
Chapter 6

Visual Servoing

6.1. Introduction

Robotic systems are more and more often equipped with exteroceptive sensors
which, by definition, provide information on the environment in which they operate.
These sensors are of course essential when a task has to be performed in an envi-
ronment that is not completely rigid or not perfectly well known. They also make it
possible to consider errors or inaccuracies that may occur in the manipulator robot’s
identification of geometric (and therefore kinematic) models. Aside from force sen-
sors, the purpose and applications of which were discussed in the previous chapter,
there are other sensors available that provide localization of the system in its envi-
ronment, or give it a generally local perception of its surroundings. To give a few
examples, road marking, passive beacon or radio-based systems, as well as GPS, all
make it possible to localize a mobile robot, by determining either its absolute position
or its movement. When it comes to perception, proximity sensors provide informa-
tion on the distances to the closest objects. They are therefore particularly well suited
for obstacle avoiding tasks. As for computer-assisted vision and telemetry systems,
they have a rather wide range of applications since they can be used for localization,
navigation, and exploration.

For a long time 3-D reconstruction was considered an unavoidable, independent
module, a prerequisite to any movement generating module for a robot in a not per-
fectly well known environment. In computer-assisted vision, this state of things, which
used to be justified by the prohibitive computation time required by image process-
ing algorithms, led to a number of successful studies, notably in the field of 3-D
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vision [FAU 93, MA 03]. The algorithmic and technological progress achieved over
the past 15 years has made it possible to more closely intertwine the aspects of per-
ception with those of action, by directly integrating the measurements provided by a
vision system into closed-loop control laws that deal with the extracted visual infor-
mation. This approach, known as visual servoing, shares some aspects with the studies
on sensory control and is the focus of this chapter.

Visual servoing techniques consist of using information provided by one or sev-
eral cameras, in order to control the movements of a robotic system. This allows for
a wide variety of tasks designed to locate a system with respect to its environment,
or to follow mobile objects, by controlling one or as many as all of the system’s
n degrees of freedom. Whatever the sensor’s configuration, which can range from
a camera mounted on the robot’s effector to several scene cameras, the objective is
to select as best as possible a set of k visual data, in order to control the m desired
degrees of freedom, and to develop a control law so as to make these data s(t) reach
a desired value s∗ that defines when a task is suitably achieved. It is also possible to
track a trajectory s∗(t). The idea of control therefore amounts to regulating (that is to
say making a value reach zero and maintaing it there) the error vector s(t)− s∗(t).
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Figure 6.1. 2-D and 3-D visual servoing: 2-D visual servoing is used to bring the camera’s
frame of reference from Rc to Rc∗ , based on measurements s extracted directly from the image
(left). With 3-D visual servoing, the measurements s represent 3-D data estimated after an image
processing phase (right).

With a vision sensor, which is supposed to provide 2-D measurements, the nature
of the potential information is extremely rich, since it is possible to imagine visual ser-
voing of both 2-D data, such as the coordinates of characteristic points in the image for
example, and 3-D data, provided by a positioning module operating on the extracted
2-D measurements (see Figure 6.1). This wide range of possibilities is the reason
behind the major difficulty in visual servoing, that is to build and select as best as pos-
sible the visual data needed for a suitable behavior of the system, based on all the avail-
able measurements. A number of qualities are important: local or even global stability,
robust behavior when facing measurement or modeling errors, absence of singularities
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and local minima, suitable trajectories for the robot, but also for the visual information
in the image, and finally a maximum decoupling between the visual information and
the controlled degrees of freedom.

To study the behavior of the resulting system, a model is necessary to describe the
relation between the visual data s(t) that were chosen and the control variables. This
essential phase of model design will now be described. However, in this chapter we
will not be dealing with aspects of image processing, crucial to extracting useful 2-D
data from a digital image and following them at each iteration of the control law. For
readers interested in knowing more, we suggest turning to works specializing in this
field [VIN 00, KRA 05].

6.2. Modeling visual data

6.2.1. The interaction matrix

In order to be taken into account in a visual servoing diagram, a set s of k visual
data simply needs to be defined by an application differentiable from SE3 into Rk:

s = s(p(t)) [6.1]

where p(t), an element of the space of reference frames and rigid bodies SE3,
describes the pose at the instant t between the camera and its environment. Hence
only the movements of the camera, or of the objects it perceives, can modify the
value of a visual datum.

The differential of s allows us to see how the variations in the visual data are
related to the relative movements between the camera and the scene, since by differ-
entiating [6.1], we get:

ṡ =
∂s
∂p

ṗ = Ls v [6.2]

where:
– Ls is a k × 6 matrix, referred to as the interaction matrix associated with s;
– v is the relative kinematic torsor between the camera and the scene, expressed in

the camera’s frame of reference Rc in its origin C. More accurately, if vc and vo are,
respectively, the kinematic torsors of the camera and of the scene it perceives, both
expressed in Rc and in C, then let:

v = vc − vo [6.3]
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From now on, except if noted otherwise, we will write, incorrectly, that a torsor
expressed in a frame of reference has its value given in the origin of this frame.
Also, we will denote by υ the translation speed at the origin of the coordinate sys-
tem, and by ω the rotation speed, such that v = (υ,ω). If oRc describes the rotation
matrix from the frame of reference Ro bound to the object to Rc, we have by defini-
tion [SAM 91]:

[ω]× = oṘc
oR>

c = −cṘo
cR>

o = cRo
oṘc [6.4]

where [ω]× is the antisymmetric matrix of the vector preproduct associated with ω.

COMMENT.– In more formal terms [SAM 91], the transpose of the interaction matrix
can be defined as the matrix representation of the subspace generated by a family of
k torsors expressed in Rc. This is due to the fact that each component of s can be
decomposed as the product of two torsors, one called the interaction torsor, and the
other being of course the kinematic torsor. We will see the practical advantage of this
definition in section 6.3.3.1.

6.2.2. Mounted camera

If we consider a camera mounted on the effector of a manipulator robot observing
a fixed object, the relation between ṡ and the speed of the robot’s joint variables q̇ can
easily be obtained:

ṡ = Jsq̇ = Ls
cVn

nJn(q) q̇ [6.5]

where Js = Ls
cVn

nJn is the Jacobian of the visual data and where:
– nJn(q) is the robot’s Jacobian expressed in the frame of reference Rn of its

end-effector [KHAL 02];
– cVn is the kinematic torsor’s transformation matrix from the camera’s frame Rc

to frame Rn. This matrix, which remains constant if the camera is rigidly fixed to the
robot’s end-effector, is given by [KHAL 02]:

cVn =
[

cRn [ctn]×cRn

03
cRn

]
[6.6]

where cRn and ctn are, respectively, the rotation matrix and the translation vector
from frame Rc to frame Rn. The elements of the transformation matrix from the cam-
era’s frame to the end-effector’s frame can be estimated quite accurately by first using
a technique called hand-eye calibration [TSA 89, HOR 95]. Visual servoing tech-
niques are usually rather robust in admitting important modeling errors, both in this
transformation matrix [ESP 93, MAL 02] and in the robot’s Jacobian.
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More generally, if a mounted camera is observing a moving object, the differential
of s is then given by:

ṡ = Ls
cVn

nJn(q) q̇ +
∂s
∂t

[6.7]

where the term ∂s
∂t represents the variation of s caused by the object’s own movement

(which is usually not known). In the highly unlikely event that the object’s movement
is known, and given for example by the kinematic torsor vo in Rc, in the end we get:

ṡ = Ls
cVn

nJn(q) q̇− Lsvo [6.8]

6.2.3. Scene camera

Likewise, if we now consider a scene camera observing the end-effector of a
manipulator robot, the variation of the visual data rigidly related to this end-effector
is expressed according to the speed of the joint coordinates:

ṡ = −Ls
cVn

nJn(q) q̇ +
∂s
∂t

[6.9]

where ∂s
∂t now describes the variations of s caused by a possible movement of the

scene camera.

COMMENT.– Notice the difference in signs between Equations [6.5] and [6.9]. This
difference is of course caused by the configuration change of the sensor with respect
to the control variables (see Figure 6.2).

Whether the scene camera is fixed or mobile, the matrix cVn is now variable and
has to be estimated at each iteration, which is usually done using a 3-D positioning
technique (see section 6.2.5.1). If the camera is fixed, it is therefore better to use one
of the following relations:

ṡ = −Ls
cV∅

∅Vn
nJn(q) q̇ [6.10]

= −Ls
cV∅

[
I3 [∅tn]×
03 I3

]
∅Jn(q) q̇ [6.11]
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where ∅Jn(q) is the robot’s Jacobian expressed in its basic frame of reference and
where the values of ∅Vn and ∅tn are provided by the robot’s direct geometric model.
This is possible because the transformation matrix cV∅ is then constant and only has
to be estimated once beforehand, usually crudely.

Figure 6.2. Difference in configurations (top) and in effects produced
in the image acquired by the camera (bottom)

In the literature [HAS 93a, HUT 96], most studies are set in the context of a
mounted sensor. We can however cite [ALL 93, NEL 94a, HAG 95, KEL 96, CIP 97,
HOR 98, RUF 99] in which one or several scene cameras are used.

In any case, the interaction matrix plays an essential role and we will now give its
analytical form for a set of visual data of geometric nature. From now on, all the neces-
sary quantities (coordinates and speeds of points, kinematic torsor, etc.) are expressed
in the camera’s frame shown in Figure 6.3.

