
Performance Analysis of
Multi-Containerized MD Simulations for
Low-Level Resource Allocation

Shingo OKUNO
Akira HIRAI
Naoto FUKUMOTO
(FUJITSU LIMITED)

© Fujitsu 2022

RADR 2022

0

Introduction

© Fujitsu 20221

Container-Based Virtualization

© Fujitsu 2022

Property What can we do for drug discovery?

Portability Distributing applications
while maintaining their configurations

Repeatability Obtaining the same analysis results
even on different systems

Low overhead Running performance-sensitive applications
such as molecular dynamics (MD) simulation Image provided by Kmckiern

(CC BY-SA 4.0)

2

⚫Increase in # of containers due to microservices
⚫Other users’ containers in multi-tenant cloud environments
⚫Ensemble simulation with multiple replicas

e.g.) Containerized replica-exchange MD (REMD) simulation

Ensemble Runs of Containers

© Fujitsu 2022

Exchange
attempt

Exchange
attempt

Exchange
attempt

𝑇 = 300[𝐾]

𝑇 = 350[𝐾]

𝑇 = 400[𝐾]

𝑇 = 450[𝐾]

Replica 4

Replica 3

Replica 2

Replica 1

3

Container Scheduling Problem 1

© Fujitsu 2022

How many containers should we run simultaneously?

Pe
rf

or
m

an
ce

of threads

Theoretical

Measured

Good speedup

Bad throughput

Large degree of parallelism

Good throughput

Bad speedup

Large number of containers

Container Threads

4

Container Scheduling Problem 2

© Fujitsu 2022

How should we allocate resources to each container?

Computing node
...

Reflect workload
characteristics

Allocate low-level resources

Memory-intensive

CPU-intensive

Disk-intensive

...

• Logical CPU cores
• CPU cache
• Memory bandwidth
• etc.

5

Solution to Container Scheduling Problem

© Fujitsu 2022

How many containers should
we run simultaneously?

How should we allocate
resources to each container?

Existing schedulers Heuristics approach No support for low-level resources

Our scheduler Automatic adjustment Low-level resource allocation
based on workload characteristics

6

⚫Discussion about low-level hardware resources for
container scheduling

⚫Evaluation with multi-containerized MD simulations
⚫Examining the effect of CPU resource allocation with

simultaneous multi-threading (SMT)

What We Did in This Research

© Fujitsu 20227

Concept of Our Scheduler

© Fujitsu 20228

Low-Level Hardware Resource Allocation

© Fujitsu 2022

2. Cache block control

3. Memory bandwidth control

1. CPU core control

Last-Level Cache (LLC)

Core 0 Core 1 Core 2 Core 3

Integrated Memory Controller

L1 Cache

L2 Cache

L1 Cache L1 Cache

L2 Cache L2 Cache

L1 Cache

L2 Cache

C
PU

M
em

or
y

• Increasing CPU frequency for parallel
applications with poor speedup

• Enabling simultaneous multi-threading
(SMT) for applications with low resource
contention

9

⚫Default resource types
⚫CPU (in number of cores)
⚫Memory (in bytes)

⚫Bin packing along with extended resources
Improvement in container aggregation rate
Difficult to consider workload characteristics

Implementation using Kubernetes Scheduler

© Fujitsu 2022

Need to develop own container scheduler

10

What We Need to Implement Our Scheduler

© Fujitsu 2022

Cluster

Node

Scheduler

Node Node...

➢ Profiling
➢ Resource control

➢ Algorithm design
➢ Algorithm implementation

• 0-1 integer programming
• Heuristics
• etc.

Container

11

Resource Control by CRI Resource Manager*

© Fujitsu 2022

Last-Level Cache (LLC)

Core 0 Core 1 Core 2 Core 3

Integrated Memory Controller

L1 Cache

L2 Cache

L1 Cache L1 Cache

L2 Cache L2 Cache

L1 Cache

L2 Cache

C
PU

M
em

or
y

Intel Resource Director Technology

Intel Speed Select Technology
• Power management control

• LLC control
• Memory bandwidth control

* https://github.com/intel/cri-resource-manager

12

https://github.com/intel/cri-resource-manager

Towards Algorithm Design/Implementation

© Fujitsu 2022

Workload
analysis Design Implemen-

tation Evaluation Refinement

⚫Application
⚫Multi-containerized MD simulation

⚫ Low-level hardware resource
⚫Simultaneous multi-threading (SMT)

Conducted preliminary experiments!

