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Introduction and motivation

* Computational power increase
Frontier 1.1 EFlop/s

* Large power consumption

Frontier 21.1 MW
® ~ 12000 households

* DoE limit on power budget for exascale machines (20 -30 MW)

* Techniques to reduce power consumption (DVFS, UFS, ...)
* Power capping
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Power capping

Processor power limit

Application
power con-
sumption

* A processor has a limited power budget (to avoid any damage)
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Power capping

Processor power limit

Power cap

Application
power con-
sumption

* A processor has a limited power budget (to avoid any damage)
* One can reduce the power budget:

* Per processor
* Per DRAM (not available on the used platform)
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Impact of power capping on application performance and

power consumption
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Impact of power capping on the power consumption and execution time of CG (from
the NAS Parallel Benchmarks) on a 4x16 cores Intel Xeon Gold. Default budget is 125 W.

* Applying power cap throughout the execution of an application
introduces an overhead
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Impact of power capping on application performance and

power consumption
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Impact of power capping on the power consumption and execution time of CG (from
the NAS Parallel Benchmarks) on a 4x16 cores Intel Xeon Gold. Default budget is 125 W.

* Applying power cap throughout the execution of an application
introduces an overhead

* Applying power capping only on the beginning of the application
provides power savings with no impact on performance
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DUFP: Dynamic power capping
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DUFP: Dynamic power capping
Oeo

Dynamic power capping (DUFP) algorithm

* Adapt the power cap to the application needs
* Handle a user-defined tolerated slowdown
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Dynamic power capping (DUFP) algorithm

* Adapt the power cap to the application needs

Monitor flops, bw

0i<0.02 or

* Handle a user-defined tolerated slowdown
flops>
slowdown

every period
_—
no
- ’_
yes lyes JV"O

[ Reset pcap ] [ Decrease pcap ] [ Increase pcap ]

phase no
change?
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DUFP: Dynamic power capping
ooe

Dynamic power capping

* Basic algorithm:
* Decrease power cap as long as the flops are within the tolerated
slowdown (increase otherwise)
* Reset the power cap whenever when the behavior of the application
changes

* Goals:
* Respect the user-defined tolerated slowdown
/A We may not be able to save energy (since power capping impacts
performance). As a consequence, the goal is to save power without
impact on energy consumption.
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DUFP: Dynamic power capping
[ 1o}

Uncore frequency scaling (UFS)

* Frequency of the L3 cache, the memory controllers, ...

* The default UFS does not always adapt to the application needs
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Uncore frequency scaling (UFS)

* Frequency of the L3 cache, the memory controllers, ...

* The default UFS does not always adapt to the application needs
— DUF: Dynamic uncore frequency scaling
* Adapts to the application characteristics (computations, memory
accesses)

* Allows for a user-defined tolerated slowdown
* Improvements compared to the default UFS:

— Power savings: by up to 15.6 % with no performance loss

— Power savings: by up to 7.46 % with less than 5 % performance loss

— Performance improvement: by up to 11.90 % under power capping
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DUFP: Dynamic power capping
oe

Dynamic power capping (DUFP) algorithm

* Adapt the power cap to the application needs

Monitor flops, bw

0i<0.02 or

* Handle a user-defined tolerated slowdown
flops>
slowdown

every period
_—
no
- ’_
yes lyes JV"O

[ Reset pcap ] [ Decrease pcap ] [ Increase pcap ]

phase no
change?
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DUFP: Dynamic power capping
oe

Dynamic power capping (DUFP) algorithm

* Adapt the power cap to the application needs

Monitor flops, bw

0i <0.02 or

* Handle a user-defined tolerated slowdown
flops>
slowdown

every period
_—
no
- "lllllI"_____
yes lyes JV"O

[ Reset pcap ] [ Decrease pcap ] [ Increase pcap ]

phase no
change?
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Experiments

Target architecture and measurement framework

* Grid'5000 Grenoble Yeti: Intel Xeon Gold 6130 (Skylake)

* 4 Processors
* 16 cores/ Processor
¢ Default power cap 125 W

* Measurement framework:

* PAPI library for all measurements (FLOPS/s, memory bandwidth,
processor power consumption, memory power consumption)
* Powercap library to set the power cap
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Experiments

Target applications and configurations

* Target applications
* Nas Parallel Benchmarks BT, CG, EP, FT, LU, MG, SP, UA
° HPL
* lammps

* Configurations:
* Period = 200ms
* Tolerated slowdown: 0 %, 5 %, 10 % and 20 %
* Measurement error: 2 %
* Uncore frequency scaling is also handled
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Experiments
[ Jele]e]

Impact on execution time, power and energy consumption
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Impact on memory power consumption
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Experiments
[e]ele] ]

Summary of the results

* Up to 5.56 % power savings with less than 1 % performance loss
(0.85 % slowdown)

* Up to 8.76 % power savings with less than 5 % performance loss
(2.32 % slowdown)

* Best energy savings with 0 % tolerated slowdown

* Best power savings with no energy loss with 10 % tolerated
slowdown

* Additional power savings with DUFP compared to DUF
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Related work

* Uncore frequency + Dynamic power capping
* Reinforcement learning to get the best energy consumption
* No user-defined tolerated slowdown

* Dynamic power capping
* DNPC: Dynamic power capping with user-defined tolerated
slowdown
* Performance model

* CoPPer: which power cap to apply to meet user-defined
performance?

* Performance model
* Application instrumentation
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Conclusion and future work

e Conclusion: Using power capping, can we reduce the power
consumed by an application with a limited impact on its energy
consumption?

* Power savings with no energy loss for all applications (up to 10 %
tolerated slowdown)
* Tolerated slowdown respected for most configurations

* Future work
* Manage CPU frequency
* Use learning techniques to get the best configuration
* Use dynamic power capping for dynamic CPU/GPU scheduling

CPU + GPU Imposed power budget
consumption

GPU consump-
tion

CPU consum-
tion
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