GdR Robotics Winter School: Robotics Principia

Sensor-based Control

François Chaumette

Inria Univ Rennes, CNRS, IRISA, Rennes

Winter School: Robotics Principia

Preliminary note

- In this talk, focus on vision-based control / visual servoing
- But all concepts are valid for any exteroceptive sensor providing measurements related to the relative pose between the robot and its environment (proximity sensors, laser, depth map, RGB-D camera, 2D US probe, omnidirectional camera, audio sensor, ...)

Overview

- 1. Introduction
- 2. Modeling
- 3. Task specification

RISA

4. Control

Inría

References

- [1] S. Hutchinson, G. Hager, P. Corke: A tutorial on visual servo control, *IEEE. Trans. on Robotics and Automation*, 12(5):651-670, October 1996.
- [2] F. Chaumette, S. Hutchinson: Visual servoing and visual tracking, In *The Handbook of Robotics*, B. Siciliano, O. Khatib (eds.), Chap 24, pp. 563-583, Springer, 2008.
- [3] P. Corke: Robotics, Vision and Control, Springer, 2011.
- [4] F. Chaumette: Visual servoing. In *Robot Manipulators: Modeling, Performance Analysis and Control*, E. Dombre, W. Khalil (eds.), Chap. 6, pp. 279-336, ISTE, 2007.

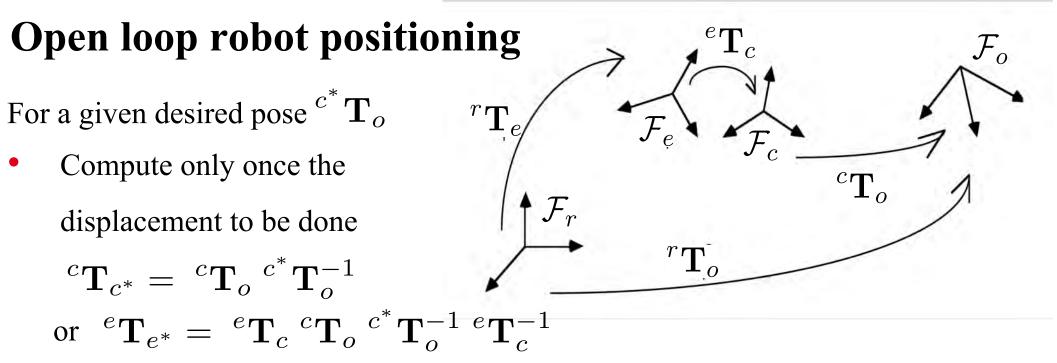
Software

Inría

• ViSP: <u>http://visp.inria.fr</u>

S FIRISA

C++ open source library for real time visual tracking and visual servoing



Advantages:

• Only one image to be processed and one very fast displacement to be achieved if the full system is perfectly calibrated

Drawback:

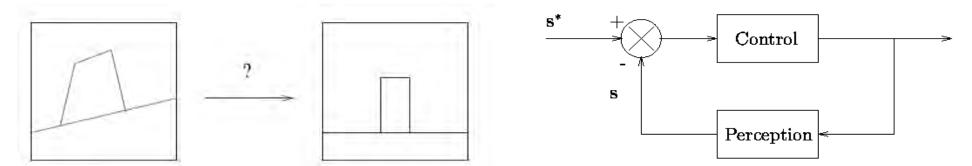
• Not robust to modeling and calibration errors

RISA

Better approach: closed-loop sensor-based control: visual servoing

What is visual servoing?

Vision-based closed loop control of a dynamic system



Advantages:

Positioning accuracy

U H

- Robustness with respect to modeling/calibration errors
- Reactive to changes (target tracking)
- Alternative to SLAM: achieve a task with the minimal information required

Drawback:

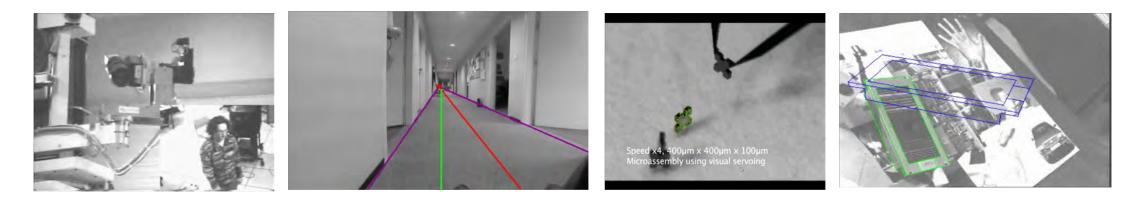
Innía

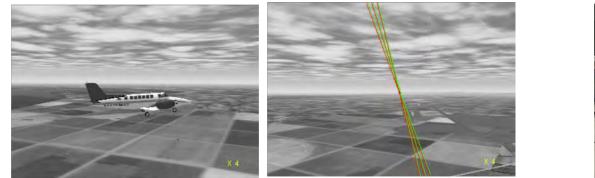
• Need many images to be processed

RISA

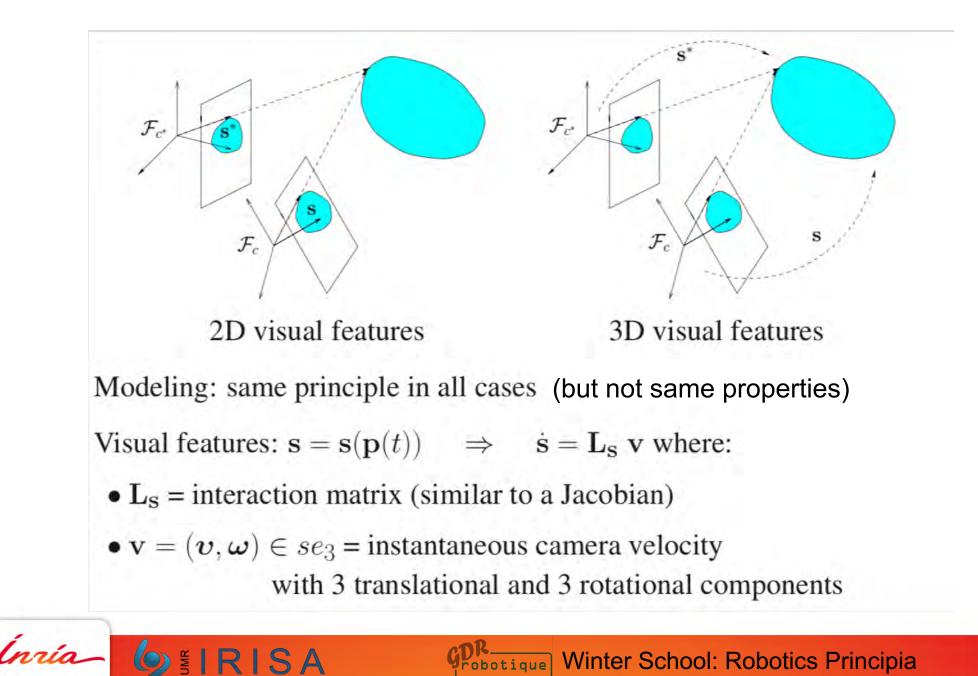
A wide spectrum of applications

Just need a camera and a robot





What are the best features? IBVS / PBVS



(Basic) control law / stability analysis

If we would like $\dot{s} = -\lambda(s - s^*)$ (exponential decoupled decrease) From $\dot{s} = L_s v$, we get

$$\mathbf{v} = -\lambda \ \widehat{\mathbf{L_s}}^+(\mathbf{s} - \mathbf{s}^*)$$
 with $\widehat{\mathbf{L_s}}_{(\mathbf{s},\mathbf{p},\mathbf{a})}$

