogeneous multicore architectures* CCPE, Wiley, 2011.


Distributed processing management

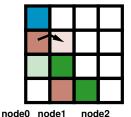
StarPU-MPI

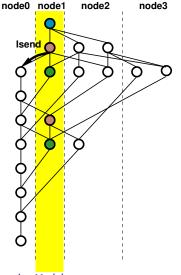
- Contributions
 - > Early prototype by Cédric Augonnet
 - > PhD Marc Sergent

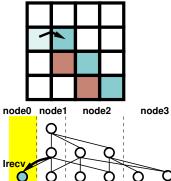
2 models supported

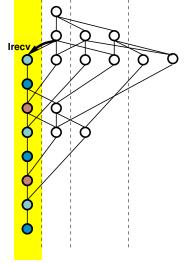
- > Master workers
- > Fully distributed

Cluster of heterogeneous nodes


Fully-distributed model


No master node


- Local task graph discovery
 - > Whole graph discovered on every node
 - > Initial data distribution given by application


Local decisions

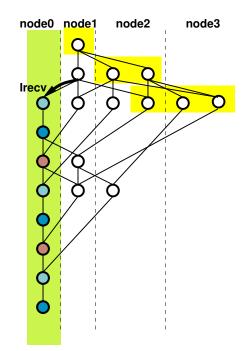
- > Task execution
 - Data ownership
- > Data transfers
 - Internode edges

E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, S. Thibault Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model IEEE Transactions on Parallel and Distributed Systems, 2017.

Fully-distributed model

No master node

Local task graph discovery


- > Whole graph discovered on every node
- > Initial data distribution given by application

Local decisions

- > Task execution
 - Data ownership
- > Data transfers
 - Internode edges

• Task graph pruning

> Scalable processing

Pruning tasks on node 0

E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, S. Thibault Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model IEEE Transactions on Parallel and Distributed Systems, 2017.

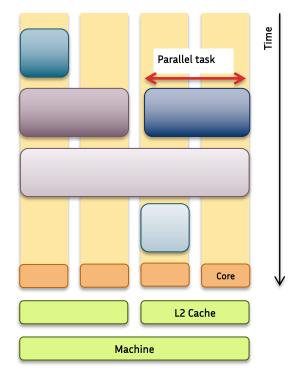
Computing resource clustering

Parallel Tasks

Contribution

> PhD Terry Cojean

T. Cojean, A. Guermouche, A. Hugo, R. Namyst, P.-A. Wacrenier *Resource aggregation for task-based Cholesky Factorization on top of modern architectures* Parallel Computing, Elsevier, 2018.



Computing resource clustering

Parallel Tasks

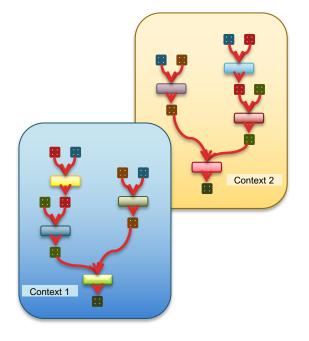
- Contribution
 - > PhD Terry Cojean
- Enable multi-core tasks
 - > Control scheduling cost on large multicores
 - Use less tasks
 - > Enhance affinity
 - Topology-based mapping
 - > Reduce heterogeneous performance gap
 - GPU task vs multicore CPU task

T. Cojean, A. Guermouche, A. Hugo, R. Namyst, P.-A. Wacrenier *Resource aggregation for task-based Cholesky Factorization on top of modern architectures* Parallel Computing, Elsevier, 2018.

Resource management for multiple task graphs

Scheduling contexts

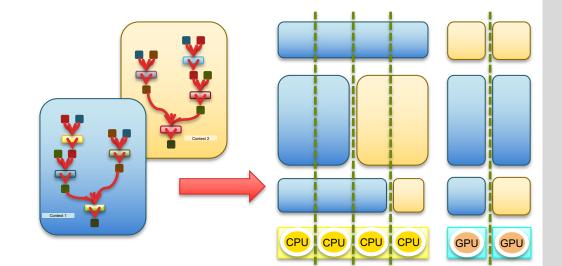
- Contribution
 - > PhD Andra Hugo


A. Hugo, A. Guermouche, P.-A. Wacrenier, R. Namyst *Composing multiple StarPU applications over heterogeneous machines: A supervised approach* IJHPCA, SAGE Publications, 2014.

