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Introduction
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Container-Based Virtualization
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Property What can we do for drug discovery?

Portability Distributing applications
while maintaining their configurations

Repeatability Obtaining the same analysis results
even on different systems

Low overhead Running performance-sensitive applications 
such as molecular dynamics (MD) simulation Image provided by Kmckiern

(CC BY-SA 4.0)
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⚫Increase in # of containers due to microservices
⚫Other users’ containers in multi-tenant cloud environments
⚫Ensemble simulation with multiple replicas

e.g.) Containerized replica-exchange MD (REMD) simulation

Ensemble Runs of Containers
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Container Scheduling Problem 1
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How many containers should we run simultaneously?
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# of threads

Theoretical

Measured

Good speedup

Bad throughput

Large degree of parallelism

Good throughput

Bad speedup

Large number of containers

Container Threads
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Container Scheduling Problem 2
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How should we allocate resources to each container?

Computing node
...

Reflect workload
characteristics

Allocate low-level resources

Memory-intensive

CPU-intensive

Disk-intensive

...

• Logical CPU cores
• CPU cache
• Memory bandwidth
• etc.
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Solution to Container Scheduling Problem
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How many containers should
we run simultaneously?

How should we allocate
resources to each container?

Existing schedulers Heuristics approach No support for low-level resources

Our scheduler Automatic adjustment Low-level resource allocation
based on workload characteristics
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⚫Discussion about low-level hardware resources for 
container scheduling

⚫Evaluation with multi-containerized MD simulations
⚫Examining the effect of CPU resource allocation with

simultaneous multi-threading (SMT)

What We Did in This Research
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Concept of Our Scheduler
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Low-Level Hardware Resource Allocation
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2. Cache block control

3. Memory bandwidth control

1. CPU core control

Last-Level Cache (LLC)
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• Increasing CPU frequency for parallel
applications with poor speedup

• Enabling simultaneous multi-threading
(SMT) for applications with low resource
contention
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⚫Default resource types
⚫CPU (in number of cores)
⚫Memory (in bytes)

⚫Bin packing along with extended resources
Improvement in container aggregation rate
Difficult to consider workload characteristics

Implementation using Kubernetes Scheduler
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Need to develop own container scheduler
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What We Need to Implement Our Scheduler
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Cluster

Node

Scheduler

Node Node...

➢ Profiling
➢ Resource control

➢ Algorithm design
➢ Algorithm implementation

• 0-1 integer programming
• Heuristics
• etc.

Container
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Resource Control by CRI Resource Manager*
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Intel Resource Director Technology

Intel Speed Select Technology
• Power management control

• LLC control
• Memory bandwidth control

* https://github.com/intel/cri-resource-manager
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Towards Algorithm Design/Implementation
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Workload
analysis Design Implemen-

tation Evaluation Refinement

⚫Application
⚫Multi-containerized MD simulation

⚫ Low-level hardware resource
⚫Simultaneous multi-threading (SMT)

Conducted preliminary experiments!
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Experiment
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⚫CPU: Intel Xeon Gold 6148 2.4GHz 20-core × 2 sockets
⚫Hyper-Threading Technology enabled (80 logical cores in total)
⚫Turbo Boost Technology enabled (1.00–3.70GHz)
⚫CPU scaling governor: powersave

⚫Memory: DDR4-2666 16GB × 12 (96GB / socket)
⚫Software

⚫Container: Docker 20.10.8 with --cpuset-cpus --cpuset-mems
⚫Compiler: GCC 9.3.0 with -O3 -march=skylake-avx512
⚫Application: OpenMM 7.6.0 and GROMACS 2021.4
⚫Input: Amber20 Benchmark Suite (DHFR and STMV) 

Evaluation Setup
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⚫Lower CPU percentage in parallel executions
⚫Many sequential processes
⚫Functions with high memory access (executed only in parallel exec.)
⚫Inter-socket memory accesses (# of threads > 20)

Performance of Single Container (OpenMM)
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• CPU pct.: 59.2%
• Freq.: 1.25 GHz

• CPU pct.: 39.8%
• Freq.: 1.67 GHz
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⚫Decrease in CPU frequency with increase in # of threads
⚫Turbo Boost Technology
⚫AVX-512 (Max 2.20GHz with 20 active cores per socket)

Performance of Single Container (GROMACS)

© Fujitsu 2022

0

2

4

6

8

10

12

14

0

20

40

60

80

100

120

140

0 10 20 30 40
Sp

ee
d

u
p

Th
ro

u
gh

p
u

t 
[n

s/
d

ay
]

# of threads

DHFR

0

4

8

12

16

20

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

Sp
ee

d
u

p

Th
ro

u
gh

p
u

t 
[n

s/
d

ay
]

# of threads

STMV
↑ Better! ↑ Better!

• CPU pct.: 99.9%
• Freq.: 2.21 GHz

• CPU pct.: 95.1%
• Freq.: 2.42 GHz

17



Performance of Multiple Containers (STMV)

© Fujitsu 2022

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

1.2

1×20 2×10 4×5 5×4 10×2 20×1
Sp

ee
d

u
p

En
se

m
b

le
 t

h
ro

u
gh

p
u

t 
[n

s/
d

ay
]

# of containers × # of threads/container

0

2

4

6

8

10

12

0

0.5

1

1.5

2

2.5

1×20 2×10 4×5 5×4 10×2 20×1

Sp
ee

d
u

p

En
se

m
b

le
 t

h
ro

u
gh

p
u

t 
[n

s/
d

ay
]

# of containers × # of threads/container

1.84GHz

2.10GHz

2.29GHz
2.41GHz

2.57GHz
2.87GHz

2.51GHz 2.53GHz 2.54GHz 2.53GHz 2.53GHz
2.49GHz

↑ Better! ↑ Better!

Throughput: 0.435 → 0.987 (× 2.27)
Speedup: 2.02 → 0.682 (× 0.338)

OpenMM
Throughput: 1.69 → 1.92 (× 1.14)
Speedup: 10.1 → 0.573 (× 0.0568)

GROMACS
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Performance with SMT (STMV)
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2.29GHz
1.84GHz

2.56GHz

2.76GHz
3.19GHz 3.22GHz

2.86GHz

2.51GHz

2.73GHz 2.77GHz 2.73GHz
2.67GHz

Throughput Speedup

vs. 1 cont. × 10 th. × 2.22 × 0.530

vs. 1 cont. × 20 th. × 1.71 × 0.487

OpenMM (10 containers × 2 threads)

Throughput Speedup

vs. 1 cont. × 10 th. × 1.32 × 0.0659

vs. 1 cont. × 20 th. × 0.875 × 0.0438

GROMACS (20 containers × 1 thread)
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Conclusion
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⚫Scheduling strategies in multi-containerized MD simulations
⚫Large number of containers with fewer threads

⚫ Improving ensemble throughput while decreasing speedup
⚫CPU core allocation considering SMT

⚫OpenMM: 2.22-fold ensemble throughput with 0.530-fold speedup
⚫Variable CPU frequency

⚫ Implementing our scheduler...

Conclusion
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• How many containers and how many threads per container should we allocate?
• Which low-level resources should we allocate to reflect workload characteristics?

Container scheduling problem
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Thank you