Closed-loop system: $\dot{\mathbf{s}} = \mathbf{L}_{\mathbf{s}} \mathbf{v} = -\lambda \mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}}_{\mathbf{s}}^{+} (\mathbf{s} - \mathbf{s}^{*})$ Lyapunov stability analysis: $\mathcal{L} = \frac{1}{2} ||\mathbf{s} - \mathbf{s}^{*}||^{2}$

$$\dot{\mathcal{L}} = -\lambda(\mathbf{s} - \mathbf{s}^*)^\top \mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}}_{\mathbf{s}}^+ (\mathbf{s} - \mathbf{s}^*)$$

• if
$$\mathbf{L_s} \widehat{\mathbf{L_s}}^+ = \mathbf{I}$$
, perfect behavior

S | R | S A

Innia

• if
$$\mathbf{L_s}\widehat{\mathbf{L_s}}^+ > 0$$
, $\|\mathbf{s} - \mathbf{s}^*\|$ decreases

• if
$$\mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}}_{\mathbf{s}}^+ < 0$$
, $\|\mathbf{s} - \mathbf{s}^*\|$ increases...

Sufficient condition for stability: $\mathbf{L_s} \widehat{\mathbf{L_s}}^+ > 0$

Stability analysis with $\mathbf{v} = -\lambda \ \widehat{\mathbf{L}_s}^+ (\mathbf{s} - \mathbf{s}^*)$: $\mathbf{L}_s \widehat{\mathbf{L}_s}^+ > 0$?

• if k = 6 (usual case in PBVS), dim $\mathbf{L}_{\mathbf{s}} = 6 \times 6$ $\mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}_{\mathbf{s}}}^+ = \mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}_{\mathbf{s}}}^{-1} > 0$ allows the system to be GAS

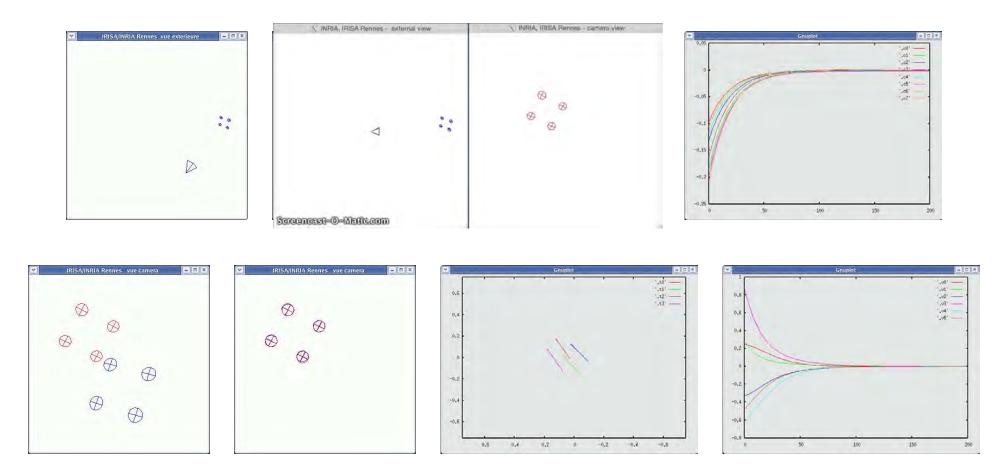
• if k > 6 (usual case in IBVS), dim $\mathbf{L}_{\mathbf{s}} = k \times 6$ $\mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}_{\mathbf{s}}}^+ > 0$ impossible (rank $\mathbf{L}_{\mathbf{s}} = 6 < k$ at max)

Inría

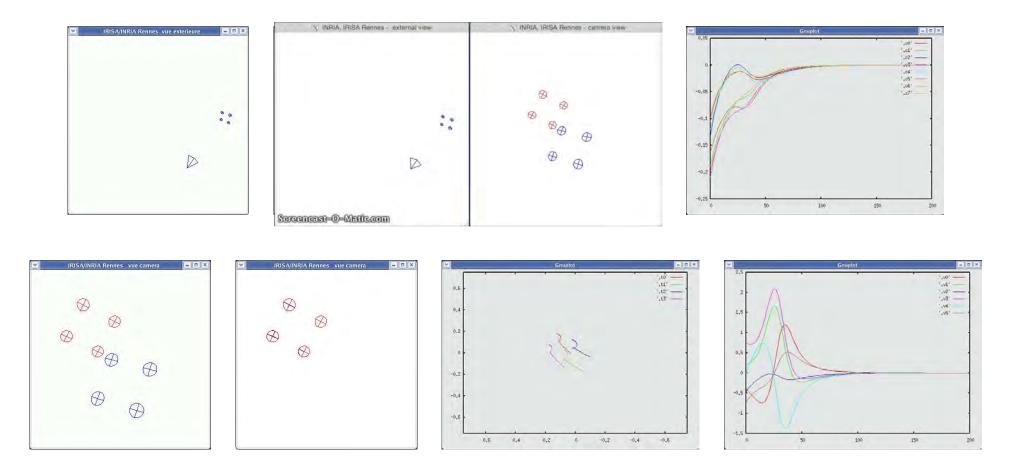
6 FIRISA

By looking at $\mathbf{e} = \widehat{\mathbf{L}_{\mathbf{s}}}^{+}(\mathbf{s} - \mathbf{s}^{*})$ and $\mathcal{L} = \frac{1}{2} ||\mathbf{e}||^{2}$ $\dot{\mathcal{L}} = \mathbf{e}^{\top} \dot{\mathbf{e}} \approx \mathbf{e}^{\top} \widehat{\mathbf{L}_{\mathbf{s}}}^{+} \mathbf{L}_{\mathbf{s}} \mathbf{v} = -\lambda \mathbf{e}^{\top} \widehat{\mathbf{L}_{\mathbf{s}}}^{+} \mathbf{L}_{\mathbf{s}} \widehat{\mathbf{L}_{\mathbf{s}}}^{+}(\mathbf{s} - \mathbf{s}^{*}) = -\lambda \mathbf{e}^{\top} \widehat{\mathbf{L}_{\mathbf{s}}}^{+} \mathbf{L}_{\mathbf{s}} \mathbf{e}$ $\widehat{\mathbf{L}_{\mathbf{s}}}^{+} \mathbf{L}_{\mathbf{s}} > 0$ allows the system to be LAS (because of \approx)

