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Background: Deep Neural Network (DNN)
- To extract patterns from large datasets

- To increase accuracy, a very deep network model with
many layers is needed

- Computation is very time consuming

:0: AlphaGo
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Acceleration of DNN training

- Parallel Training

- Train a DNN model on different GPUs
- Model Parallelism
- Data Parallelism

- Adjust the hyperparameters during training

- Learning rate: how quickly the model is optimized in each iteration

- IrDecay: Decay the learning rate after a certain number of epochs of
training

- Batch size: how much data the model processes in each iteration

- Dynamic Batch Size Fitting (Liu, et al. IICNN2019): Change the batch
size during different training phases.
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Allocation of Computational Resources (1/2)

- A computational node with multiple training tasks running
on it

- To accelerate the overall training time by dynamically
adjusting the allocation of computational resources (GPU)
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Allocation of Computational Resources (2/2)

- Allocation is adjusted dynamically based on which training
phase each task is In

- 4 GPUs attached to the node

- The overall number of processes for all the training tasks will be set
to 4 (3%)

- Adjustment to # of processes for each task = Adjustment to # of
GPUs allocated for each task

(%) Why the overall number of processes need to match with the number of GPU?

- NCCL is used as the communication primitives in all the experiments
- It has this limitation that the number of processes cannot be more than that of GPU



Dynamic Allocation (1/2)

- An Allocator which has access to the training information of
each task is necessary
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Dynamic Allocation (2/2)

- How to determine the training phase of a task?

1. When a new task starts, run 100 iterations at first.

2. Based on the delta of loss rate, the allocator will adjust
an appropriate number of processes for this task.
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Experimental setup

- Cluster
- CPU: Intel Xeon CPU E5-2698
- GPU: Tesla V100-PCIE-32GB X 4
- OS: Ubuntu 20.04, Linux-5.8.0

- Framework: PyTorch

- Model: VGG-16, ResNet-50

- Dataset: CIFAR-10
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Settings of experiments

1. The number of training tasks executing simultaneously
IS set to 2 (older task and younger task)

2. The time gap for the two tasks is set to 200 seconds

3. Ciriteria of convergence: when the loss rate reaches the
level that one model has been trained for 300 seconds
iIndividually
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Detalls of experiments

- Experiment 1: Use the same model
- DNN: VGG-16

- Experiment 2: Use two different model
- DNN: ResNet-50, VGG-16

- Experiment 3: Training using multiple nodes
- DNN: VGG-16
- Nodes are connected via LAN cables.

- To not change the amount of computation, batch size for
each task will be fixed to 512.
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Experiment 1. Use the same model

« With dynamic allocation, total training time was shortened
by 4.70%
* Older task: shortened by 12.75%

2.5 I T I
“ —— older task, 1-3
‘.I —— older task, 2-2 ¢=====m No Adjustment
201 older task,'3-1 ' | ¢====== With Adjustment
\"w\ —— younger task, 1-3 _
\ younger task, 2-2 ¢====== No Adjustment
15 | younger task, 3-1 | @====== With Adjustment
v \\,\‘ D]
o \\‘ l
-l 1
1.0 T :
1.“. I
0.5 Mt ]
N A A
0.0
0 100 200 300 400 500 600

Training time (seconds)



12/16

Experiment 1. Use the same model

« With dynamic allocation, total training time was shortened
by 4.70%
» Older task: shortened by 12.75%
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Experiment 2: Use two different models

- The older task and younger task will use ResNet-50 and VGG-16 model,

separately
- Total training time is shortened by 7.11%, with the older task shortened by
11.20%
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Experiment 3: Training using multiple nodes

- A cluster with 2 nodes is used with 8 GPUs

- Criteria of convergence: when the loss rate reaches the level that one
model has been trained for 300 seconds individually using 8 GPUs

- The result is optimal in the scenario without adjustment
- Reason: overhead of network communication, limitation of memory ...
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Summary

- With dynamic adjustment based on information of training
phases, the overall training time is shortened

- This adjustment is effective when using different models

- When training on multiple nodes, the training time is
Increased with dynamic adjustment