13

Experiment

© Fujitsu 202214

⚫CPU: Intel Xeon Gold 6148 2.4GHz 20-core × 2 sockets
⚫Hyper-Threading Technology enabled (80 logical cores in total)
⚫Turbo Boost Technology enabled (1.00–3.70GHz)
⚫CPU scaling governor: powersave

⚫Memory: DDR4-2666 16GB × 12 (96GB / socket)
⚫Software

⚫Container: Docker 20.10.8 with --cpuset-cpus --cpuset-mems
⚫Compiler: GCC 9.3.0 with -O3 -march=skylake-avx512
⚫Application: OpenMM 7.6.0 and GROMACS 2021.4
⚫Input: Amber20 Benchmark Suite (DHFR and STMV)

Evaluation Setup

© Fujitsu 202215

⚫Lower CPU percentage in parallel executions
⚫Many sequential processes
⚫Functions with high memory access (executed only in parallel exec.)
⚫Inter-socket memory accesses (# of threads > 20)

Performance of Single Container (OpenMM)

© Fujitsu 2022

0

0.2

0.4

0.6

0.8

1

1.2

0

5

10

15

20

25

0 10 20 30 40
Sp

e
e

d
u

p

Th
ro

u
gh

p
u

t
[n

s/
d

ay
]

of threads

DHFR

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

Sp
e

e
d

u
p

Th
ro

u
gh

p
u

t
[n

s/
d

ay
]

of threads

STMV
↑ Better! ↑ Better!

• CPU pct.: 59.2%
• Freq.: 1.25 GHz

• CPU pct.: 39.8%
• Freq.: 1.67 GHz

16

⚫Decrease in CPU frequency with increase in # of threads
⚫Turbo Boost Technology
⚫AVX-512 (Max 2.20GHz with 20 active cores per socket)

Performance of Single Container (GROMACS)

© Fujitsu 2022

0

2

4

6

8

10

12

14

0

20

40

60

80

100

120

140

0 10 20 30 40
Sp

ee
d

u
p

Th
ro

u
gh

p
u

t
[n

s/
d

ay
]

of threads

DHFR

0

4

8

12

16

20

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

Sp
ee

d
u

p

Th
ro

u
gh

p
u

t
[n

s/
d

ay
]

of threads

STMV
↑ Better! ↑ Better!

• CPU pct.: 99.9%
• Freq.: 2.21 GHz

• CPU pct.: 95.1%
• Freq.: 2.42 GHz

17

Performance of Multiple Containers (STMV)

© Fujitsu 2022

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

1.2

1×20 2×10 4×5 5×4 10×2 20×1
Sp

ee
d

u
p

En
se

m
b

le
 t

h
ro

u
gh

p
u

t
[n

s/
d

ay
]

of containers × # of threads/container

0

2

4

6

8

10

12

0

0.5

1

1.5

2

2.5

1×20 2×10 4×5 5×4 10×2 20×1

Sp
ee

d
u

p

En
se

m
b

le
 t

h
ro

u
gh

p
u

t
[n

s/
d

ay
]

of containers × # of threads/container

1.84GHz

2.10GHz

2.29GHz
2.41GHz

2.57GHz
2.87GHz

2.51GHz 2.53GHz 2.54GHz 2.53GHz 2.53GHz
2.49GHz

↑ Better! ↑ Better!

Throughput: 0.435 → 0.987 (× 2.27)
Speedup: 2.02 → 0.682 (× 0.338)

OpenMM
Throughput: 1.69 → 1.92 (× 1.14)
Speedup: 10.1 → 0.573 (× 0.0568)

GROMACS

18

Performance with SMT (STMV)

© Fujitsu 2022

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

1.2

1×10 1×20 2×10 4×5 10×2 20×1
Sp

ee
d

u
p

En
se

m
b

le
 t

h
ro

u
gh

p
u

t
[n

s/
d

ay
]

of containers × # of threads/container

0

2

4

6

8

10

12

0

0.5

1

1.5

2

2.5

1×10 1×20 2×10 4×5 10×2 20×1

Sp
ee

d
u

p

En
se

m
b

le
 t

h
ro

u
gh

p
u

t
[n

s/
d

ay
]

of containers × # of threads/container

↑ Better! ↑ Better!
(w/o SMT) (w/ SMT on 20 logical cores) (w/o SMT) (w/ SMT on 20 logical cores)

2.29GHz
1.84GHz

2.56GHz

2.76GHz
3.19GHz 3.22GHz

2.86GHz

2.51GHz

2.73GHz 2.77GHz 2.73GHz
2.67GHz

Throughput Speedup

vs. 1 cont. × 10 th. × 2.22 × 0.530

vs. 1 cont. × 20 th. × 1.71 × 0.487

OpenMM (10 containers × 2 threads)

Throughput Speedup

vs. 1 cont. × 10 th. × 1.32 × 0.0659

vs. 1 cont. × 20 th. × 0.875 × 0.0438

GROMACS (20 containers × 1 thread)

19

Conclusion

© Fujitsu 202220

⚫Scheduling strategies in multi-containerized MD simulations
⚫Large number of containers with fewer threads

⚫ Improving ensemble throughput while decreasing speedup
⚫CPU core allocation considering SMT

⚫OpenMM: 2.22-fold ensemble throughput with 0.530-fold speedup
⚫Variable CPU frequency

⚫ Implementing our scheduler...

Conclusion

© Fujitsu 2022

• How many containers and how many threads per container should we allocate?
• Which low-level resources should we allocate to reflect workload characteristics?

Container scheduling problem

21

© Fujitsu 2022

Thank you

