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The Promise of Containers2

• Containers have become an increasingly popular method for packaging and 
deploying applications in many environments from desktops to datacenters, 
clusters and supercomputers.
• lightweight isolation (relative to VMs)
• run anywhere (desktop-to-supercomputer)
• consistent software environment (bring-your-own)

• Docker is probably the best known container runtime.  Dockerfiles are the 
standard way to define containers.

• However, Docker requires a daemon and elevated privileges.  Both 
requirements make it difficult/impossible to deploy on supercomputers and 
other large shared resources.  As a result, several other approaches have 
emerged for HPC that address these issues.  



The Promise of Containers (cont’d)3

• In addition to the isolation provided by containerization, container runtimes can 
also be used to partition resources between multiple containers sharing resources.

• For example, in the context of  scientific simulations running on HPC systems, 
resources could be split between a container running the simulation and a second 
simulation running in situ visualization and analysis applications

• Currently, the most common way that container runtimes partition resources 
between containers is by leveraging Linux control groups (cgroups)



The Performance of Containers4

• Existing research provides empirical evidence that suggests that the performance 
overhead of  containerization is modest or nonexistent

• However, most of  the data in these papers were collected at relatively modest scales 
(i.e., a very small fraction of  a leadership-class system)

• One significant challenge to running applications on extreme-scale systems is 
application perturbation (e.g., OS noise : Ferreira et al. SC08, Hoefler et al. SC10)



Application Perturbation (i.e., Noise) and Performance5

• Noise can manifest in different ways (e.g., network, memory) but for the purposes 
of  this presentation, we’re limiting the definition of  “noise” to mean periods of  
time when a process is deprived of  the CPU.

• Existing research has shown that the duration of  noise has a much greater affect 
on application performance than its frequency.  Therefore, all of  these results 
focus on the tail of  the noise duration distribution.

• In general, noise events start to have a significant impact on application 
performance when their duration exceeds 1 ms.



Experimental Environment6

• We ran experiments with three different container runtimes:

• We ran our experiments on three systems at Sandia : Stria, Eclipse, and Mungbean.

• Stria is a development system for Astra (the first petascale Arm system).  It has two 
sockets, each populated with a Cavium Thunder-X2 Arm processor, and a Mellanox 
ConnectX-5 Infiniband NIC.

•Eclipse is CTS-1 system.  It has two sockets, each populated with an Intel Broadwell 
processor, and an Intel Omni-Path NIC.
•Mungbean is a Linux workstation.  It has a single Intel Sandy Bridge processor and a 
gigabit Ethernet NIC.



Experimental Environment (cont’d)7

• To measure application perturbation we built containers for each runtime that 
contain narcissistic, a Sandia implementation of  a selfish benchmark.  

• Selfish benchmarks run very tight (and short) compute loops and look for run-to-
run variation.

• For each experiment, we run multiple containers concurrently on the same node 
and record the noise events in each over 15 minutes.



Container Use Cases8

WITHOUT RESOURCE PARTITIONING OR CONTENTION
• Ran experiments on Stria and Eclipse with rootless containers with all three container 

runtimes

WITH RESOURCE PARTITIONING
• On Stria, the podman installation uses cgroups v1 and runc.  However, root access is 

required to use cgroups v1 to partition resources with control groups.
• Using cgroups v2 to run rootless containers (on a standalone Linux machine) but was 

unable to figure out how to get the resource limits to actually take effect
• So…we ran our partitioning experiments on a standalone Linux workstation as root using 
cgroups v1.
• The only resource we partitioned was the CPU
• We considered three different mechanisms for allocating CPU resources in podman
• --cpu-quota & --cpu-period
• --cpu-shares
• --cpuset-cpus
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Containers Without Resource Partitioning or Contention (Stria)10

Baseline (w/o container) Singularity

Charliecloud Podman



Containers Without Resource Partitioning or Contention (Stria)11

Baseline (w/o container) Singularity

Charliecloud Podman

• Tail of noise duration distribution: longest 1% of events

• y-axis is duration of noise event (log10-scale)

• x-axis is benchmark execution time

• Data only from rank 0



Containers Without Resource Partitioning or Contention (Stria)12

Baseline (w/o container) Singularity

Charliecloud Podman



Containers Without Resource Partitioning or Contention (cont’d)13

Stria + Singularity Stria + Podman



Containers Without Resource Partitioning or Contention (cont’d)14

Stria + Singularity Stria + Podman



Containers Without Resource Partitioning or Contention (cont’d)15

Stria + Singularity Stria + Podman

Duration distributions are virtually the 
same for Singularity and the baseline.  
Where differences exist, the baseline’s 

distribution is slightly more heavy-tailed.