6.2.4. 2-D data interaction matrix

6.2.4.1. Interaction matrix of a 2-D point

The typical mathematical model for a camera is defined by a perspective projec-
tion, such that any point M with coordinates X = (X, Y, Z) is projected onto the
image plane in a point m with coordinates x = (x, y) with:

x = X/Z , y = Y/Z [6.12]
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Figure 6.3. Camera model

By differentiating this equation, we get the variations in the image of the coordi-
nates x and y of m with respect to the speed Ẋ of the coordinates of point M :

ẋ =
[

1/Z 0 −X/Z2

0 1/Z −Y/Z2

]
Ẋ [6.13]

Whatever configuration is chosen (mounted or scene camera, fixed or mobile
point M ), the speed Ẋ of M according to the kinematic torsor v between the camera
and its environment is given by the fundamental kinematics equation:

Ẋ = −υ − ω ×X = −υ + [X]× ω =
[
−I3 [X]×

]
v [6.14]

Equation [6.13] can then be simplifed using Equation [6.12], written in the form:

ẋ = Lx(x, Z) v [6.15]

where:

Lx(x, Z) =
[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
[6.16]

Notice that the terms induced by rotation movements only depend on the mea-
surements of x and y in the image. On the other hand, terms induced by translation
movements are inversely proportional to the depth of the 3-D point in question. This
effect occurs for all the visual data that can be defined in the image (and describes the
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classic ambiguity in computer-assisted vision between the amplitude of a translation
movement and the depth of objects). In visual servoing, it is therefore necessary to
insert a 3-D datum, even though it is known beforehand, whenever trying to control a
robot’s degrees of freedom that imply translation movements.

Image processing algorithms provide data expressed in pixels. If we ignore
strongly non-linear effects of distortion, due for example to the use of short focal
length lenses, the variable change when switching from the coordinates xp = (xp, yp)
of a point, expressed in pixels, to the coordinates x of this same point, but expressed
in meters, is given by:

x = (xp − xc)/fx , y = (yp − yc)/fy [6.17]

where (xc, yc) represents the main point’s coordinates in the image and where
fx = f/lx and fy = f/ly are the ratios between the focal length f of the lens
and the dimensions lx and ly of a pixel. These parameters, referred to as the
intrinsic parameters of the camera, can be estimated beforehand, during a calibration
phase [TSA 87, BEY 92, ZHA 00], but as with the elements of the hand-eye matrix,
crude approximations are usually sufficient to maintain the stability of visual servoing
systems [ESP 93, MAL 99, MAL 02, DEN 02].

It is also possible to calculate the interaction matrix associated with the coordinates
of a point directly expressed in pixels. Using the reciprocal of the variable change
in [6.17], given by:

xp = xc + fxx , yp = yc + fyy [6.18]

we immediately get:

Lxp
=
[

fx 0
0 fy

]
Lx [6.19]

where the set of terms contained in Lx, except of course for the depth Z, can be
expressed as functions of the intrinsic parameters and coordinates xp using [6.17]. If
need be, the same can be done for the visual data seen later on, working with data
expressed in pixels. The main advantage of having an analytical form of the interac-
tion matrix that explicitly depends on the intrinsic parameters, is that it then becomes
possible to study how sensitive visual servoing systems are to errors made in the esti-
mation or approximation of these parameters.
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Finally, we should mention the studies in projective geometry described in
[RUF 99] which led to a direct modeling of the Jacobian matrix Js such that
ṡ = Jsq̇, in the case where s is comprised of the coordinates of a point located on the
end-effector of a robot and observed by two scene cameras: s = (xg, yg, xd, yd). The
advantage of such an approach is that it is no longer necessary to know the Jacobian,
and hence the geometric model, of the robot being used.

If we now consider a camera equipped with a controllable zoom, thus providing
the system with an additional degree of freedom, we get just as simply, from [6.18]:

[
ẋp

ẏp

]
= Lxp v +

[
(xp − xc)/f
(yp − yc)/f

]
ḟ [6.20]

For purely technological reasons (because for most zooms, position can be con-
trolled, not speed), few studies have used this function, even though it provides an
interesting redundancy with respect to the translation movement along the optical axis.
We can still mention [HOS 95a, BEN 03].

6.2.4.2. Interaction matrix of a configurable 2-D geometric primitive

It is also possible to calculate the interaction matrix associated with visual data
constructed from configurable geometric primitives [ESP 92]. This is done simply by
defining the equations that represent:

– the primitive’s nature and configuration in the scene:

h(X, Y, Z, P1, ..., Pn) = 0 [6.21]

– its projection onto the image plane:

g(x, y, p1, ..., pm) = 0 [6.22]

– the relation between the 3-D primitive and its image (referred to as the limbo
surface in the case of a volumetric primitive, see Figure 6.4):

1/Z = µ(x, y, P1, ..., Pl) = 0 [6.23]

As an example, if a line in space is represented by the intersection of the two
following planes:

h(X, Y, Z,A1, ..., C2) =
{

h1 = A1X + B1Y + C1Z + D1 = 0
h2 = A2X + B2Y + C2Z = 0 [6.24]
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we immediately obtain, using the equations of perspective projection [6.12]:
– the function µ from h1:

1/Z = Ax + By + C [6.25]

with A = −A1/D1, B = −B1/D1 and C = −C1/D1;
– the equation of the 2-D line, denoted by D, resulting from the projection onto

the image of the 3-D line, from h2:

ax + by + c = 0 with a = A2, b = B2, c = C2 [6.26]
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Figure 6.4. Projection of the primitive onto the image,
and limbo surface in the case of cylinder

Because the choice of parameters (a, b, c) is not minimal, it is preferable to choose
the (ρ, θ) representation defined by:

g(x, y, ρ, θ) = x cos θ + y sin θ − ρ = 0 [6.27]

where θ = arctan (b/a) and ρ = −c/
√

a2 + b2 (see Figure 6.5).

If we differentiate Equation [6.27], which corresponds to the hypothesis that the
image of a line remains a line whatever the camera’s motion, we get:

ρ̇ + (x sin θ − y cos θ) θ̇ = ẋ cos θ + ẏ sin θ , ∀(x, y) ∈ D [6.28]
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Figure 6.5. (ρ, θ) representation of the 2-D lines

Based on Equation [6.27], x is written according to y if cos θ 6= 0 (or y according
to x if that is not the case) and Equation [6.28] can then be written, using [6.15]
and [6.25]:

(ρ̇ + ρ tan θ θ̇) + y (−θ̇/ cos θ) = K1 v + y K2 v , ∀y ∈ R [6.29]

with:

K1 = [ λ1 cos θ λ1 sin θ −λ1ρ sin θ − cos θ − ρ2/ cos θ −ρ tan θ ]
K2 = [ λ2 cos θ λ2 sin θ −λ2ρ ρ ρ tan θ 1/ cos θ ]

where λ1 = −Aρ/ cos θ − C and λ2 = A tan θ −B.

Immediately, we infer that:

{
ρ̇ = (K1 + ρ sin θ K2) v
θ̇ = − cos θ K2 v

[6.30]

hence:

Lρ = [ λρ cos θ λρ sin θ −λρρ (1 + ρ2) sin θ −(1 + ρ2) cos θ 0 ]
Lθ = [ λθ cos θ λθ sin θ −λθρ −ρ cos θ −ρ sin θ −1 ] [6.31]

with λρ = −Aρ cos θ −Bρ sin θ − C and λθ = −A sin θ + B cos θ.
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The same result can be obtained by applying Equation [6.28] to two points
of D, for example those with coordinates (ρ cos θ, ρ sin θ) and (ρ cos θ + sin θ,
ρ sin θ − cos θ).

Results for more complex primitives (circles, spheres, and cylinders) are given
in [CHA 93a], making it possible to use 2-D visual data associated with these prim-
itives in visual servoing. It is also possible to infer the interaction matrix associated
with data defined from several primitives (such as the orientation of a line segment or
the distance from a point to a line, for example). The drawback, however, is that it is
only possible to work on environments where such geometric primitives exist (hence
the more frequent use of characteristic points).

6.2.4.3. Interaction matrix for complex 2-D shapes

Recent studies have made it possible to establish the analytical form of the inter-
action matrix associated with visual data representing the projection onto the image
of objects with more complex shapes. In [COLO 99, DRU 99], the six terms that cor-
respond to the affine part of the transformation between the image of a plane object
in its current position and the image of the same object in the desired position are
considered. More precisely, if (x, y) and (x∗, y∗) are the coordinates of a given point
on the object in the current image and the desired image, respectively, then we assume
that there exists a set of parameters θ = (a1, b1, c1, a2, b2, c2) such that the relation:

{
x = a1 x∗ + b1 y∗ + c1

y = a2 x∗ + b2 y∗ + c2
[6.32]

is valid for all points of the object. This hypothesis is unfortunately not verified for
a camera described by a perspective projection model. Additionally, the interaction
matrix associated with θ shows a loss in rank (from 6 to 4) when the object’s plane is
parallel to the image plane.

Furthermore, if we calculate the Fourier series expansion for the polar signa-
ture ρ(θ) of the contour points of an object in the image (defined such that the coordi-
nates x and y of a contour point are written: x = xg +ρ(θ) cos θ , y = yg +ρ(θ) sin θ
where xg and yg are the coordinates of the object’s center of gravity), it is possible to
calculate the interaction matrix associated with the terms of that series [COL 00]. The
resulting analytical form, however, is not very inviting.