Example 1: reaching a local minimum using $\widehat{\mathbf{L}_{\mathbf{S}}}^+ = \mathbf{L}_{\mathbf{S}}^+$



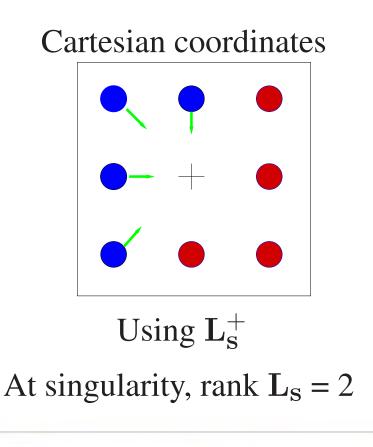
Example 2: reaching the global minimum using $\widehat{\mathbf{L}_s}^+ = \mathbf{L}_s^+|_{s=s^*}$



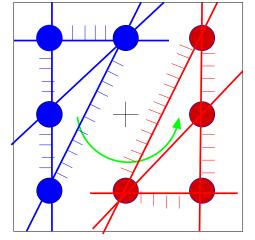
Innia 6 EIRISA

Example 3: reaching a singularity of $\rm L_{s}$

Example : rotation of 180° around the optical axis s composed of image points



Inría

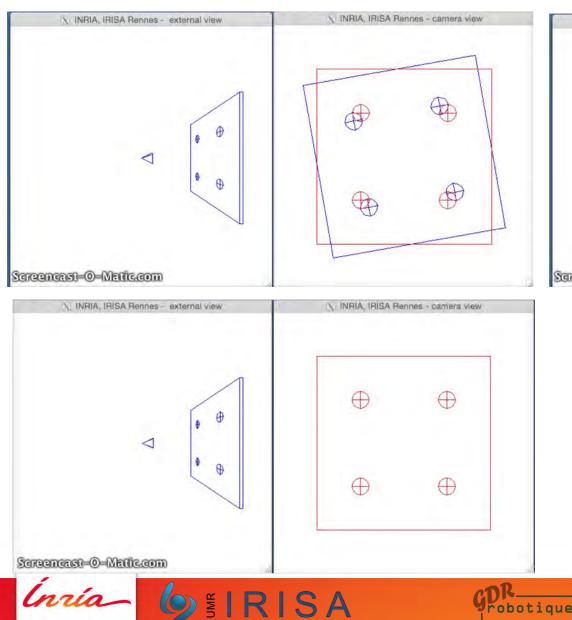


Using L_s^+ or $L_s^+|_{s=s^*}$

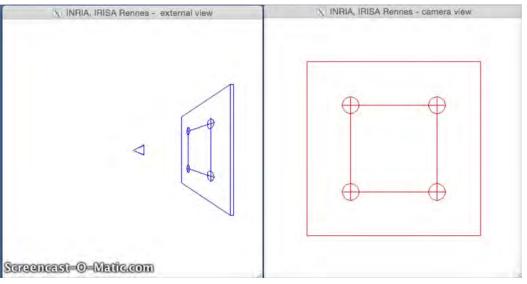
Perfect behavior

What are the best features?

Bad choice



Perfect choice (for this configuration)



Modeling issues

- 1. Basics
- 2. 3D visual features
- 3. 2D visual features
- 4. Numerical methods
- 5. Photometric features

Kinematic screw (instantaneous velocity)

 $\mathbf{v} = (\mathbf{v}, \boldsymbol{\omega}) : \text{ kinematic screw between the camera and the scene} \\ \text{expressed at } \mathbf{C} \text{ in } \mathcal{F}_c \\ \boldsymbol{\omega} : \text{ rotational velocity } : \qquad [\boldsymbol{\omega}]_{\times} = {}^o \mathbf{R}_c^{\top o} \dot{\mathbf{R}}_c = -{}^o \dot{\mathbf{R}}_c^{\top o} \mathbf{R}_c \\ \boldsymbol{v} : \text{ translational velocity at } \mathbf{C} : \qquad [\boldsymbol{\omega}]_{\times} = {}^o \mathbf{R}_c^{\top o} \dot{\mathbf{R}}_c = -{}^o \dot{\mathbf{R}}_c^{\top o} \mathbf{R}_c \\ \boldsymbol{v} : \text{ translational velocity at } \mathbf{C} : \qquad \boldsymbol{v}(\mathbf{O}) = -\boldsymbol{v}(\mathbf{C}) - \boldsymbol{\omega} \times \mathbf{CO} \end{aligned}$ To express \mathbf{v} at \mathbf{O} in $\mathcal{F}_o : {}^o \mathbf{v} = {}^o \mathbf{V}_c \mathbf{v}$ with ${}^o \mathbf{V}_c = \begin{bmatrix} {}^o \mathbf{R}_c & [{}^o \mathbf{t}_c]_{\times} {}^o \mathbf{R}_c \\ \mathbf{0}_3 & {}^o \mathbf{R}_c \end{bmatrix}$

We can decompose \mathbf{v} as $\mathbf{v} = \mathbf{v}_c - \mathbf{v}_o$

IN SA

where \mathbf{v}_c : camera kinematic screw, expressed at \mathbf{C} in \mathcal{F}_c \mathbf{v}_o : object kinematic screw, expressed at \mathbf{C} in \mathcal{F}_c

The interaction matrix

A set s of k visual features is given by a function from SE_3 to \mathbb{R}^k :

 $\mathbf{s} = \mathbf{s}(\mathbf{p}(t))$

where $\mathbf{p}(t)$ is the pose between the camera and the scene. We get

$$\dot{\mathbf{s}} = \frac{\partial \mathbf{s}}{\partial \mathbf{p}} \ \dot{\mathbf{p}} = \mathbf{L}_{\mathbf{s}} \ \mathbf{v}$$

where L_s is the **interaction matrix** related to s (Jacobian $\frac{\partial s}{\partial p} \approx L_s$ since $\dot{p} = L_p v$)

Using \mathbf{v}_c and \mathbf{v}_o , we obtain :