Resource management for multiple task graphs

Scheduling contexts

- Contribution
 - > PhD Andra Hugo
- Single StarPU instance
 - > Multiple task graphs
 - > Concurrent StarPU-based routines


A. Hugo, A. Guermouche, P.-A. Wacrenier, R. Namyst *Composing multiple StarPU applications over heterogeneous machines: A supervised approach* IJHPCA, SAGE Publications, 2014.

Resource management for multiple task graphs

Scheduling contexts

- Contribution
 - > PhD Andra Hugo
- Single StarPU instance
 - > Multiple task graphs
 - > Concurrent StarPU-based routines
- Dynamic resource assignment
 - > Malleability

A. Hugo, A. Guermouche, P.-A. Wacrenier, R. Namyst *Composing multiple StarPU applications over heterogeneous machines: A supervised approach* IJHPCA, SAGE Publications, 2014.

Leverage multiple libraries & runtimes

Multiple codes competing for CPU cores

- > Application threads
- > Parallel numerical libraries threads
- > Runtime systems threads
- > Communication library threads

Leverage multiple libraries & runtimes

Multiple codes competing for CPU cores

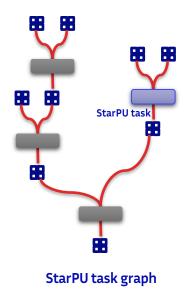
- > Application threads
- > Parallel numerical libraries threads
- > Runtime systems threads
- > Communication library threads
- Interference leads to resource over-subscription or under-subscription
 - > Interoperability?
 - > European Project H2020 INTERTWinE (2015 2018)
 - Resource sharing APIs
 - http://www.intertwine-project.eu/

Scenarios

Nested interoperability

- > Host runtime
 - Task-parallel application or library
- > Guest runtime
 - Parallel implementation of host's tasks

• Concurrent interoperability

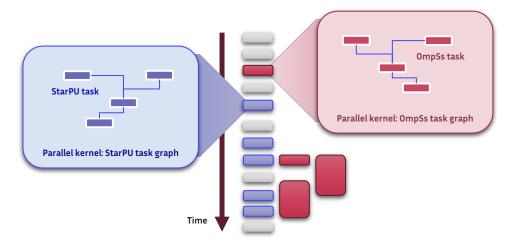

- > Host runtime
 - Parallel application or library
- > Guest runtime
 - Concurrent parallel library

Nested composition

• Task parallel application or library + parallel kernel tasks

> Offload and resource enforcement API

Nested composition


- Task parallel application or library + parallel kernel tasks
 - > Offload and resource enforcement API

Concurrent composition

- Parallel application or library // parallel library
 - > Dynamic Resource Sharing (DRS) API



Concurrent composition

- Parallel application or library // parallel library
 - > Dynamic Resource Sharing (DRS) API
- Direct interfacing
 - > StarPU
 - > OmpSs
 - > Same process computing resource sharing
- Interfacing through external component
 - > DLB (Dynamic Load Balancing) framework
 - Developed at BSC
 - Library + external daemon
 - > Same process or multi-processes computing resource sharing

http://www.intertwine-project.eu/

Conclusion

The StarPU task-based runtime system

Comprehensive in-app resource management

- > Heterogeneous processing units: CPU, GPU, ..., *PU
 - Planned + work stealing task scheduling
 - Performance modeling
- > Heterogeneous memory resource management
 - Data replication + memory consistency
 - NUMA, HBM, on-device memory, out-of-core

Ecosystem friendly resource management

- > Interoperability, composability, malleability
 - StarPU parallel code + StarPU parallel code
 - StarPU parallel code + external parallel code

• https:// starpu . gitlabpages . inria . fr /

Thanks!