Another possibility is to calculate the interaction matrix associated with the
moments mij of an object [CHA 04]. Moments are defined by:

mij =
∫ ∫

D
xiyj dx dy [6.33]
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where D is the area occupied by the object in the image and where i + j is the order
of the moment. If we assume that the object considered is plane or has a plane limbo
surface with equation 1/Z = Ax+By+C, we obtain, for the area a (= m00) and the
coordinates xg (= m10/m00) and yg (= m01/m00) of the object’s center of gravity:

La = [ −aA −aB a(3/Zg − C) 3ayg −3axg 0 [
Lxg = [−1/Zg 0 xg/Zg + ε1 xgyg + 4n11 −(1 + x2

g + 4n20) yg ]
Lyg = [ 0 −1/Zg yg/Zg + ε2 1 + y2

g + 4n02 −xgyg − 4n11 −xg ]
[6.34]

with 1/Zg = Axg + Byg + C, ε1 = 4(An20 + Bn11), ε2 = 4(An11 + Bn02) and
where n20, n02 and n11 are the second order normalized centered moments defined by:

nij = µij/a with


µ20 = m20 − ax2

g

µ02 = m02 − ay2
g

µ11 = m11 − axgyg

[6.35]

Note that the speed ȧ is equal to zero for any movement other than the expected
translation movements along the camera’s optical axis if the object is centered and
parallel to the image plane (A = B = xg = yg = 0). This makes area particularly
interesting for controlling this degree of freedom, because of its relative decoupling
compared to the other degrees of freedom.

Notice also that the results obtained for the coordinates of the object’s center of
gravity encompass those given in [6.15] for a purely punctual object, since for a point,
we have n20 = n11 = n02 = 0 and we can assume that A = B = 0 in [6.34] to again
obtain exactly [6.15].

More generally, the interaction matrix associated with a moment mij is given by:

Lmij =
[
mvx mvy mvz mwx mwy mwz

]
[6.36]

where:



mvx = −i(Amij + Bmi−1,j+1 + Cmi−1,j)−Amij

mvy = −j(Ami+1,j−1 + Bmij + Cmi,j−1)−Bmij

mvz = (i + j + 3)(Ami+1,j + Bmi,j+1 + Cmij)− Cmij

mwx = (i + j + 3)mi,j+1 + jmi,j−1

mwy = −(i + j + 3)mi+1,j − imi−1,j

mwz = imi−1,j+1 − jmi+1,j−1
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For centered moments defined by:

µij =
∫ ∫

D
(x− xg)i(y − yg)j dx dy [6.37]

we get:

Lµij =
[

µvx µvy µvz µwx µwy µwz

]
[6.38]

with:



µvx = −(i + 1)Aµij − iBµi−1,j+1

µvy = −jAµi+1,j−1 − (j + 1)Bµij

µvz = −Aµwy + Bµwx + (i + j + 2)Cµij

µwx = (i + j + 3)µi,j+1 + ixgµi−1,j+1

+(i + 2j + 3)ygµij − 4in11µi−1,j − 4jn02µi,j−1

µwy = −(i + j + 3)µi+1,j − (2i + j + 3)xgµij

−jygµi+1,j−1 + 4in20µi−1,j + 4jn11µi,j−1

µwz = iµi−1,j+1 − jµi+1,j−1

The numerical value of the interaction matrix associated with a moment of
order i + j can thus be calculated from the measurement of moments with orders at
most i + j + 1, which is convenient. The values A,B, C characterizing the plane’s
configuration must also be available (or at least an approximation of these values) in
order to calculate the translation terms. As we have already said, this property is true
for any generic visual datum defined in the image.

Based on the moments, it is possible to determine relevant geometric information,
such as, as we have seen before, the area and the center of gravity of an object. The
main orientation is obtained from the second order centered moments:

α =
1
2

arctan (
2µ11

µ20 − µ02
) [6.39]

and we easily get, using [6.38]:

Lα =
[

αvx αvy αvz αwx αwy −1
]

[6.40]
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where:


αvx = aA + bB
αvy = −cA− aB
αvz = −Aαwy + Bαwx

αwx = −bxg + ayg + d
αwy = axg − cyg + e

and:



a = µ11(µ20 + µ02)/∆
b = [2µ2

11 + µ02(µ02 − µ20)]/∆
c = [2µ2

11 + µ20(µ20 − µ02)]/∆
d = 5[µ12(µ20 − µ02) + µ11(µ03 − µ21)]/∆
e = 5[µ21(µ02 − µ20) + µ11(µ30 − µ12)]/∆
∆ = (µ20 − µ02)2 + 4µ2

11

We should point out that translation movements leave α unchanged when the
object’s plane is parallel to the image plane (αvx = αvy = αvz = 0 if A = B = 0).
Note also the direct relation between the variation of α and the rotation movement
about the optical axis ωz , an indication, as we could have expected, that α is a good
visual datum for controlling this degree of freedom.

One of the different possible strategies in visual servoing consists of directly using
all of the measurements available in the image. We then have redundant visual data
(that is, in higher numbers than the number of degrees of freedom we wish to con-
trol), and as we will see in section 6.3.2.2, servoing stability can only be demon-
strated in the vicinity of the convergence position. Another, more promising strat-
egy consists of determining complementary visual data, by construction or selec-
tion [COR 01, IWA 05, TAH 03], or even by finding a different way of expressing
the perspective projection model (for example a spherical projection [HAM 02]). The
case of an object’s surface and orientation discussed earlier are simple and natural
examples of such a determination. However, much remains to be done in this field.

6.2.4.4. Interaction matrix by learning or estimation

The use of the polar signature or of the moments allows us to consider objects with
truly complex shapes, but requires a space segmentation phase in the image processing
part that can turn out to be extremely difficult in textured environments. To avoid this
segmentation phase and be able to process any kind of image, it is possible to conduct
a principal component analysis of the desired image and select the principal eigenvec-
tors [NAY 96, DEG 97]. The coefficients of this decomposition form the set s of the
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visual data. The analytical form of the associated interaction matrix is then unknown
(since it is so difficult to obtain) and the servoing is based on a purely digital estimate
provided by a learning technique. This technique consists of generating movements
for the different degrees of freedom available and to measure the corresponding vari-
ation observed in the image.

Techniques to estimate the interaction matrix have also been used on geomet-
ric visual data such as those described in the previous sections. They are all based
on the same idea and are performed either offline, by learning [WEI 84, RUF 99,
LAP 04], possibly by using a neural network [SUH 93, WEL 96], or online during
the servoing [KIN 94, HOS 94, CHA 96, JAG 97, PIE 04]. These studies fall into
two categories, those based on purely digital estimates of the terms of the interac-
tion matrix [WEI 84, SUH 93, WEL 96, HOS 94, JAG 97, PIE 04] or of its pseudoin-
verse directly [LAP 04], and those that estimate unkown parameters involved with this
matrix, such as for example the structure of objects or the camera’s intrinsic param-
eters [KIN 94, CHA 96, RUF 99]. The first case is very attractive in practice since it
allows us to avoid any modeling phase. The resulting drawback is that it is impos-
sible to demonstrate the system’s stability in the presence of inevitable estimation
errors. The second option is therefore more satisfactory theoretically speaking, but
since it require an analytical estimation of the interaction matrix beforehand, it cannot
be applied for now to servoing diagrams based on visual data as complex as those
resulting from a principal component analysis of the image.

6.2.5. 3-D data interaction matrix

As has been mentioned before, it is also possible to choose visual data no longer
expressed directly from the image, but resulting from a reconstruction phase or a
3-D localization phase [WIL 96, MART 97]. These 3-D data are obtained either by
a simple triangulation if a calibrated stereoscopic vision system is available, or, in
the case of a monocular sensor, by dynamic vision or with a pose calculation method.
Dynamic vision techniques rely on the measurement of the camera’s movement and of
the resulting movement in the image. They are usually rather sensitive to measurement
errors [SMI 94, CHA 96]. We will now briefly describe pose calculation techniques,
because they are the most commonly used in 3-D visual servoing.

6.2.5.1. Pose calculation

There are many methods for estimating a camera’s pose with respect to an object
using an image of this object. They rely on prior knowledge of a 3-D model for
the object and of the camera’s calibration parameters. More precisely, for an image
acquired at instant t, they provide an estimate p̂(t) of the real pose p(t) between the
camera’s frame and the object’s frame based on the measurements x(t) extracted from
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the image, the camera’s intrinsic parameters and the object’s 3-D model, represented
for example by the set X of the 3-D coordinates of the points that comprise it:

p̂(t) = p̂(x(t), xc, yc, fx, fy,X) [6.41]

Most of the time, the geometric primitives behind the measurements x(t) are
points [HOR 89, HAR 89, DEM 95], line segments [LOW 87, DHO 89], even con-
ics [SAF 92, MA 93], or also cylindrical objects [DHO 90]. But very few methods
combine different kinds of primitives (see however [PHO 95] for the combined use of
points and lines).

The methods described in the literature are either purely geometric
[HOR 89, DHO 89], digital and iterative linear [DEM 95] or purely non-linear
[LOW 87]. Except for very peculiar cases [HOR 89], no analytical solution to the
inverse problem is available.

We should point out that in the case of an error in the calibration parameters or
in the object’s model, the estimate p̂(t) will be biased and, because of the absence
of an analytical solution, it is unfortunately impossible to determine the value of this
bias. The same goes for finding the interaction matrix associated with any datum built
from p̂(t). This is because, based on [6.41]:

˙̂p(t) =
∂p̂
∂x

ẋ =
∂p̂
∂x

Lx v [6.42]

hence:

Lp̂ =
∂p̂
∂x

Lx [6.43]

The second term of this two matrix product, in other words the interaction matrix
associated with x, is therefore known if x is comprised of geometric primitives such
as points or line segments. On the other hand, the first term, ∂p̂

∂x , which represents the
variation of the estimate of p̂ according to a variation of the measurements x in the
image, is unknown. We can only note that it is directly related to the estimation method
and depends once again on the camera’s intrinsic parameters and the object’s 3-D
model. This is why we will assume from now on that the estimate of p̂(t) is perfect,
which is the case under the (strong) hypotheses that the camera is perfectly calibrated,
that the 3-D model of the object is perfectly well known, that the measurements x(t)
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are not tainted with any errors, and that the estimation method is free of any digital
instability.