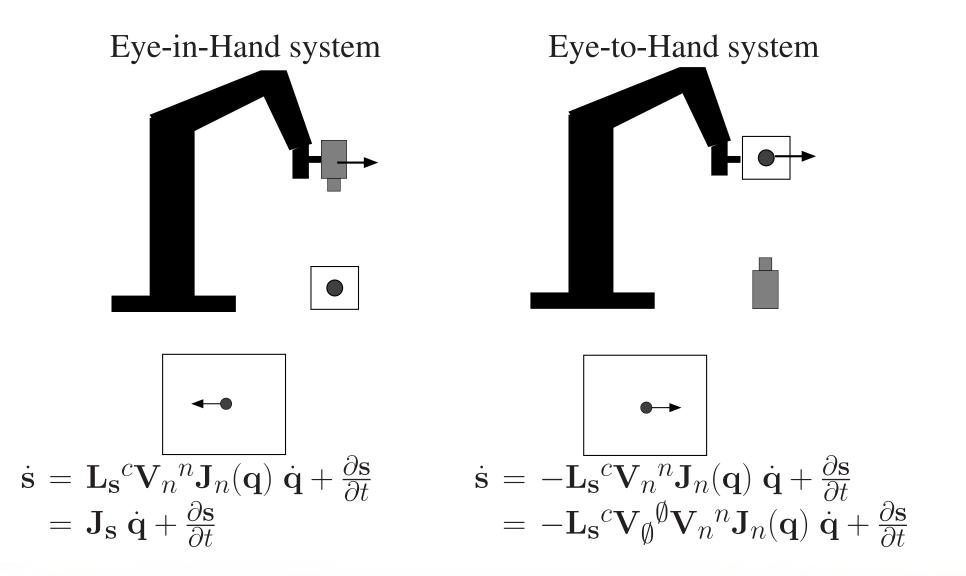
RISA

NR (

Inría

$$\dot{\mathbf{s}} = \mathbf{L}_{\mathbf{s}} \left(\mathbf{v}_{c} - \mathbf{v}_{o}
ight)$$

The feature Jacobian $J_{\rm S}$



Inría

🖢 🛿 🛛 RISA

Modeling issues

- 1. Basics
- 2. 3D visual features
- 3. 2D visual features
- 4. Numerical methods
- 5. Photometric features

3D visual features with one camera

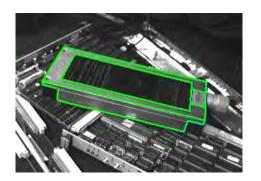
Based on pose estimation $\hat{\mathbf{p}}(t)$ from \mathcal{F}_c to \mathcal{F}_o using

• an image of the object: $\mathbf{x}(t)$

RISA

Inría

 \bullet the knowledge of the object 3D model: ${\bf X}$



Winter School: Robotics Principia

• an estimation of the camera intrinsic parameters: x_c, y_c, f_x, f_y

$$\mathbf{\hat{p}}(t) = \mathbf{\hat{p}}(\mathbf{x}(t), \mathbf{X}, x_c, y_c, f_x, f_y)$$

Pose estimation problem \sim camera calibration problem (intrinsic camera parameters already known)

3D visual features with one camera

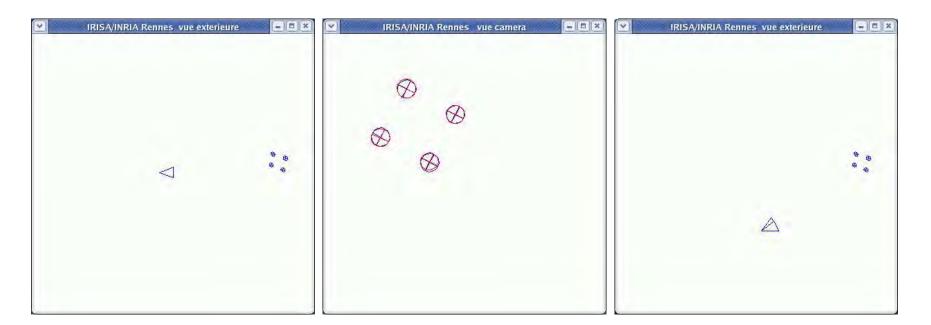
Estimated pose $\hat{\mathbf{p}}(t) = \hat{\mathbf{p}}(\mathbf{x}(t), \mathbf{X}, x_c, y_c, f_x, f_y)$

$$\Rightarrow \quad \dot{\hat{\mathbf{p}}}(t) = \frac{\partial \hat{\mathbf{p}}}{\partial \mathbf{x}} \, \dot{\mathbf{x}} = \frac{\partial \hat{\mathbf{p}}}{\partial \mathbf{x}} \, \mathbf{L}_{\mathbf{x}} \, \mathbf{v} \quad \Rightarrow \quad \mathbf{L}_{\hat{\mathbf{p}}} = \frac{\partial \hat{\mathbf{p}}}{\partial \mathbf{x}} \, \mathbf{L}_{\mathbf{x}}$$

where L_x is known but $\frac{\partial \hat{\mathbf{p}}}{\partial x}$ is unknown (and sometimes unstable)

Inría

IRISA



3D visual features

Under the strong hypothesis that 3D estimation is perfect:

$$\frac{\partial \hat{\mathbf{p}}}{\partial \mathbf{p}} = \mathbf{I}_6 \Rightarrow \dot{\hat{\mathbf{p}}} = \dot{\mathbf{p}} = \mathbf{L}_{\mathbf{p}} \mathbf{v}$$

• parameters θ **u** that represent rotation c^* **R**_c

$$\mathbf{L}_{\theta \mathbf{u}} = \begin{bmatrix} \mathbf{0}_3 \ \mathbf{L}_{\boldsymbol{\omega}} \end{bmatrix} \text{ where } \mathbf{L}_{\boldsymbol{\omega}} = \mathbf{I}_3 + \frac{\theta}{2} \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\times} + (1 - \frac{\operatorname{sinc}\theta}{\operatorname{sinc}^2 \frac{\theta}{2}}) \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\times}^2$$

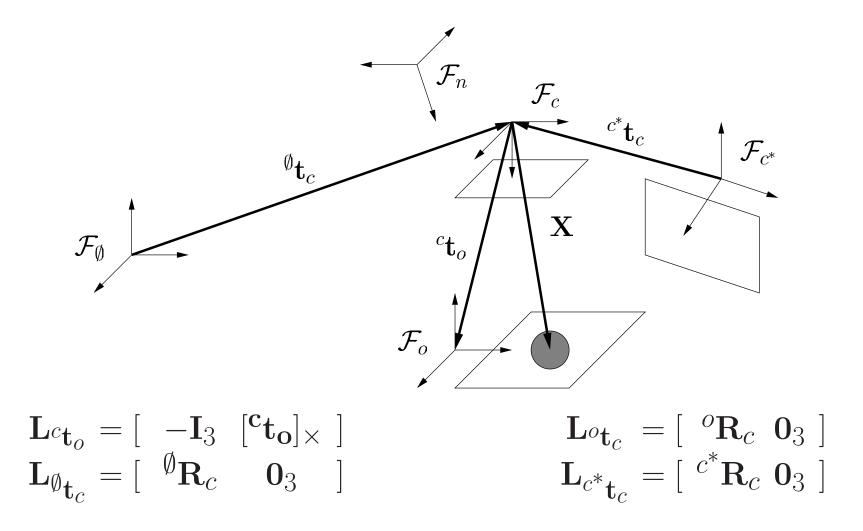
$$\mathbf{L}_{\boldsymbol{\omega}}$$
 such that $\mathbf{L}_{\boldsymbol{\omega}} \theta \mathbf{u} = \mathbf{L}_{\boldsymbol{\omega}}^{-1} \theta \mathbf{u} = \theta \mathbf{u}$

