
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

An Initial Examination of the
Effect of Container Resource
Constraints on Application
Perturbation

Scott Levy and Kur t B. Fer reira SAND2021-6125 C

The Promise of Containers2

• Containers have become an increasingly popular method for packaging and
deploying applications in many environments from desktops to datacenters,
clusters and supercomputers.
• lightweight isolation (relative to VMs)
• run anywhere (desktop-to-supercomputer)
• consistent software environment (bring-your-own)

• Docker is probably the best known container runtime. Dockerfiles are the
standard way to define containers.

• However, Docker requires a daemon and elevated privileges. Both
requirements make it difficult/impossible to deploy on supercomputers and
other large shared resources. As a result, several other approaches have
emerged for HPC that address these issues.

The Promise of Containers (cont’d)3

• In addition to the isolation provided by containerization, container runtimes can
also be used to partition resources between multiple containers sharing resources.

• For example, in the context of scientific simulations running on HPC systems,
resources could be split between a container running the simulation and a second
simulation running in situ visualization and analysis applications

• Currently, the most common way that container runtimes partition resources
between containers is by leveraging Linux control groups (cgroups)

The Performance of Containers4

• Existing research provides empirical evidence that suggests that the performance
overhead of containerization is modest or nonexistent

• However, most of the data in these papers were collected at relatively modest scales
(i.e., a very small fraction of a leadership-class system)

• One significant challenge to running applications on extreme-scale systems is
application perturbation (e.g., OS noise : Ferreira et al. SC08, Hoefler et al. SC10)

Application Perturbation (i.e., Noise) and Performance5

• Noise can manifest in different ways (e.g., network, memory) but for the purposes
of this presentation, we’re limiting the definition of “noise” to mean periods of
time when a process is deprived of the CPU.

• Existing research has shown that the duration of noise has a much greater affect
on application performance than its frequency. Therefore, all of these results
focus on the tail of the noise duration distribution.

• In general, noise events start to have a significant impact on application
performance when their duration exceeds 1 ms.

Experimental Environment6

• We ran experiments with three different container runtimes:

• We ran our experiments on three systems at Sandia : Stria, Eclipse, and Mungbean.

• Stria is a development system for Astra (the first petascale Arm system). It has two
sockets, each populated with a Cavium Thunder-X2 Arm processor, and a Mellanox
ConnectX-5 Infiniband NIC.

•Eclipse is CTS-1 system. It has two sockets, each populated with an Intel Broadwell
processor, and an Intel Omni-Path NIC.
•Mungbean is a Linux workstation. It has a single Intel Sandy Bridge processor and a
gigabit Ethernet NIC.

Experimental Environment (cont’d)7

• To measure application perturbation we built containers for each runtime that
contain narcissistic, a Sandia implementation of a selfish benchmark.

• Selfish benchmarks run very tight (and short) compute loops and look for run-to-
run variation.

• For each experiment, we run multiple containers concurrently on the same node
and record the noise events in each over 15 minutes.

Container Use Cases8

WITHOUT RESOURCE PARTITIONING OR CONTENTION
• Ran experiments on Stria and Eclipse with rootless containers with all three container

runtimes

WITH RESOURCE PARTITIONING
• On Stria, the podman installation uses cgroups v1 and runc. However, root access is

required to use cgroups v1 to partition resources with control groups.
• Using cgroups v2 to run rootless containers (on a standalone Linux machine) but was

unable to figure out how to get the resource limits to actually take effect
• So…we ran our partitioning experiments on a standalone Linux workstation as root using
cgroups v1.
• The only resource we partitioned was the CPU
• We considered three different mechanisms for allocating CPU resources in podman
• --cpu-quota & --cpu-period
• --cpu-shares
• --cpuset-cpus

Container Use Cases9

WITHOUT RESOURCE PARTITIONING OR CONTENTION
• Ran experiments on Stria and Eclipse with rootless containers with all three container

runtimes

WITH RESOURCE PARTITIONING
• On Stria, the podman installation uses cgroups v1 and runc. However, root access is

required to use cgroups v1 to partition resources with control groups.
• Using cgroups v2 to run rootless containers (on a standalone Linux machine) but was

unable to figure out how to get the resource limits to actually take effect
• So…we ran our partitioning experiments on a standalone Linux workstation as root using
cgroups v1.
• The only resource we partitioned was the CPU
• We considered three different mechanisms for allocating CPU resources in podman
• --cpu-quota & --cpu-period
• --cpu-shares
• --cpuset-cpus

Containers Without Resource Partitioning or Contention (Stria)10

Baseline (w/o container) Singularity

Charliecloud Podman

Containers Without Resource Partitioning or Contention (Stria)11

Baseline (w/o container) Singularity

Charliecloud Podman

• Tail of noise duration distribution: longest 1% of events

• y-axis is duration of noise event (log10-scale)

• x-axis is benchmark execution time

• Data only from rank 0

Containers Without Resource Partitioning or Contention (Stria)12

Baseline (w/o container) Singularity

Charliecloud Podman

Containers Without Resource Partitioning or Contention (cont’d)13

Stria + Singularity Stria + Podman

Containers Without Resource Partitioning or Contention (cont’d)14

Stria + Singularity Stria + Podman

Containers Without Resource Partitioning or Contention (cont’d)15

Stria + Singularity Stria + Podman

Duration distributions are virtually the
same for Singularity and the baseline.
Where differences exist, the baseline’s

distribution is slightly more heavy-tailed.