The strongest hypothesis involves the estimation’s assumed stability in regards to
measurement errors, because if we consider for example four coplanar points, theo-
retically there exists only one solution to the localization problem [HOR 89], but a
very small variation of the positions of the four points in the image can cause a very
large variation in the estimate of p̂ (hence the matrix (∂p̂

∂x ) is very poorly conditioned).
Such an effect is illustrated by Figure 6.6. In practice, this effect decreases when con-
sidering a large number of points, or non-coplanar points, but there are currently no
theoretical results available on the sensitivity of the estimation methods and of the
measurements to choose, regarding what kind to use, but also how they are arranged
in the image and the 3-D space.

Figure 6.6. Example of two distinct positions of the camera with respect
to the object (top) that provide similar images of this object (bottom)

Based on p̂(t), and under the hypotheses mentioned previously, such as assuming
a perfect estimate for p̂(t) (p̂(t) = p(t)), we have at our disposal the rotation cRo

between the camera’s frame in its current position Rc and the frame Ro attached to
the object, as well as the translation cto between theses two frames. We can then infer
the position in Rc of any point attached to the object. If, additionally, in the context
of a mounted camera, the pose between the camera’s frame at its desired position Rc∗

and the object’s frame is known, then we can also infer the movement necessary to
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go from Rc and Rc∗ . With a fixed scene camera, the same is true of course of an
object attached to the robot’s end-effector between its current position and its desired
position.

We will now give the interaction matrix associated with the minimal representa-
tion θu of an arbitrary rotation with angle θ about an axis u, then the one associated
with the coordinates of a 3-D point.

6.2.5.2. Interaction matrix associated with θu

Remember, first of all, that the θu representation is obtained in a unique man-
ner from the coefficients rij(i=1..3,j=1..3) of a rotation matrix R using the following
equation [KHAL 02]:

θu =
1

2 sincθ

 r32 − r23

r13 − r31

r21 − r12

 [6.44]

where θ = arccos((r11+r22+r33−1)/2)) and where the sine cardinal sincθ, defined
by sin θ = θ sincθ, is a function C∞ equal to zero in (2n + 1)π, ∀n ∈ Z. For θ = π,
the only case not taken into account by [6.44], u is the eigenvector of R associated
with the eigenvalue 1.

In the case of a mounted camera, it is possible to use for visual servoing the vec-
tor θu to represent the rotation c∗Rc between Rc∗ and Rc. If the matrices c∗Rn∗

and cRn are identical, which is usually the case, we can also consider the vector θu
associated with the rotation n∗Rn. Likewise, with a scene camera, the vector θu can
be used to represent either the rotation o∗Ro between the desired frame and the cur-
rent frame of the object connected to the effector, either the rotation n∗Rn if the
matrices o∗Rn∗ and oRn are identical (which is also usually the case).

In all of the cases mentioned above, the interaction matrix associated with θu is
given by [MAL 99]:

Lθu =
[

03 Lω

]
[6.45]

with:

Lω = I3 −
θ

2
[u]× + (1− sincθ

sinc2 θ
2

) [u]2× [6.46]
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The θu representation is therefore particularly interesting since Lω is singular only
for θ = 2π. Furthermore, we have:

L−1
ω = I3 +

θ

2
sinc2 θ

2
[u]× + (1− sincθ)[u]2× [6.47]

which guarantees the following, rather convenient property:

L−1
ω θu = θu [6.48]

If you would rather be considering the rotations cRc∗ , nRn∗ or oRo∗ , we imme-
diately infer from [6.45] that:

Lθu =
[

03 −Lω

]
[6.49]

and we now have:

L−1
ω θu = −θu [6.50]

Note that it is not possible to directly take into account the vector θu associated
with the rotation cRo and to base the argument on the difference between θu and θ∗u∗

(where θ∗u∗ represents the desired rotation c∗Ro). This is because θu − θ∗u∗ does
not represent a distance in the space SO3 of rotations [SAM 91].

6.2.5.3. Interaction matrix associated with a 3-D point

Using the fundamental kinematics equation mentioned in [6.14], we immediately
get for any point with coordinates X connected to the object:

LX =
[
−I3 [X]×

]
[6.51]

The points taken into account can be characteristic points of the object [MART 96,
SCH 04], or also the origin of Ro (we then have X = cto).
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Thus, with a mounted camera, if we are interested in the movement it must
achieve, we can also consider the origin of Rc∗ (we then have X = ctc∗ and
X∗ = 0) [MART 97]. In that case, it is even better to consider the position of the
origin of the camera’s frame expressed in a frame attached to the object, such as Ro,
Rc∗ , or even R∅ if the object is fixed (see Figure 6.7) [WIL 96].
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Figure 6.7. Possible 3-D points with a mounted camera

For example, if we choose Ro, we have:

otc = −cR>
o

cto = −oRc
cto [6.52]

By differentiating this equation, we get:

oṫc = −oṘc
cto − oRc

cṫo

= −oRc (cRo
oṘc

cto + cṫo)

meaning that, using [6.4] and [6.51]:

oṫc = −oRc ([ω]×cto − υ + [cto]×ω)

= oRcυ

We therefore have:

Lotc =
[

oRc 03

]
[6.53]
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which is independent of the camera’s rotation movements. Likewise, if we choose
c∗tc, we get:

Lc∗tc
=
[

c∗Rc 03

]
[6.54]

and we will then have c∗tc
∗

= 0.

With a scene camera (see Figure 6.8), and for the same decoupling properties,
it is better to consider the position of the origin of either the frame Ro or Rn, and to
express the kinematic torsor in this origin, because if we choose for example cto, then,
using [6.51] and [6.6], we have:

Lcto

cVo =
[
−I3 [cto]×

] [ cRo [cto]×cRo

03
cRo

]
[6.55]

hence:

Lcto

cVo =
[
−cRo 03

]
[6.56]

We can of course express the position of the origin of Ro in any frame of reference.
If the robot’s basic frame R∅ is chosen, we simply obtain:

∅ṫo =
[

I3 03

] ∅vo [6.57]

where ∅vo is the object’s kinematic torsor expressed in R∅ and in the origin of Ro.
The same result is of course achieved when considering ∅tn and ∅vn.

6.2.5.4. Interaction matrix associated with a 3-D plane

Finally, we can also determine the interaction matrix associated with 3-D geomet-
ric primitives such as line-segments, planes, spheres, etc. For example, in the case of
a plane represented by its unit normal u and its distance to the origin D, we get:

L(u,D) =
[

03 [u]×
u> 0

]
[6.58]
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Figure 6.8. Possible 3-D points with a scene camera

6.3. Task function and command

Achieving a robotic task by visual servoing requires the selection of the appropri-
ate visual data and the development of a closed-loop control law for these data. The
first phase amounts to defining a task function with properties that ensure that the cho-
sen task will be achieved [SAM 91], the second to regulating this task function. We
will first be considering the case where we wish to control the system’s 6 degrees of
freedom, in other words to bring the frame of reference attached to the robot’s effector
to a unique desired pose.

If we use a set of k visual data s, the general form of the task function e is:

e(p(t)) = C (s(p(t))− s∗) [6.59]

where:
– s(p(t)) is the current value of the selected visual data;
– s∗ is the value that s must reach for the task to be achieved;
– C is a full-rank 6×k matrix, referred to as the combination matrix, such that the

6 components of e are independent and control the system’s 6 degrees of freedom.

6.3.1. Obtaining the visual command s∗

Whatever the nature of the visual data that were chosen, the command s∗ is usually
obtained, either by defining beforehand the pose that must be achieved between the
robot and the object in question, or by learning:
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– In the first case, if s includes 2-D data, their desired value can easily be obtained
if a model of the object is available, simply by applying the perspective projection
equations to calculate the object’s position in the image. Additionally, it is also pos-
sible to specify the pose that has to be achieved between the effector and the object
in question (for a gripping task for example): the calculation of the visual data (2-D
or 3-D) is then immediately obtained if the basis change matrix between the effector
and the camera is known. However, in any case, any modeling error in the camera’s
calibration parameters, in the model of the object (and possibly in the effector-camera
basis change matrix) will have as a result that when the value of s is equal to s∗, the
pose actually reached will be different from the one that was specified, because of the
bias introduced by the modeling errors.

– Obtaining the command s∗ by learning, though less convenient to achieve in
practice, is therefore preferable to ensure that the task is well achieved. It consists in
a prior phase of bringing the robot to a desired position with respect to an object, then
acquiring the corresponding image, and calculating the value of s∗ exactly in the same
way as for the future calculations of s(t). In the presence of a modeling error, we find
ourselves in the paradoxical situation of having biased commands and measurements,
but a pose after convergence that is accurate aside from the measurement errors.

– A third, more elegant solution consists of managing to have the camera observe
the effector and the object in question simultaneously. The calculation of s∗ can then
be achieved automatically [HOR 98]. This solution has rarely been implemented,
because, although it seems natural for scene cameras, it poses significant problems
regarding where the sensors are placed in the case of mounted systems.

We will now give in detail the different possible choices for the combination
matrix C by a (simple) analysis of the system’s stability.