• coordinates of a 3D point X :

Inría

$$\dot{\mathbf{X}} = \boldsymbol{v}(\mathbf{X}) = -\boldsymbol{v}(\mathbf{C}) - \boldsymbol{\omega} \times \mathbf{C}\mathbf{X} = -\boldsymbol{v} + \mathbf{C}\mathbf{X} \times \boldsymbol{\omega} = -\boldsymbol{v} + [\mathbf{X}]_{\times}\boldsymbol{\omega}$$
$$\Rightarrow \mathbf{L}_{\mathbf{X}} = \begin{bmatrix} -\mathbf{I}_3 \ [\mathbf{X}]_{\times} \end{bmatrix} = \begin{bmatrix} -1 \ 0 \ 0 \ -1 \ 0 \ Z \ 0 \ -1 \ -Y \ X \ 0 \end{bmatrix}$$

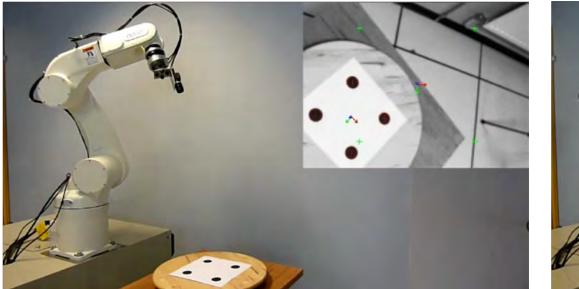
3D visual features for an eye-in-hand system

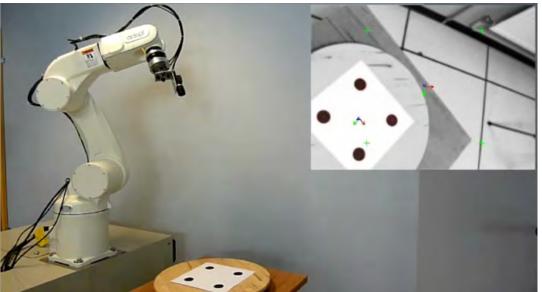


Inría

SIRISA

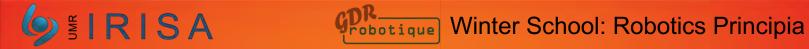
Ínría_





$$\mathbf{s} = ({}^c \mathbf{t}_o, heta \mathbf{u})$$

$$\mathbf{s} = \left({}^{c^*}\mathbf{t}_c, \theta \mathbf{u}\right)$$



Modeling issues

- 1. Basics
- 2. 3D visual features
- 3. 2D visual features
- 4. Numerical methods
- 5. Photometric features

2D visual features: image point coordinates

Using a mobile camera and a fixed point:

$$\dot{\mathbf{X}} = \boldsymbol{v}(\mathbf{X}) = -\boldsymbol{v}(\mathbf{C}) - [\boldsymbol{\omega}]_{\times}\mathbf{C}\mathbf{X} = [-\mathbf{I}_3 \ [\mathbf{X}]_{\times}] \mathbf{v}$$

We obtain:

O H

RISA

Inría

$$\dot{\mathbf{x}} = \mathbf{L}_{\mathbf{x}} \mathbf{v} \text{ where } \mathbf{L}_{\mathbf{x}} = \begin{bmatrix} -1/Z & 0 & x/Z & xy & -(1+x^2) & y \\ 0 & -1/Z & y/Z & 1+y^2 & -xy & -x \end{bmatrix}$$

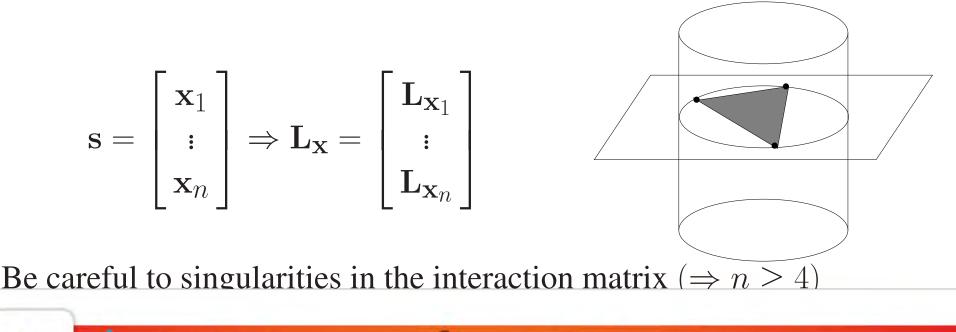
2D visual features: image point coordinates

When x = y = 0 (principal point):

$$\mathbf{L}_{\mathbf{X}} = \begin{bmatrix} -1/Z & 0 & 0 & 0 & -1 & 0 \\ 0 & -1/Z & 0 & 1 & 0 & 0 \end{bmatrix}$$

A single point is adequate to control v_x or ω_y and v_y or ω_x

Using several points (at least 3) allows to control the 6 dof.



What's about 3D information

The depth Z_i of each point appears for the 3 translational dof (true $\forall s \in 2D$)

- Can be approximated:
- Can be estimated:
 - by triangulation with stereovision
 - from pose if 3D object model available
 - up to a scale factor from epipolar geometry/homography with current & desired images

Winter School: Robotics Principia

- from structure from known motion

S I R I S A

Note:

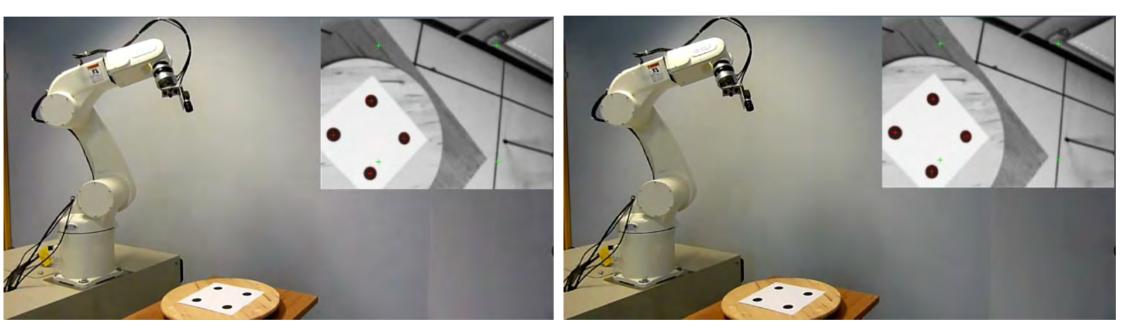
Inría

- For IBVS, the depth has an effect on the transient phase, not on the final accuracy (when the system is stable)
- For PBVS, 3D is involved for both the transient phase and the final accuracy, so problem in case of 3D noise