Podman’s 99th percentile 
is generally a bit higher 

than the baseline

Containers Without Resource Partitioning or Contention (cont’d)16

Stria + Singularity Stria + Podman



Containers Without Resource Partitioning or Contention (cont’d)17

Stria + Singularity Stria + Podman

…same is true for the 
maximum duration



Container Use Cases18
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CPU partitioning with --cpu-quota and --cpu-period19

• Using this approach, we can assign a container a quota within each period.  When 
the container’s quota has been exhausted it will not be scheduled again until the 
current period expires.

•We consider four different periods
• 100ms
• 50ms
• 10ms
• 5ms

•…and three different quota pairs
• 90% + 10% (we couldn’t run this combination w/ 5ms period; minimum quota is 1ms)
• 75% + 25%
• 50% + 50%



CPU partitioning with --cpu-quota and --cpu-period (cont’d)20

90 ms CPU quota 10 ms CPU quota

90ms vs 10 ms CPU quota
noise duration distributions



CPU partitioning with --cpu-quota and --cpu-period (cont’d)21

90 ms CPU quota 10 ms CPU quota

90ms vs 10 ms CPU quota
noise duration distributions

Longest noise event durations 
are equal to:

(period - quota)

10 ms
90 ms



CPU partitioning with --cpu-quota and --cpu-period (cont’d)22

90 ms CPU quota 10 ms CPU quota

With 10 ms CPU quota, many 
fewer noise events are 
recorded because the 

container runs much less 
frequently.  More than 1% of 

the total events are 
attributable to the resource 
limit so some are excluded.

90ms vs 10 ms CPU quota
noise duration distributions



CPU partitioning with --cpu-shares23

• Using this approach, we can assign a container shares of  the CPU which are used 
to prioritize access.

• The Podman documentation states that limiting the number of  CPU shares does 
not prevent each container from using 100% of  a CPU provided there are enough 
CPUs to support all of  the processes in all of  the containers (i.e., there’s not 
contention for CPU resources)

• By default, each container gets 1024 shares

•We consider four configurations:
• 1024 & 1024
• 1024 & 512
• 1024 & 256
• 1024 & 128



CPU partitioning with --cpu-shares (cont’d)24

1024 128



CPU partitioning with --cpu-shares (cont’d)25

1024 128

These experiments were performed on 
a 4-core machine that was largely idle 

other than these experiments.  The 
Podman documentation suggests that 
each container should be allocated 
100% of one CPU, but there’s still a 

prominent (and mysterious) pattern of 
~1 ms noise events for the container 
with the smaller number of shares



CPU partitioning with --cpuset-cpus26

• Using this approach, we can assign a container one or more CPUs

• By default, the operating system is free to run a containers on any available CPU

•We consider three configurations:
• Unpinned (i.e., the containers can run on any available CPU)
• Pinned to different CPUs
• Pinned to the same CPU

•We avoid pinning containers to CPU 0 since it tends to have the largest background 
noise profile



CPU partitioning with --cpuset-cpus (cont’d)27

First container: CPU1 Second container: CPU1

Noise distributions



CPU partitioning with --cpuset-cpus (cont’d)28

First container: CPU1 Second container: CPU1

Noise distributions

Our understanding of the Linux 
scheduler is that the default 

target scheduler latency is 20 ms
which is consistent with each 

container being periodically idled 
for approximately 10ms to allow 

the other container to run



Conclusion & Discussion29

•We have confirmed that container runtimes are unlikely to impose significant 
overhead, even on very large systems. 

• Partitioning resources between containers using cgroups has the potential to 
introduce significant perturbation into applications.

• Specifically, using --cpu-quota and --cpu-period to partition CPU resources 
may introduce perturbation that is likely to degrade the performance of  applications 
as scale increases.

• Given the current state of  partitioning tools, better application performance can be 
obtained by limiting the sharing of  hardware resources between containers (e.g., 
assigning an integral number of  nodes/cores to each container).
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