6.3.2. Regulating the task function

As we saw in the begining of this section, developing a control law to regulate
the task function is separate from defining this function. In the literature, many types
of control laws have been suggested: non-linear control laws [HAS 93b, REY 98],
type LQ or LQG optimal [PAP 93, HAS 96], based on a GPC controller [GAN 02,
GIN 05], even robust H∞ [KHA 98] or by return of a non-stationary continuous return
state [TSAK 98] in the case of mobile robots with nonholonomic constraints. We will
simply focus on achieving a decoupled exponential decrease of the task function,
that is:

ė = −λ e [6.60]



Visual Servoing 125

Using [6.59] and [6.2], if the matrix C is chosen constant, the differential of e is
given by:

ė = C ṡ = C Ls v [6.61]

We saw in sections 6.2.2 and 6.2.3 how to get from the kinematic torsor v to the
joint variables q̇. For simpler notations, we will assume from now on that the control
quantity is simply the controllable part of v, denoted by vq, that is to say vq = vc

in the case of a mounted camera and vq = −vo in the case of a scene camera (hence
we will not be considering the problems caused by singularities and the robot getting
blocked. Furthermore, we will not be considering the case of a robot with less than
six degrees of freedom. We will just point out that, in that case, we must of course
work directly in the joint space using [6.7] or [6.11], and not proceed in two steps
with vq then q̇). We therefore write:

ė = C Ls vq +
∂e
∂t

[6.62]

where ∂e
∂t represents the variations of e caused either by the object’s movement (if

we are working with a mounted camera), or by the camera’s movement (if we are
working with a scene camera or a mobile camera). To control the system’s 6 degrees
of freedom, it is necessary to at least select s such that Ls has rank 6 and we obtain as
the ideal control law:

vq = (C Ls)
−1

(
−λe− ∂e

∂t

)
[6.63]

In the case where the visual data are expressed in the image, we saw that the
interaction matrix depends on the values of these visual data and on the depth between
the camera and the object in question. In the case of 3-D visual data, only, some rather
strong hypotheses make it possible to obtain the analytical form of this matrix. In any
case, measurement and estimation errors are inevitable and the exact value of Ls is
unknown. Only an approximation L̂s can therefore be considered in the control law.
Also, the term ∂e

∂t is usually unknown. Hence the control law used in practice is:

vq =
(
C L̂s

)−1
(
−λe− ∂̂e

∂t

)
[6.64]
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If we assume that this command is perfectly achieved, the use of [6.64] in [6.62]
leads to:

ė = −λ C Ls

(
C L̂s

)−1

e−C Ls

(
C L̂s

)−1 ∂̂e
∂t

+
∂e
∂t

[6.65]

If we assume, to make things simpler, that ∂e
∂t = c∂e

∂t = 0, then we notice that the
positivity condition:

C Ls

(
C L̂s

)−1

> 0 [6.66]

is sufficient to ensure the decrease of ‖e‖ and therefore the system’s global asymptotic
stability (‖e‖ is then a Lyapunov function). Also, the resulting behavior will be the
same as the one specified in [6.60] under the unique condition that L̂s = Ls and thatc∂e
∂t = ∂e

∂t . We will see in section 6.3.4 how we can estimate ∂e
∂t , which then makes it

possible to reduce drag errors. We will now focus on different possible choices of C
and L̂s. Therefore we will assume from now on that ∂e

∂t = c∂e
∂t = 0 so as not to

complicate the notations too much.

6.3.2.1. Case where the dimension of s is 6 (k = 6)

If the dimension of s is 6, it is much more convenient to choose C = I6, because
the behavior of s will then be the same as that of e (meaning that, in the ideal case,
both components of s will show a decoupled exponential decrease). In that case, we
get the control law:

vq = −λ L̂s

−1
e = −λ L̂s

−1
(s− s∗) [6.67]

and the stability condition:

Ls L̂s

−1
> 0 [6.68]

If we are able to properly measure the current value of Ls at each iteration of the
control law, taking this estimation into account makes it possible to come closest to
the ideal behavior ṡ = −λ s.
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6.3.2.1.1. 2-D visual data

When considering 2-D visual data, it is unfortunately extremely difficult (as of
now) to end up in this type of situation. The main difficulty involves not the estimate
of the current value of the interaction matrix, but the selection of the six visual data.

Consider for example the case where s is comprised of the projection coordinates
of three points in the image. The associated interaction matrix Ls is then a 6×6 matrix
and, most of the time, is a full rank matrix. But we can show [MIC 93, PAP 95] that
some configurations lead to a loss of rank of Ls. In this case, the singularities are
such that the three points are aligned in the image or that the optical center C of the
camera belongs to the surface of the cylinder defined by the circumcircle of these
three points (see Figure 6.9). It is therefore difficult to ensure that, for any chosen
initial position, the robot’s movement will avoid going through an isolated singularity
(where of course the stability condition [6.68] is no longer verified).

Figure 6.9. Singularity cylinder

Also, there are usually four distinct poses between the camera and the scene such
that the image of three points is the same [DHO 89]. Minimizing ‖s−s∗‖ can therefore
bring the robot to one of the four global minima such that ‖s− s∗‖ = 0. Thus, in this
case, it is quite possible to have s− s∗ = 0 even if the pose that was reached is not the
specified pose.

When considering visual data of different kinds (such as for example the three lines
that can be defined from three non-aligned points), the same potential problems arise.
A convenient solution consists of restricting the workspace to areas close to the desired
pose, that include no isolated singularities, and where the minimizing of ‖s−s∗‖ draws
the robot’s effector to its desired position. However, determining the size of these areas
is a difficult problem.

Furthermore, if the six terms describing the affine deformation of an object
(see 6.2.4.3), a loss of rank of the interaction matrix occurs when the considered
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object is parallel to the image plane [COLO 99, DRU 99], rendering servoing
impossible in the vicinity of this configuration.

Very recent studies based on the search of moment combinations have allowed
to determine sets of six visual data with very interesting properties (unaffected by
certain movements, directly related to others) [TAH 03]. However, these results are
not yet definitive and the absence of isolated singularities or local minima has not yet
been demonstrated.

Because of the different reasons mentioned above, it is very common to use redun-
dant 2-D visual data. We then have k greater than 6, a situation described in sec-
tion 6.3.2.2.

6.3.2.1.2. 3-D visual data

The use of 3-D visual data makes it possible to avoid the problems mentioned
earlier since three parameters θu are now available to represent the orientation and
only three position parameters have to be chosen among those given in 6.2.5.3 to have
k = 6. Remember, however, that it is still necessary to be in the ideal situation, for
which the different measurement, calibration and estimation errors are negligible, to
be able to express the interaction matrix. In the rest of this section, we will therefore
assume that we are in this ideal case which (theoretically) ensures the specified behav-
ior ṡ = −λs and the stability condition [6.68] in the entire workspace, since we then
have:

Ls L̂s

−1
= Ls Ls

−1 = I6 > 0 [6.69]

If we choose to use θu to represent the rotation c∗Rc and the coordinates X of a
point attached to the object expressed in the camera’s current frame of reference Rc,
the global interaction matrix associated with s = (X, θu) is given by:

Ls =
[
−I3 [X]×
03 Lω

]
[6.70]

Notice how appealing this matrix is (block-triangular and not singular except in
θ = 2π), giving the system an interesting behavior, since, ideally, the trajectory of the
considered point is a straight line in the image. If this point is in the camera’s field of
view in its initial position and in its desired position, then it will be so permanently.
By properly selecting this point (in the object’s center of gravity for example), we can
then minimize the risk of losing a large part of the object in question during the servo-
ing (without ensuring however that a sufficient number of characteristics necessary to
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the calculation remain visible). At each iteration we can also select the 3-D point that
corresponds to the 2-D point closest to the limits of the image plane. But this choice
implies a discontinuity in the control’s translation components every time the point is
changed. Additionally, without a higher level strategy (such as planning the trajecto-
ries in the image), it is always possible to display particular cases that will either cause
a part of the object to fall out of view, or lead to perverse effects on the control (if two
points are close to opposing edges of the image for example). Finally, the translation
trajectory followed by the camera is a straight line, but only in the camera’s mobile
frame of reference. Hence it will not be an actual straight line if an orientation change
is necessary.

To illustrate the behavior of this control law, we will consider a positioning task
with respect to four points that form a square. As Figure 6.10 shows, the desired pose
of the camera is such that it is parallel and centered with respect to the square, with the
image of the four points forming a centered square with its sides parallel to the axes
of the image planes. The initial pose chosen corresponds to a significant movement,
particularly in rotation. The results obtained by simulation in ideal conditions (that
is to say without causing measurement errors, calibration errors, or pose estimation
errors) are shown in Figure 6.11. We considered, as the coordinates X in s, those of
the origin O in the object’s frame of reference, located in the square’s center. Notice
how, as expected, the trajectory in the image of the projection of O, given as an illus-
tration, forms a perfectly straight line. On the other hand, the camera’s trajectory is no
straight line at all. Finally, the components of the camera’s kinematic torsor show a
nice exponential decrease, due to the strong decoupling of this control law.

(a) (b) (c)

Figure 6.10. Example of a positioning task: (a) desired pose for the camera,
(b) initial pose, (c) image of the object for the initial pose and the desired pose

With a mounted camera, we also get a block-triangular interaction matrix if we
consider the vector X = ctc∗ to control the camera’s position. But there is little point
to this in practice. On the other hand, if we choose to consider the position of the
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origin of Rc expressed in a frame attached to the object, for example c∗tc, we then
have (see [6.54]):

Ls =
[

c∗Rc 03

03 Lω

]
[6.71]

which is block-diagonal and therefore ensures a complete decoupling between the
translation movements and the rotation movements. Additionally, the translation tra-
jectory of the camera will be an actual straight line, something of significant practical
interest. To have the robot’s effector follow a straight line, we simply have to con-
sider n∗tn in s instead of c∗tc. Unfortunately, in both cases, there is no longer any
control over the object’s trajectory in the image, and if the camera’s initial position is
far from its desired position, there is no guarantee that the object will remain in the
camera’s field of view during the servoing.
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Figure 6.11. Servoing results when choosing s = (cto, θu): (a) trajectories of points
in the image, (b) components of vc (in cm/s and deg/s) calculated at each iteration,

(c) trajectory of the origin of the camera’s frame in the frameRc∗ (in cm)

The simulation results for this control law, obtained in the exact same conditions
as before, are shown in Figure 6.12. They bring support to the comments stated above.
Notice also that the decrease of the translation components of vc are not as good,
because of the coupling of these components induced by the very strong rotation that
has to be performed.