IBVS with points

Ínría_

6 SIRISA

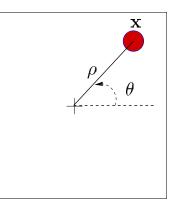


Using
$$\mathbf{v} = -\lambda \mathbf{L}^+_{\mathbf{s}(\mathbf{s},\mathbf{Z})}(\mathbf{s}-\mathbf{s}^*)$$
 Using $\mathbf{v} = -\lambda \mathbf{L}^+_{\mathbf{s}(\mathbf{s}^*,\mathbf{Z}^*)}(\mathbf{s}-\mathbf{s}^*)$

Image point in cylindrical coordinates [Iwatsuki 02]

Use of (ρ, θ) for an image points instead of (x, y):

$$\rho = \sqrt{x^2 + y^2}, \ \theta = \arctan \frac{y}{x}$$



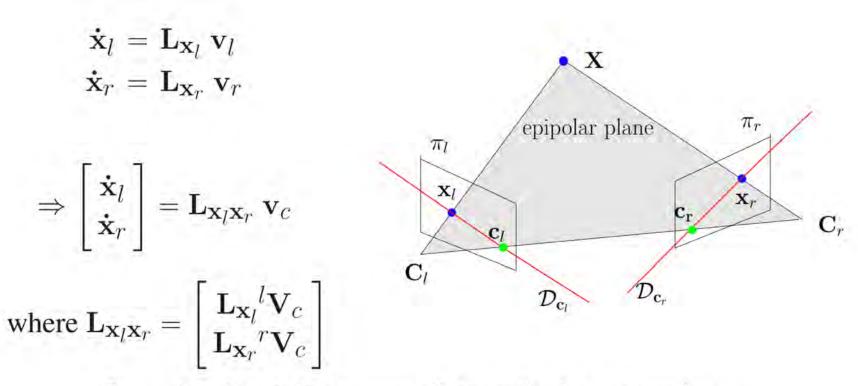
Corresponding interaction matrix:

$$\mathbf{L}_{\rho} = \begin{bmatrix} \frac{-\cos\theta}{Z} & \frac{-\sin\theta}{Z} & \frac{\rho}{Z} & (1+\rho^2)\sin\theta & -(1+\rho^2)\cos\theta & 0 \end{bmatrix}$$
$$\mathbf{L}_{\theta} = \begin{bmatrix} \frac{\sin\theta}{\rho Z} & \frac{-\cos\theta}{\rho Z} & 0 & \frac{\cos\theta}{\rho} & \frac{\sin\theta}{\rho} & -1 \end{bmatrix}$$

Better decoupling between v_z and ω_z

Be careful for the principal point ($x = y = \rho = 0$, θ undefined)

Image point for a stereovision system



 $L_{x_l x_r}$ is of rank 3 because of the epipolar constraint

• Generalization to multi-cameras systems immediate

Inría

S S A

• Probably better to use the coordinates of the 3D point

2D visual features: geometrical primitives

 P_o : configuration of an *object feature* parameterized by $\mathbf{P_o}$ $p_i = \pi(P_o)$: configuration of an *image feature* parameterized by $\mathbf{p_i}$ Noting $\mathbf{P_o} = \varphi(P_o)$ and $\mathbf{p_i} = \psi(p_i)$, we get $\mathbf{p_i} = \nu(\mathbf{P_o}) = \psi \circ \pi \circ \varphi^{-1}(\mathbf{P_o})$

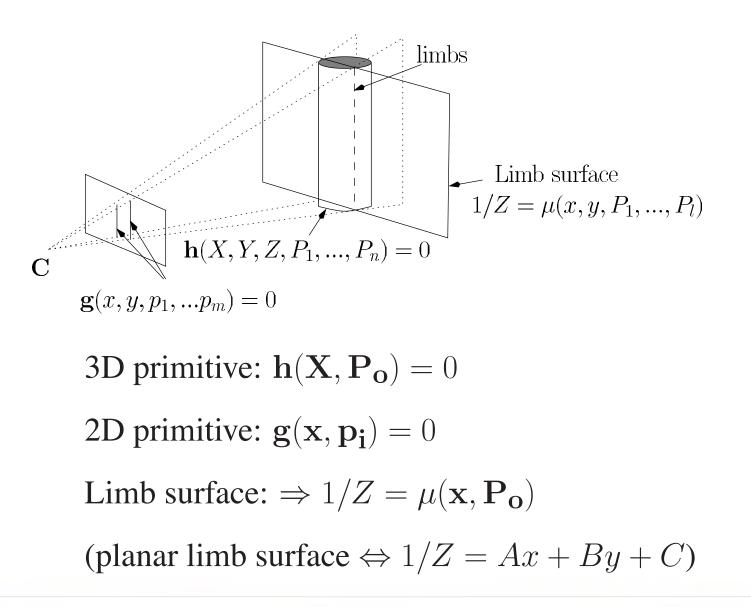
We also have $\mathbf{P_o} = \varphi \circ \delta(\mathbf{p}) \Rightarrow \mathbf{p_i} = \psi \circ \pi \circ \delta(\mathbf{p}) = \nu \circ \varphi \circ \delta(\mathbf{p})$

Finally $\mathbf{s} = \sigma(\mathbf{p_i}) \Rightarrow \mathbf{L_s} = \frac{\partial \mathbf{s}}{\partial \mathbf{p_i}} \frac{\partial \mathbf{p_i}}{\partial \mathbf{P_o}} \mathbf{L_{Po}}$

SIRISA

Inría

Modeling a geometrical primitive



Inría

SIRISA

Summary

3D primitives	2D primitives	Parameterization
point	point	(x,y) or $(ho, heta)$
segment	segment	(x_1, y_1, x_2, y_2)
		$(x_m/l, y_m/l, 1/l, \alpha)$
straight line	straight line	(ho, heta)
circle	ellipse	$(x_g, y_g, \mu_{20}, \mu_{11}, \mu_{02})$
sphere	ellipse	$(x_g, y_g, a = \pi r^2)$
cylinder	2 straight lines	$(\rho_1, \theta_1, \rho_2, \theta_2)$
planar object	moments	$(a, x_g, y_g, \theta, \ldots)$

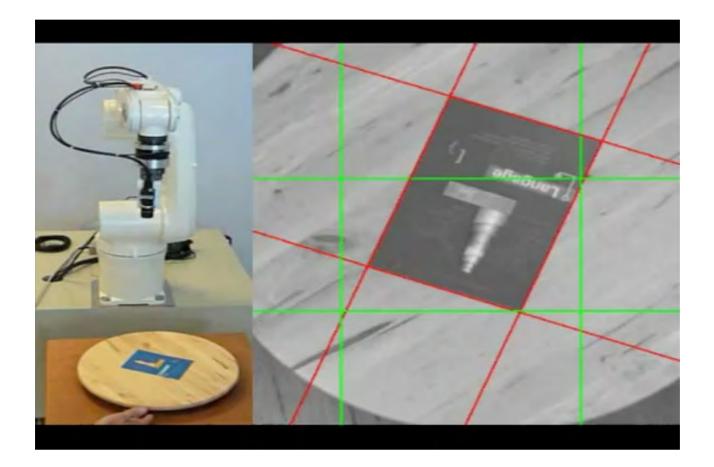
Winter School: Robotics Principia

 L_s also available for distance from a point to a straight line, angle between two straight lines, etc.

