1/16

Allocation of Computing Resources
for Multiple Distributed Deep Learning Tasks

Liang Wei Kazuyuki Shudo

Tokyo Institute of Technology

l

2/16
Background: Deep Neural Network (DNN)
- To extract patterns from large datasets

- To increase accuracy, a very deep network model with
many layers is needed

- Computation is very time consuming

:0: AlphaGo

3/16

Acceleration of DNN training

- Parallel Training

- Train a DNN model on different GPUs
- Model Parallelism
- Data Parallelism

- Adjust the hyperparameters during training

- Learning rate: how quickly the model is optimized in each iteration

- IrDecay: Decay the learning rate after a certain number of epochs of
training

- Batch size: how much data the model processes in each iteration

- Dynamic Batch Size Fitting (Liu, et al. IICNN2019): Change the batch
size during different training phases.

4/16

Allocation of Computational Resources (1/2)

- A computational node with multiple training tasks running
on it

- To accelerate the overall training time by dynamically
adjusting the allocation of computational resources (GPU)

I |
2259 | 2.251 \ —— older task
2.00 A \ 1 2.00 \ —— younger task |
1.75 1.75
0 ii: ' ' o 1.50 1 \ f \
o .
39 ‘\M g 125 \
1.00
\”“ 1.00
0.75
‘\M 0.75
0.50 4 T
0.50
025 MM
- - 0.25 1 : | w
] 50 100 150 200 250 300 T T T T
Training time (seconds) 0 100 200~ 300 400 500 600
Training time (seconds)
4 GPUs used by only one task The older task can only use 2 GPUs

after the younger one is coming.

5/16

Allocation of Computational Resources (2/2)

- Allocation is adjusted dynamically based on which training
phase each task is In

- 4 GPUs attached to the node

- The overall number of processes for all the training tasks will be set
to 4 (3%)

- Adjustment to # of processes for each task = Adjustment to # of
GPUs allocated for each task

(%) Why the overall number of processes need to match with the number of GPU?

- NCCL is used as the communication primitives in all the experiments
- It has this limitation that the number of processes cannot be more than that of GPU

Dynamic Allocation (1/2)

- An Allocator which has access to the training information of
each task is necessary

GPU Cluster
Task Task
A B
™ !
Determine
the number
et e o
Loss Rate
each task

Allocator

Dynamic Allocation (2/2)

- How to determine the training phase of a task?

1. When a new task starts, run 100 iterations at first.

2. Based on the delta of loss rate, the allocator will adjust
an appropriate number of processes for this task.

P

Delta of Loss Rate

100 150 200
Training time (seconds)

The diff of loss rate

8/16

Experimental setup

- Cluster
- CPU: Intel Xeon CPU E5-2698
- GPU: Tesla V100-PCIE-32GB X 4
- OS: Ubuntu 20.04, Linux-5.8.0

- Framework: PyTorch

- Model: VGG-16, ResNet-50

- Dataset: CIFAR-10

9/16

Settings of experiments

1. The number of training tasks executing simultaneously
IS set to 2 (older task and younger task)

2. The time gap for the two tasks is set to 200 seconds

3. Ciriteria of convergence: when the loss rate reaches the
level that one model has been trained for 300 seconds
iIndividually

| |
2.25 \ —— older task

22511

2.00 —— younger task |
2,001 : ’ \

1.75

1.75
1501 \\\‘- o 1507
wv
125
S

1.25

1.00 ‘\k 1.00 \k

0.75 \-“ 0.75 y

0501 i e 0.50 ¥
M**“"Vhwvmou, M

0,25 === = e e e e o o s e e e e e e V]| e e e o o o = e DR e o — — —— — o o o o o e

Loss

100 150 200 250 0 100 260 360 460 SOIU 600
Training time (seconds) Training time (seconds)

10/16

Detalls of experiments

- Experiment 1: Use the same model
- DNN: VGG-16

- Experiment 2: Use two different model
- DNN: ResNet-50, VGG-16

- Experiment 3: Training using multiple nodes
- DNN: VGG-16
- Nodes are connected via LAN cables.

- To not change the amount of computation, batch size for
each task will be fixed to 512.

12/16

Experiment 1. Use the same model

« With dynamic allocation, total training time was shortened
by 4.70%
* Older task: shortened by 12.75%

2.5 I T I
“ —— older task, 1-3
‘.I —— older task, 2-2 ¢=====m No Adjustment
201 older task,'3-1 ' | ¢====== With Adjustment
\"w\ —— younger task, 1-3 _
\ younger task, 2-2 ¢====== No Adjustment
15 | younger task, 3-1 | @====== With Adjustment
v \\,\‘ D]
o \\‘ l
-l 1
1.0 T :
1.“. I
0.5 Mt]
N A A
0.0
0 100 200 300 400 500 600

Training time (seconds)

12/16

Experiment 1. Use the same model

« With dynamic allocation, total training time was shortened
by 4.70%
» Older task: shortened by 12.75%

800 mmm Total time
B Time for the older task

700 Bl Time for the younger task

)
[*)]
3

540.81

9]

o

o
1

Time(seconds
I
o
o

1-3 2-2 3-1
(No adjustment) (Adaptive adjustment)

13/16

Experiment 2: Use two different models

- The older task and younger task will use ResNet-50 and VGG-16 model,

separately
- Total training time is shortened by 7.11%, with the older task shortened by
11.20%
—— older task, 2-2, ResNet |<4é====== No Adjustment
2.5 older task, 3-1, ResNet |<€é====== \Vith Adjustment
—— younger task, 2-2, VGG |4é====== No Adjustment
20 —— younger task, 3-1, VGG |<€m====m \Vith Adjustment
) | I L
\
§ 1.5 .
— Y
1.0 '\..;
R
LL.‘ A
r". R
05 ,"L_\J:‘\
]
0.0 .
0 100 200 300 400 500 600

Training time (seconds)

14/16

Experiment 3: Training using multiple nodes

- A cluster with 2 nodes is used with 8 GPUs

- Criteria of convergence: when the loss rate reaches the level that one
model has been trained for 300 seconds individually using 8 GPUs

- The result is optimal in the scenario without adjustment
- Reason: overhead of network communication, limitation of memory ...

—— Older vs younger, 7 - 1
3.0 — Older vs younger, 6 - 2
—— Older vs younger, 5 -3
2.5 a4 No
!.‘-. Older vs younger, 4 - 4 | (=== Adjustment
it
2.0
0
S
S 15 |
1.0 I-‘L
0.0
0 100 200 300 400 500

Training time (seconds)

15/16

Summary

- With dynamic adjustment based on information of training
phases, the overall training time is shortened

- This adjustment is effective when using different models

- When training on multiple nodes, the training time is
Increased with dynamic adjustment