Similar choices are of course also possible with a scene camera (see
section 6.2.5.3). As an example, if we select in s the translation ∅to and the vector θu
associated with the rotation o∗Ro, we end up, by combining Equations [6.67], [6.57]
and [6.48], with the following control law:

{ ∅υo = −λ (∅to − ∅to∗)
oωo = −λ θ u

[6.72]
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where ∅υo is the translation speed of Ro expressed in R∅ and where oωo is its rotation
speed expressed in Ro. This control law shows ideal decoupling properties. Addition-
ally, it ensures a straight line trajectory for the origin of Ro both in the 3-D space and
in the image. We should however point out that if there are modeling errors present in
the robot’s Jacobian or a calibration error in the basis change matrix from Rn to Ro,
the trajectory actually performed in practice will be different from what is expected.
But the closed loop that is used is robust when it comes to these calibration errors and
it is possible to quantify this robustness by the analysis of the stability condition [6.68]
by reasoning in the joint space.
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Figure 6.12. Servoing results when choosing s = (c∗tc, θu)

6.3.2.1.3. 2-D 1/2 visual data

As we have already said a number of times, taking 3-D visual data into account
is based on the hypothesis that these data can be measured reliably. In practice, they
are more sensitive to measurement errors than 2-D visual data, since they are obtained
from these data and from a pose calculation without any particular smoothing proper-
ties. It is therefore a good idea to combine 2-D and 3-D visual data to gain robustness
to measurement errors while maintaining good decoupling properties. In [MAL 99],
the task function is defined as follows:

e =
(

x− x∗ , y − y∗ , log(Z/Z∗) , θu
)

[6.73]

where:
– (x, y) and (x∗, y∗) are the current coordinates and the desired coordinates,

respectively, of a characteristic point in the image;
– Z/Z∗ is the ratio of the current distance to the desired distance of this point;
– θu represents the rotation c∗Rc that is to be achieved.

In this case, we get as our control law:

vq = −λ

[
ZL−1

ev
−ZL−1

ev
Levω

03 I3

]
e [6.74]
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where (see [6.16] and [6.51]):

Lev =

 −1 0 x
0 −1 y
0 0 −1

 and Levω =

 xy −(1 + x2) y
(1 + y2) −xy −x
−y x 0



Therefore, the resulting decoupling is satisfactory since the command matrix is
triangular. Additionally, the trajectory of the characteristic point that was chosen will
be a straight line in the image. By properly selecting this point (in the object’s center
of gravity for example, or as close as possible to the limits of the image, which results
in the same drawbacks as those described at the begininng of the previous section), it
is usually possible to keep the object inside the image. Furthermore, with the help of
recent results in projective reconstruction, it is possible to use this control technique
on objects whose 3-D models are unknown [MAL 00]. Because the pose calculation
is no longer involved, it is then possible to determine the actual analytical form of the
interaction matrix (meaning a form that does not rely on the strong hypotheses used
before) and get it to display the camera’s calibration errors. Thanks to the triangular
form of the matrix, it is then possible to reveal the analytical conditions that ensure
the system’s local and global asymptotic stabilities [MAL 99, MAL 02].

In our example, the behavior resulting from the control law [6.74] and from choos-
ing the object’s center of gravity as the characteristic point is shown in Figure 6.13.
Notice the straight line trajectory of this point in the image and the fact that this behav-
ior is very similar to the one obtained when choosing s = (cto, θu) (go back to Fig-
ure 6.11).
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Figure 6.13. Servoing results when choosing s = (xg, log(Zg/Z∗
g ), θu)

Another version of this technique is described in [MOR 00]. The only difference
involves the third component of e which explicitly takes into account the fact that all
of the object’s points must remain, as much as possible, inside the image. However, the
triangular form of Lev is then lost, making it difficult to determine analytical stability
conditions when calibration errors are present.
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A second 2-D 1/2 visual servoing technique is described in [CHA 00] in the case
of a mounted camera. The task function is given by:

e =
(

c∗tc, x− x∗, y − y∗, θuz

)
[6.75]

where (x, y) and (x∗, y∗) are again the current and the desired coordinates of a charac-
teristic point in the image, and where uz is the third component of the rotation axis u
between Rc∗ and Rc. Using [6.54], [6.16] and [6.45], we infer the expression of the
associated control law:

vc = −λ

[
cRc∗ 03

− 1
Z L−1

eω
Leωv

cRc∗ L−1
eω

]
e [6.76]

where:

Leωv =

 −1 0 x
0 −1 y
0 0 0

 and Leω =

 xy −(1 + x2) y
(1 + y2) −xy −x

l1 l2 l3



[l1 l2 l3] being the third line of the matrix Lω given in [6.46].

Compared to the previous case, the camera translation will follow a straight line
trajectory, its orientation controlled so that the trajectory of the characteristic point
follows a straight line in the image (see Figure 6.14). This control law is therefore
extremely useful in practice. If we select, as our characteristic point, the point of the
object closest to the limits of the image, the discontinuity of the control law when
changing the point will now involve the components of the rotation speed. On the other
hand, note that the command matrix is no longer block-triangular, which again makes
it difficult to determine analytical conditions ensuring the system’s stability when cal-
ibration errors are present. The same is true if the task function θuz is replaced by
the orientation of a line segment, of a line, or of an object in the image (see sec-
tions 6.2.4.2 and 6.2.4.3). More visual data are then used and the only change that
involves the modeling of the control law consists of replacing the coefficients on the
last lines of Leωv and Leω with their new values.

Finally, in [AND 02], the Plücker coordinates of the lines are used, which also
leads to a 2-D 1/2 visual servoing technique. However the resulting trajectories
in space and in the image are not as satisfactory as in the two cases described
previously.
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Figure 6.14. Servoing results when choosing s = (c∗tc,xg, θuz)

6.3.2.2. Case where the dimension of s is greater than 6 (k > 6)

We will now describe the different possible choices for C and L̂s (see [6.64])
when the visual data that are chosen are redundant (k > 6). Aside for the studies
described in [MART 96, SCH 04] where the coordinates of several 3-D points are
taken into account, this case only involves the choice of 2-D visual data since selecting
six independent visual data is then a difficult problem.

Remember that C has to be a 6 × k constant matrix with rank 6. The simplest
choice consists of choosing as C the pseudoinverse of an approximate value of the
interaction matrix in the desired position:

C = L̂s

+

|s=s∗ [6.77]

As we saw in the first part of this chapter, the interaction matrix depends on the
value of the visual data that are chosen and the depth between the camera and the
scene’s corresponding primitives. The calculation of C requires the value of s∗ to be
known, as well as the depth parameters in the desired position. If the 3-D model of
the object is available, these parameters can easily be calculated by a pose calcula-
tion using the desired image. Otherwise, they are usually determined during the task
specification itself.

Using [6.77], the control law [6.64] is expressed:

vq = −λ
(
L̂s

+

|s=s∗ L̂s

)−1

e [6.78]

and, by choosing L̂s|s=s∗ to approximate L̂s, in the end we get:

vq = −λ e = −λ L̂s

+

|s=s∗ (s− s∗) [6.79]
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We should point that, even if e is perfectly regulated (i.e. e = 0), it does not
necessarily imply that the visual task is achieved (i.e. s = s∗), because the set of
configurations such that:

(s− s∗) ∈ Ker C [6.80]

leads to e being equal to zero without (s−s∗) being equal to zero. Hence it is important
to make sure during the selection of the visual data not to create local potential minima
in the workspace. As an example, consider a centered square parallel to the image
plane. It is possible to show that by choosing, as the visual data, the coordinates in the
image of the square’s four corners, the configurations corresponding to local minima
are such that the camera observes the square on its side. The four points are then
aligned in the image and what we have is a degenerate case, outside the workspace of
course.

Additionally, the stability condition is now written as:

L̂s

+

|s=s∗ Ls > 0 [6.81]

Even with a perfect estimate of L̂s|s=s∗ , this positivity condition is only ensured
in a neighborhood around the desired position. Usually, only local asymptotic stability
can be demonstrated. Likewise, the decoupled exponential behavior of e will only be
ensured at this desired position. It is therefore possible, if the camera’s initial position
is far away from the desired position, that the resulting trajectories in the image turn
out to be poorly satisfactory, or do not even lead to a convergence of the system (see
Figure 6.15a). In practice, this only occurs if considerable rotation movements are
required [CHA 98].

In our example, note the convergence of the servoing in Figure 6.16, despite the
very significant rotation that has to be achieved. However, the components of vc do
not behave well, except near the convergence.

These problems are commonly solved by directly choosing for C the pseudo-
inverse of an estimated current value of the interaction matrix, instead of a constant
matrix:

C = L̂s

+
[6.82]
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(a) (b)

Figure 6.15. (a) possible trajectory in the image when choosing C = cLs

+

|s=s∗ ,

(b) expected trajectory in the image when choosing C = cLs

+
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Figure 6.16. Servoing results when choosing s = (x1, y1, ..., x4, y4) and C = L+
s |s=s∗

This leads us to:

vq = −λ L̂s

+
(s− s∗) [6.83]

It is now necessary at each iteration of the control law to estimate either the 3-D
parameters involved in the interaction matrix, or to perform an online digital esti-
mation of the elements of this matrix (see section 6.2.4.4). In the absence of time
smoothing in the calculation of this matrix, the system’s behavior will therefore be
less stable than in the previous case.

Also, the convergence condition [6.66] no longer applies since the calculation of ė
would have to take into account the variations of C (see [6.61]), leading to virtually
unfeasible calculations. Once again, only the asymptotic stability can be demonstrated.
Considering the behavior of s, we get:

ṡ = −λLs L̂s

+
(s− s∗) [6.84]
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As in the previous case, it is therefore impossible to ensure the strict decrease

of ‖s − s∗‖ at each iteration since the k × k matrix Ls L̂s

+
only has rank 6. All

configurations such that:

(s− s∗) ∈ Ker L̂s

+
[6.85]

correspond to attractive local minima, the existence of which is demonstrated
[CHA 98] in the very simple case of a square.