(nría_

OSIRISA

IBVS with straight lines



Modeling issues

- 1. Basics
- 2. 3D visual features
- 3. 2D visual features
- 4. Numerical methods
- 5. Photometric features

Other approach: direct numerical estimation

Using N measurements of v_c and corresponding \dot{s} around s^*

Off-line learning of L_s:
With 1 measurement, L_s v_c = s : k equations and k × 6 unknowns
With N(≥ 6), L_s A = B where A ∈ ℝ^{6×N} and B ∈ ℝ^{k×N}
⇒ L_s = BA⁺

• Off-line learning of
$$\mathbf{L}_{\mathbf{s}}^+$$
 (better method):
With 1 measurement, $\mathbf{L}_{\mathbf{s}}^+ \dot{\mathbf{s}} = \mathbf{v}_{\mathbf{c}}$: 6 equations and $6 \times k$ unknowns
With $N(\geq k)$, $\mathbf{L}_{\mathbf{s}}^+ \mathbf{B} = \mathbf{A} \Rightarrow \widehat{\mathbf{L}_{\mathbf{s}}^+} = \mathbf{A}\mathbf{B}^+$

• Other methods: neural networks,...

OSIRISA

Inría

Methods valid locally around s^* only since L_s is not constant. Stability impossible to demonstrate

Other approach: direct numerical estimation

On-line iterative estimation (based on Broyden update):

Inría los 1

RISA

$$\widehat{\mathbf{L}_{\mathbf{s}}}(t+1) = \widehat{\mathbf{L}_{\mathbf{s}}}(t) + \frac{\alpha}{\mathbf{v_c}^{\top}\mathbf{v_c}} \left(\mathbf{\dot{s}} - \widehat{\mathbf{L}_{\mathbf{s}}}(t)\mathbf{v_c} \right) \mathbf{v_c}^{\top}$$

botique

Be careful to initial value $\widehat{\mathbf{L}_{\mathbf{s}}}(t0)$ Stability impossible to demonstrate May be useful for unknown complex objects or unmodeled systems

Winter School: Robotics Principia

Modeling issues

- 1. Basics
- 2. 3D visual features
- 3. 2D visual features
- 4. Numerical methods
- 5. Photometric features

A new family of visual servoing: photometric VS

Remove the image processing part:

• No more extraction nor tracking visual measurements near video rate

Advantages:

- Robustness to image processing errors and noise!
- End-to-end control (here without deep learning)

RISA

Photometric/direct/dense visual servoing

Visual features: intensity of each pixel $\mathbf{s} = \mathbf{I}(\mathbf{x}(t))$

T*

Modeling: $\mathbf{L}_{\mathbf{I}} = -\nabla \mathbf{I}_{\mathbf{x}} \mathbf{L}_{\mathbf{x}}$ (function of the image content)

 $\mathcal{L} = \frac{1}{2} \|\mathbf{I} - \mathbf{I}^*\|$ highly non linear

Drawbacks: small convergence domain, strange robot trajectory

But no feature extraction, tracking nor matching

+ excellent positioning accuracy

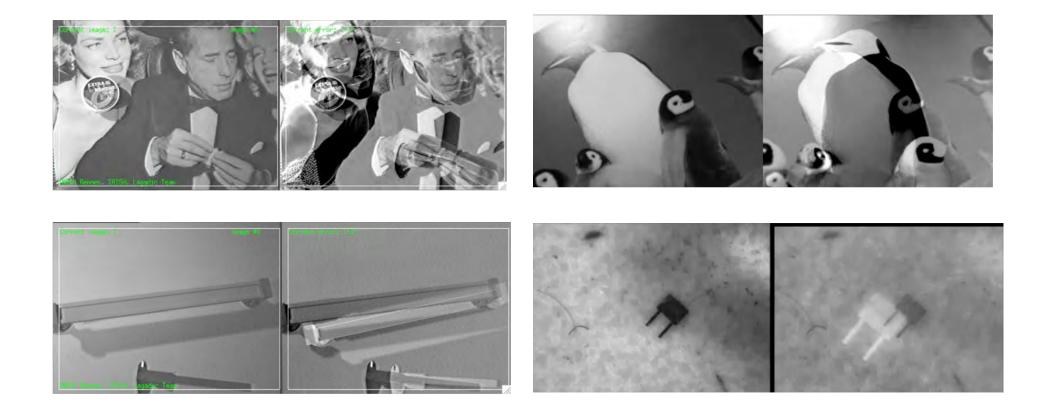
🖉 🖞 R I S A

Inría

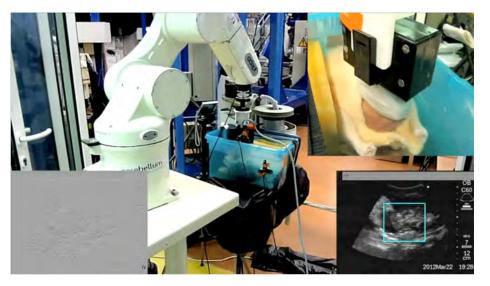
 $I - I^*$

Photometric visual servoing

Robustness to global illumination changes by using $\mathbf{s} = (\mathbf{I} - \overline{\mathbf{I}})/\sigma_{\mathbf{I}}^2$ Robustness to outliers (occlusion) by using $\mathbf{s} = \rho_{\mathbf{I}} \mathbf{I}$



Similar on 2D ultrasound images



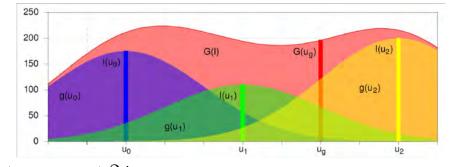
Similar on depth map

Ínia 6 EIRISA



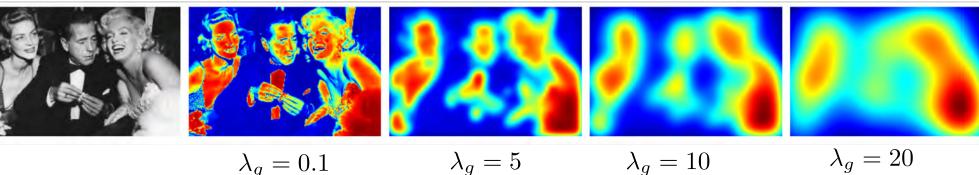
Get the reference depth map at the desired position