Podman’s 99th percentile
is generally a bit higher

than the baseline

Containers Without Resource Partitioning or Contention (cont’d)16

Stria + Singularity Stria + Podman

Containers Without Resource Partitioning or Contention (cont’d)17

Stria + Singularity Stria + Podman

…same is true for the
maximum duration

Container Use Cases18

WITHOUT RESOURCE PARTITIONING OR CONTENTION
• Ran experiments on Stria and Eclipse with rootless containers with all three container

runtimes

WITH RESOURCE PARTITIONING
• On Stria, the podman installation uses cgroups v1 and runc. However, root access is

required to use cgroups v1 to partition resources with control groups.
• Using cgroups v2 to run rootless containers (on a standalone Linux machine) but was

unable to figure out how to get the resource limits to actually take effect
• So…we ran our partitioning experiments on a standalone Linux workstation as root using
cgroups v1.
• The only resource we partitioned was the CPU
• We considered three different mechanisms for allocating CPU resources in podman
• --cpu-quota & --cpu-period
• --cpu-shares
• --cpuset-cpus

CPU partitioning with --cpu-quota and --cpu-period19

• Using this approach, we can assign a container a quota within each period. When
the container’s quota has been exhausted it will not be scheduled again until the
current period expires.

•We consider four different periods
• 100ms
• 50ms
• 10ms
• 5ms

•…and three different quota pairs
• 90% + 10% (we couldn’t run this combination w/ 5ms period; minimum quota is 1ms)
• 75% + 25%
• 50% + 50%

CPU partitioning with --cpu-quota and --cpu-period (cont’d)20

90 ms CPU quota 10 ms CPU quota

90ms vs 10 ms CPU quota
noise duration distributions

CPU partitioning with --cpu-quota and --cpu-period (cont’d)21

90 ms CPU quota 10 ms CPU quota

90ms vs 10 ms CPU quota
noise duration distributions

Longest noise event durations
are equal to:

(period - quota)

10 ms
90 ms

CPU partitioning with --cpu-quota and --cpu-period (cont’d)22

90 ms CPU quota 10 ms CPU quota

With 10 ms CPU quota, many
fewer noise events are
recorded because the

container runs much less
frequently. More than 1% of

the total events are
attributable to the resource
limit so some are excluded.

90ms vs 10 ms CPU quota
noise duration distributions

CPU partitioning with --cpu-shares23

• Using this approach, we can assign a container shares of the CPU which are used
to prioritize access.

• The Podman documentation states that limiting the number of CPU shares does
not prevent each container from using 100% of a CPU provided there are enough
CPUs to support all of the processes in all of the containers (i.e., there’s not
contention for CPU resources)

• By default, each container gets 1024 shares

•We consider four configurations:
• 1024 & 1024
• 1024 & 512
• 1024 & 256
• 1024 & 128

CPU partitioning with --cpu-shares (cont’d)24

1024 128

CPU partitioning with --cpu-shares (cont’d)25

1024 128

These experiments were performed on
a 4-core machine that was largely idle

other than these experiments. The
Podman documentation suggests that
each container should be allocated
100% of one CPU, but there’s still a

prominent (and mysterious) pattern of
~1 ms noise events for the container
with the smaller number of shares

CPU partitioning with --cpuset-cpus26

• Using this approach, we can assign a container one or more CPUs

• By default, the operating system is free to run a containers on any available CPU

•We consider three configurations:
• Unpinned (i.e., the containers can run on any available CPU)
• Pinned to different CPUs
• Pinned to the same CPU

•We avoid pinning containers to CPU 0 since it tends to have the largest background
noise profile

CPU partitioning with --cpuset-cpus (cont’d)27

First container: CPU1 Second container: CPU1

Noise distributions

CPU partitioning with --cpuset-cpus (cont’d)28

First container: CPU1 Second container: CPU1

Noise distributions

Our understanding of the Linux
scheduler is that the default

target scheduler latency is 20 ms
which is consistent with each

container being periodically idled
for approximately 10ms to allow

the other container to run

Conclusion & Discussion29

•We have confirmed that container runtimes are unlikely to impose significant
overhead, even on very large systems.

• Partitioning resources between containers using cgroups has the potential to
introduce significant perturbation into applications.

• Specifically, using --cpu-quota and --cpu-period to partition CPU resources
may introduce perturbation that is likely to degrade the performance of applications
as scale increases.

• Given the current state of partitioning tools, better application performance can be
obtained by limiting the sharing of hardware resources between containers (e.g.,
assigning an integral number of nodes/cores to each container).

Acknowledgment30

Kurt B. Ferreira
Sandia National Laboratories

Questions?
sllevy@sandia.gov

31

Sandia National Laboratories is a multi mission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