The drawback of this method is that it attempts to ensure that ṡ = −λ(s − s∗)
(directly providing the control law [6.83]), which implies k constraints when only
6 degrees of freedom are available. In other words, the “task function” (s − s∗) is
no longer ρ-admissible [SAM 91]. On the other hand, the advantage of this method is
that, when it succeeds, it provides very interesting trajectories in the image, because
if for example s is comprised of the coordinates of points in the image, the expected
trajectories of these points will be straight lines (see Figure 6.15b). In practice, the
actual trajectories will not necessarily be as inviting (since the actual behavior is
given by [6.84]). Also, the robot’s trajectory needed to achieve these movements in
the image is not necessarily an advisable one [CHA 98].

These properties are summed-up in Figure 6.17: the trajectory of the points in the
image is no longer a true straight line. Additionally, the camera’s movement is not
ideal given the components of vc and the trajectory of the camera’s optical center.
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(a) (b) (c)

Figure 6.17. Servoing results when choosing s = (x1, y1, ..., x4, y4) and C = L+
s

Finally, other methods can be found in the literature. For example, L̂s

>
can be

used in the control law (instead of L̂s

+

|s=s∗ or L̂s

+
) [HAS 93b]. However, the advan-

tages of this method compared to those described before are not obvious, since they



138 Modeling, Performance Analysis and Control of Robot Manipulators

do not show good decoupling properties. On the other hand, as was recently sug-
gested [MAL 04], the choice of:

C =
(

1
2
L̂s +

1
2
L̂s|s=s∗

)+

[6.86]

leads to satisfactory results in practice, as Figure 6.18 shows, even if the camera’s
trajectory is not a straight line.
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(a) (b) (c)

Figure 6.18. Servoing results when choosing s = (x1, y1, ..., x4, y4)
and C = ( 1

2
Ls + 1

2
Ls|s=s∗)

+

Again, we insist on the importance of the choice of the visual data inside the con-
trol law. As an illustration, Figure 6.19 shows the results obtained in our example when
choosing in s the parameters (ρi, θi) associated with the four lines forming the sides
of a square (see section 6.2.4.2). Note that these parameters can of course be directly
calculated from the position of the four points in the image. No additional informa-
tion is necessary. Also, the control law that was chosen is the one that uses a constant
matrix for C, namely L+

s |s=s∗ which is easily obtained from [6.31]. As you can see
on Figure 6.19, the behavior is quite different from Figure 6.16, even though it was
also obtained using a constant matrix, and is just as satisfactory as the one obtained in
Figure 6.18.
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Figure 6.19. Servoing results when choosing s = (ρ1, θ1, ..., ρ4, θ4)
and C = L+

s |s=s∗
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To conclude this section, we should point out the importance of the condition-
ing of the interaction matrix and of the combination matrix in the system’s behav-
ior [FED 89, NEL 95, SHA 97]. A good conditioning of the former leads to a good
sensitivity for the system, whereas a good conditioning of the latter leads to a good
robustness for the control with respect to measurement errors. Even if all of the meth-
ods discussed above provide very satisfactory practical results, there is still much work
to be done to determine which visual data are the most relevant.

6.3.3. Hybrid tasks

We will now consider the case where the k visual data that are chosen do not
constrain all of the system’s degrees of freedom. The visual tasks associated with the
k constraints can then be categorized depending on the virtual link, an extension of
the concept of links between solids, between the sensor and its environment.

6.3.3.1. Virtual links

The constraints s(p(t)) − s∗ = 0 induced by the visual data define, when they
are achieved, a virtual link between the robot and its environment. Because ṡ = 0
is an immediate consequence of s(p(t)) = s∗, the set S∗ of movements that leave s
unchanged, or:

S∗ = Ker Ls [6.87]

enables us to fully characterize this virtual link.

For a pose p where these constraints are satisfied, the dimension N of S∗ is called
the class of the virtual link in point p. Let m = 6 − N . When m = k, the k con-
straints resulting from the visual data are independent. Intuitively, the size of s then
corresponds to the number m of degrees of freedom that we can and wish to control
using s. As we have already seen previously, it is also possible to come across the case
where the visual data are redundant (k > m).

Figure 6.20 lists the most common frictionless mechanical links. The class of each
link and the number of unconstrained degrees of freedom (in translation (T) or in
rotation (R)) that allow such a categorization are also indicated. With a vision sensor,
it is possible to achieve all of these links. For example, the case of the rigid link
(which constrains the robot’s six degrees of freedom) has already been studied in
detail in the previous section. For the other links, examples of designs, constructed
from the most common geometric primitives (points, lines, cylinders, etc.) are given
in [CHA 93a].
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Name of the link Class T R Geometric symbol

Rigid 0 0 0

B
A

Prismatic 1 1 0

B

A

B

A

Rotoid 1 0 1
B

A

B

A

Sliding pivot 2 1 1

B

A A

B

Planar rest 3 2 1
A

B

Pivot ball 3 0 3

BA

Rectilinear 4 2 2
B

A

B

A

Annulate linear 4 1 3
A

B
A

B

Punctual 5 2 3
BA

Figure 6.20. Mechanical links

As an example, we will explain the case of the pivot ball link. It can be achieved
if the camera is observing a sphere the center of which is located on the optical
axis, and therefore has the coordinates X0 = (0, 0, Z0). The image of the sphere
is then a centered circle, and if we select in s the area a of the circle and the
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coordinates (xg, yg) of its center of gravity (s = (a, xg, yg)), the interaction matrix
has the value (see [6.34]):

Ls =

 0 0 2a/Zg 0 0 0
−1/Zg 0 0 0 −(1 + r2) 0

0 −1/Zg 0 1 + r2 0 0

 [6.88]

where 1/Zg = Z0/(Z2
0 − R2) and r2 = R2/(Z2

0 − R2), r being the circle’s radius
in the image, and R the sphere’s radius. By expressing the interaction matrix in the
sphere’s center using the torsor frame change formula given in [6.6], we get:

Ls =

 0 0 2a/Zg 0 0 0
−1/Zg 0 0 0 −(1 + r2) 0

0 −1/Zg 0 1 + r2 0 0

[ I3 [X0]×
03 I3

]

=

 0 0 2a/Zg 0 0 0
−1/Zg 0 0 0 0 0

0 −1/Zg 0 0 0 0



which gives the form we wanted for S∗:

S∗ =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 [6.89]

It is of course possible to select 3-D visual data to achieve this link (if 3-D mea-
surements are available). In this case, we simply have to choose the three coordinates
of the sphere’s center in s.

We will now discuss in detail how to define a hybrid task combining a visual task
controlling m(< 6) degrees of freedom and a secondary task.

6.3.3.2. Hybrid task function

Very often, regulating a visual task is not the only objective and this task must
be combined with another, such as for example tracking a trajectory or avoiding joint
blocking of the robot, since, aside from the case where the visual task consists of
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achieving a rigid link, other tasks achieve virtual links with a non-zero class, that is
to say with degrees of freedom that are not constrained by the link. For example, a
translation movement along the axis of a prismatic link leaves this link unchanged,
and it may be advisable to put this available degree of freedom to use on a second
objective.

Combining these two objectives can sometimes be done with a simple summa-
tion [NEL 94b]. The control law then reaches a compromise that can lead to none of
the initial objectives being achieved. Here is another, more elegant approach, described
in [SAM 91], among others. It consists of considering the visual task as the priority
and to express the second objective as a cost function to minimze under the constraint
that the visual task be achieved. The use of this approach is starting to be common
in visual servoing. [CHA 94, COS 95, BER 00] give examples where the secondary
task consists of performing trajectory tracking. This can be useful for inspection and
conformity control applications, but also to perform the 3-D reconstruction of the con-
sidered objects [CHA 96] or to ensure that a system is properly positioned [COL 02].
Avoiding blocking and singularities is discussed in [MAR 96]. Secondary tasks can
also be visual tasks, to try to avoid occultations for example [MAR 98], or they can be
built from measurements provided by exteroceptive sensors. For example, combining
a positioning task by visual servoing with an obstacle avoiding task using a laser type
proximity sensor was studied in [CAD 00] in the context of mobile robotics.

Let e1 be the visual task function and hs the cost function to minimize, the gradient
of which is e>2 . The function e1 has a dimension of m = n −N ≤ k where n is the
system’s number of degrees of freedom, N the class of the desired virtual link, and k
the number of visual data used in s. This task function is always written:

e1 = C (s− s∗) [6.90]

where the size of C is now an m × k matrix that has full rank m in order for the
m components of e1 to be independent and to control the m desired degrees of free-
dom. If C is chosen constant, the interaction matrix of e1, with a size of m× n and a
full rank equal to m, is given by:

Le1 = CLs [6.91]

and notice that Ker Le1 = Ker Ls.
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A task function e that performs the minimizing of hs under the constraint e1 = 0
can be expressed in the form [SAM 91]:

e = W+e1 + (In −W+W) e2 [6.92]

where W is an m × n matrix with a full rank equal to m and such that
Ker W = Ker Ls. Hence the matrix (In − W+W) is therefore an orthogonal
projection operator onto the kernel of Ls meaning that:

(In −W+W) x ∈ Ker Ls , ∀x ∈ Rn [6.93]

Hence whatever the function to minimize, and therefore the secondary task e2,
only movements that do not disrupt e1 will be applied, which also implies that hs will
not necessarily reach its minimum value.

