
Allocation of Computing Resources
for Multiple Distributed Deep Learning Tasks

Liang Wei Kazuyuki Shudo

1/16

Tokyo Institute of Technology



Background: Deep Neural Network (DNN)

• To extract patterns from large datasets

• To increase accuracy, a very deep network model with 

many layers is needed

• Computation is very time consuming

2/16



Acceleration of DNN training

• Parallel Training

• Train a DNN model on different GPUs

• Model Parallelism

• Data Parallelism

• Adjust the hyperparameters during training

• Learning rate: how quickly the model is optimized in each iteration

• lrDecay: Decay the learning rate after a certain number of epochs of 

training

• Batch size: how much data the model processes in each iteration

• Dynamic Batch Size Fitting (Liu, et al. IJCNN2019): Change the batch 

size during different training phases. 

3/16



Allocation of Computational Resources (1/2)

• A computational node with multiple training tasks running 

on it

• To accelerate the overall training time by dynamically 

adjusting the allocation of computational resources (GPU)

4/16

4 GPUs used by only one task The older task can only use 2 GPUs 

after the younger one is coming.



Allocation of Computational Resources (2/2)

• Allocation is adjusted dynamically based on which training 
phase each task is in

• 4 GPUs attached to the node
• The overall number of processes for all the training tasks will be set 

to 4 (※)

• Adjustment to # of processes for each task = Adjustment to # of 
GPUs allocated for each task

(※) Why the overall number of processes need to match with the number of GPU?

• NCCL is used as the communication primitives in all the experiments

• It has this limitation that the number of processes cannot be more than that of GPU

5/16



Dynamic Allocation (1/2)

• An Allocator which has access to the training information of 

each task is necessary

6/16



Dynamic Allocation (2/2)
• How to determine the training phase of a task?

1. When a new task starts, run 100 iterations at first.

2. Based on the delta of loss rate, the allocator will adjust 

an appropriate number of processes for this task.

7/16

The diff of loss rate



Experimental setup

• Cluster

• CPU: Intel Xeon CPU E5-2698

• GPU: Tesla V100-PCIE-32GB × 4

• OS: Ubuntu 20.04, Linux-5.8.0

• Framework: PyTorch

• Model: VGG-16、ResNet-50

• Dataset: CIFAR-10

8/16



Settings of experiments

1. The number of training tasks executing simultaneously 

is set to 2 (older task and younger task)

2. The time gap for the two tasks is set to 200 seconds

3. Criteria of convergence: when the loss rate reaches the 

level that one model has been trained for 300 seconds 

individually 

9/16



Details of experiments

• Experiment １: Use the same model

• DNN: VGG-16

• Experiment 2: Use two different model

• DNN: ResNet-50, VGG-16

• Experiment 3: Training using multiple nodes

• DNN: VGG-16

• Nodes are connected via LAN cables.

• To not change the amount of computation, batch size for 

each task will be fixed to 512.

10/16



Experiment 1: Use the same model

12/16

• With dynamic allocation, total training time was shortened 

by 4.70%

• Older task: shortened by 12.75％

No Adjustment

No Adjustment

With Adjustment

With Adjustment



Experiment 1: Use the same model

12/16

• With dynamic allocation, total training time was shortened 

by 4.70%

• Older task: shortened by 12.75％



Experiment 2: Use two different models

• The older task and younger task will use ResNet-50 and VGG-16 model, 
separately

• Total training time is shortened by 7.11%, with the older task shortened by 
11.20%

13/16

No Adjustment

With Adjustment

With Adjustment

No Adjustment



Experiment 3: Training using multiple nodes
• A cluster with 2 nodes is used with 8 GPUs

• Criteria of convergence: when the loss rate reaches the level that one 

model has been trained for 300 seconds individually using 8 GPUs

• The result is optimal in the scenario without adjustment

• Reason: overhead of network communication, limitation of memory …

14/16

No 

Adjustment



Summary

• With dynamic adjustment based on information of training 

phases, the overall training time is shortened

• This adjustment is effective when using different models

• When training on multiple nodes, the training time is 

increased with dynamic adjustment

15/16