However, because the exact value of the interaction matrix Ls is usually unknown,
W cannot be constructed based on an approximation or an estimate L̂s. If the kernel
of W is different from the kernel of Ls, then the secondary task can lead to disruptions
in the achievement e1. In practice, these disruptions turn out to be not too harmful,
unless if the estimate of the interaction matrix is completely erroneous.

To construct the matrix W, the simplest case occurs when Ls is a full rank matrix
with a rank equal to m = k. We can then directly take W = L̂s. Otherwise, the m

lines of W can be comprised of the m basis vectors of the subspace generated by L̂s.
Note that if Ls has a rank equal to n (in other words if the visual task constrains
the system’s n degrees of freedom), we can choose W = In. It is then impossible
of course to take into account a secondary task, since in that case we have e = e1.
This also indicates that the task function discussed in [6.92] is a generalization of the
previous one in [6.59].

By performing the same analysis as the one described in the beginning of sec-
tion 6.3.2, we get the following control law:

vq = L̂e

−1
(−λ e− ∂̂e

∂t
) [6.94]

and the sufficient stability condition:

LeL̂e

−1
> 0 [6.95]
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Given the difficulty of calculating Le in practice, it is possible to show [SAM 91]
that the condition [6.95] is usually respected if we have:

Le1W
+ > 0 [6.96]

We can then set L̂e = In, which leads to the following control law:

vq = −λ e− ∂̂e
∂t

[6.97]

As with the rigid link seen in 6.3.2, it is much better to choose C = Im if the
visual data are not redundant (k = m). We should point out by the way that it is much
less difficult to select non-redundant 2-D visual data for links other than the rigid link
(see for example the case of the pivot ball link described in the previous section). By
choosing C = Im, Condition [6.96] can be expressed simply as LsW+ > 0, which
is respected if the estimate used to build W is right. We will also have an exponential
decrease for each component of s. In the case where the visual data are redundant
(k > m), we can choose:

C = WL̂s

+

|s=s∗ [6.98]

If W is also built from L̂s|s=s∗ (and therefore constant), Condition [6.96] is
expressed as:

WL̂s

+

|s=s∗LsW+ > 0 [6.99]

which at best can only be respected in the neighborhood of configurations such that
s = s∗. In practice, it is also possible to consider matrices W and C calculated at
each iteration from an estimate of the current value of the interaction matrix, but this
choice no longer allows the analytical form of Le1 to be easily determined.

Finally, if the secondary task makes it possible to know ∂e2
∂t , we can choose:

∂̂e
∂t

= W+ ∂̂e1

∂t
+ (In −W+W)

∂e2

∂t
[6.100]
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where the term d∂e1
∂t , if it is properly estimated, allows possible tracking errors to be

reduced if the object being observed is in motion.

Figure 6.21 illustrates hybrid tasks. We considered the case of positioning a camera
with respect to a sphere, thus creating a pivot ball link as we saw in section 6.3.3.1.
The secondary task corresponds to a movement at a constant speed along the rota-
tion speed’s three components. Notice in Figure 6.21e the exponential decrease of the
three components of s (the matrices W and C are also calculated at each iteration
of the control law). Notice also in Figure 6.21f that the secondary task is only prop-
erly achieved after the convergence of s to s∗ (except for the ωz component which is
not involved in the convergence). Finally, note on this same figure that the projection
operator In−W+W induces translation movements vx and vy to compensate for the
rotation movements ωy and ωx caused by the secondary task, and thus preserve the
sphere’s image as a centered circle.

6.3.4. Target tracking

In this short section, we consider the case of a mounted camera observing a mobile
object. However, the rules described below are also valid for a scene camera driven by
an unknown movement.

A significant part of the studies conducted in visual servoing that deal with target
tracking consider the object’s movement as a perturbation, that must be eliminated as
quickly and efficiently as possible [PAP 93, GAN 02]. Other studies use prior infor-
mation on the trajectory or the type of movement of the object [ALL 93, HAS 95,
RIZ 96, GIN 05]. Furthermore, the use of an integrator is very common in control the-
ory to eliminate drag errors. Let Ik be the estimate of ∂e1

∂t at the iteration k. We then
have:

Ik+1 = Ik + µ e1k with I0 = 0 [6.101]

= µ

k∑
j=0

e1j

where µ is the gain of the integrator. This techinque can only function properly in
cases where the object has a constant speed, since we have Ik+1 = Ik if and only if
e1k = 0. This implies that the drag errors are not completely eliminated if the object’s
movement is more complex.
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Figure 6.21. Positioning with respect to a sphere then movement around this sphere: (a) cam-
era’s initial pose with respect to the sphere, (b) camera’s final pose, (c) superposition of the
initial image and of the desired image, (d) superposition of the final image and of the desired
image, (e) components of s calculated at each iteration, (f) components of vc calculated at each
iteration.
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Other method classes consist of estimating as reliably as possible the object’s speed
in the image. This is because if it is possible to measure the camera’s speed, an esti-
mate of the object’s speed is given by:

∂̂e1

∂t
= ̂̇e1 − L̂e1vc [6.102]

where ̂̇e1 is for example measured at the iteration k by ̂̇e1k = (e1k − e1k−1)/∆t,
∆t being the system’s sampling period. This leads us to an indirect adaptive control
system and we can then use a Kalman filter (for example) to smooth this estimate.
In [COR 93], such a filter based on a simple model of a constant speed state is pre-
sented. In [CHA 93b], a constant acceleration and correlated noise model was chosen.
Finally, what is referred to as the GLR algorithm (Generalized Likelihood Ratio) is
used in [BENS 95], to detect, estimate and compensate for possible gaps in the objects
direction or speed amplitude.

6.4. Other exteroceptive sensors

All of the rules described in this chapter are valid for any exteroceptive sensor. The
only characteristic involves the modeling of the interaction matrix between the sensor
in question and its environment [SAM 91].

Consider for example a narrow field proximity sensor that provides the distance Z
between this sensor and the closest object in the sensor’s direction (see Figure 6.22). If
we assume that the object’s surface is perpendicular to the sensor’s axis, the interaction
matrix associated with Z is of the form:

LZ =
[

0 0 −1 0 0 0
]

[6.103]

Figure 6.22. Modeling of a proximity sensor
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Various robotic tasks can then be performed, such as obstacle avoiding or most of
the virtual links that we saw previously, by selecting the appropriate number and direc-
tion of sensors. For example, a possible choice for creating a planar rest is the config-
uration shown in Figure 6.23. Expressed in the frame of reference RO = (O,~x, ~y, ~z),
the interaction matrix LZi associated with each sensor Si is given by (see [6.6]):

LZi =
[

0 0 −1 0 0 0
] [ I3 −[Xi]×

0 I3

]
[6.104]

so in the end:

LZi =
[

0 0 −1 −Yi Xi 0
]

[6.105]

where Xi = (Xi, Yi, 0) are the coordinates of Si in RO. This shows that the interac-
tion matrix that integrates the four sensors has rank 3 and its kernel is:

S∗ =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

 [6.106]

The use of force sensors has also been the subject of many studies [SAM 91].
Finally, we can mention [KHA 96] where the sensor in question is comprised of a
camera rigidly attached to laser planes.

6.5. Conclusion

In this chapter, we only considered the most common case, that is controlling a
system that has six degrees of freedom, for which the selection of relevant visual
data to perform the task is the most difficult problem, especially if the rigid link is
an objective. Many simplifications occur if the system has fewer degrees of freedom.
As an example, the orientation control of a camera mounted on a pan-tilt head, for
a centering or mobile object tracking task, presents no difficulties when it comes to
modeling the task. No 3-D data are even necessary. The main difficulty involves the
image processing aspects in order to grasp real, complex objects.
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Figure 6.23. Planar rest link

For many years, servoing technique could actually only be applied to extremely
simple objects (usually producing binary images), because of the slow processing
pace for complex images. Advances in algorithms, particularly in the field of motion
analysis, but most of all the enormous gains in computing power, have made it pos-
sible to consider real, video-rate applications [CRE 00, CRE 01b, TON 97, VIN 00,
COM 04]. We should also mention studies where the visual data are no longer geo-
metric, but instead describe a movement datum in the image sequence [GRO 95,
CRE 01a].

The major advances to come in visual servoing involve significant progress needed
in determining the optimal visual data and taking into account unknown objects, that
do not require prior 3-D information. The studies in this field of projective geom-
etry have already shown promising results [MAL 00, RUF 99]. In practice, if the
learning of the desired image is impossible, obtaining the command when working
with a crudely calibrated system can be quite difficult. Furthermore, aspects of tra-
jectory planning in the sensor’s space [HOS 95b] are currently the subject of suc-
cessful studies [MEZ 02, COW 02, ZAN 04]. With the same basic idea, aspects of
chains of visual task would deserve to be developed further. It would then be pos-
sible to broaden the very local aspect of the current techniques. Likewise, merging
measurements provided by several exteroceptive sensors, which may or may not be
of different types, inside control laws should make it possible to deal with many new
applications [CAD 00, MAL 01].
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Also, the development of omni-directional vision sensors [BAK 99, GAS 00]
paves the way for many studies in the field of visual data modeling, given how
peculiar and complex its projection model is [BAR 02, MEZ 04].

Finally, the use of visual servoing has expanded considerably over the past few
years in several fields. We will mention of course mobile robotics, particularly appli-
cations in automatic driving of vehicles [DIC 91, PIS 95, KHA 98, TSAK 98]. In
addition to the image processing problems, the main difficulty resides in designing
control laws that take into account the non-holonomic constraints of this type of
robots. We can also mention the control of flying machines (drones, blimps, heli-
copters) [ZHA 99, HAM 02, ZWA 02, RIV 04] where one of the difficulties come
from the fact that these aircrafts are under-driven. Finally, the field of medical robotics
is showing great promise for the application of visual servoing techniques [KRU 03,
GIN 05].
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