Mixture of Gaussians



Enlarge the convergence domain

$$G(\mathbf{u}_{\mathbf{g}}, \lambda_g) = \sum_{\mathbf{u}_{\mathbf{i}} \in \mathbf{I}} I(\mathbf{u}_{\mathbf{i}}) \exp \left(-\frac{(u_g - u_i)^2 + (v_g - v_i)^2}{2\lambda_g^2}\right)$$



$$\lambda_g = 0.1$$

 $\lambda_g = 5$

 $\lambda_g = 20$

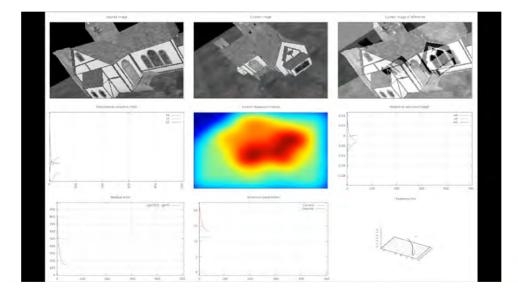
Control simultaneously

the camera motion

Inría

the expansion parameter (large to small)

S S A



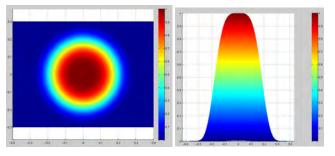
Photometric moments

SIRISA

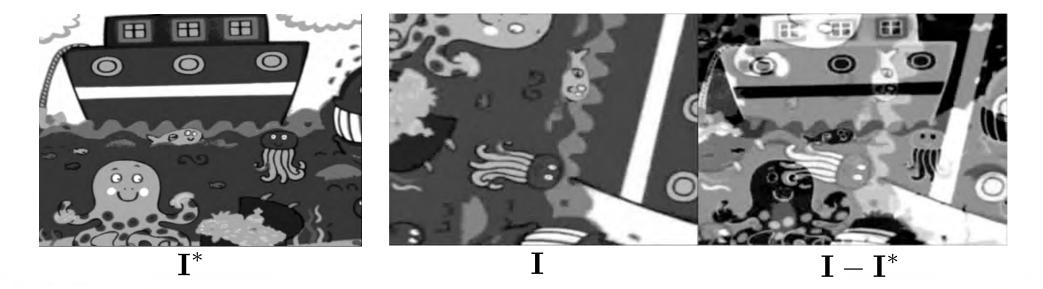
Ínría

Going back to geometric features for enlarging the convergence domain and improving the robot trajectory

$$m_{pq} = \iint_{\pi} x^{p} y^{q} w\left(\mathbf{x}\right) I\left(\mathbf{x}, t\right) \, \mathrm{d}x \, \mathrm{d}y$$



Then select adequate moments (area, cog, main orientation, ...)



Overview

- 1. Introduction
- 2. Modeling
- 3. Task specification
- 4. Control

Task specification

• Just specify s* or s*(t)

(such as an object has to appear at the center of the image)

- Specify a desired pose and deduce the value of s*
 (but 3D model of the object + camera calibration needed)
- Teach by showing:
 - 1. go to the desired pose;
 - 2. acquire the corresponding image;

RISA

3. determine s^* in the same way as s(t).

Task classification: virtual link

- The task s(t) = s* defines a virtual link between the sensor and its environment.
- This link is characterized by the set S^* of 3D motions such that $\dot{s} = 0$

$$\mathcal{S}^* = \operatorname{Ker} \mathbf{L}_{\mathbf{s}}$$

RISA

• dim S^* = class of the link

MI (

Inría

Name	Class	T	R	Geometric symbol
Rigid	0	0	0	AB
Prismatic	1	1	0	
Rotary	1	0	1	⊢ ^A _B A⇔ _B
Sliding pivot	2	1	1	$-\underline{\stackrel{\bot B}{=}} A \overset{B}{\bigcirc} A$
Plane-to-plane	3	2	1	A
Bearing	3	0	3	A D B
Linear rectlinear	4	2	2	$\begin{array}{c c} A & A \\ \hline B & B \\ \hline \end{array}$
Linear annular	4	1	3	$+ \stackrel{\mathbf{B}}{\to} A \bigotimes_{\mathbf{A}}^{\mathbf{B}}$
Point	5	2	3	

Case of a point

$$\mathbf{s} = (x, y)$$

$$\Rightarrow \mathbf{L}_{xy} = \begin{bmatrix} -1/Z & 0 & x/Z & xy & -(1+x^2) & y \\ 0 & -1/Z & y/Z & 1+y^2 & -xy & -x \end{bmatrix}$$

$$\Rightarrow \mathcal{S}^* = \begin{bmatrix} x & 0 & Z(1+x^2+y^2) & 0 \\ y & 0 & 0 & Z(1+x^2+y^2) \\ 1 & 0 & 0 & 0 \\ 0 & x & -xy & 1+x^2 \\ 0 & y & -(1+y^2) & xy \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

 \Rightarrow Link of class 4

SIRISA

Inría

Prismatic link

$$S^* = (1, 0, 0, 0, 0, 0)$$

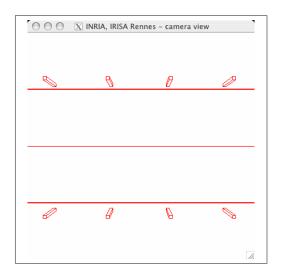
Using 3 (horizontal) straight lines

3D straight lines :

D H

nría

$$\mathbf{h}_{i}(\mathbf{X}, \mathbf{P}) = \begin{cases} Y - \frac{Y_{i}^{*}}{Z_{i}^{*}} Z = 0\\ Z - Z_{i}^{*} = 0 \end{cases}, \ i = 1, 2, 3 \end{cases}$$



2D straight lines : $\rho_i = Y_i^*/Z_i^*, \ \theta_i = \pi/2$

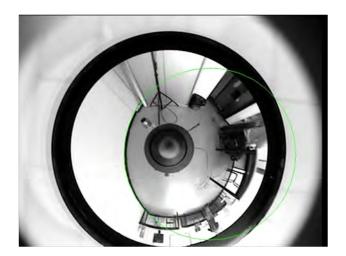
RISA

$$\Rightarrow \mathbf{L}_{\rho_i \theta_i} = \begin{bmatrix} 0 & -1/Z_i^* & \rho_i / Z_i^* & (1 + \rho_i^2) & 0 & 0 \\ 0 & 0 & 0 & 0 & -\rho_i & -1 \end{bmatrix}$$

With a 3 dof mobile robot (v_x, v_z, ω_y) , 1 straight line is sufficient.

Prismatic link from an omnidirectional camera

3 dof ground mobile robot so the observation of 1 straight line (here a circle) is sufficient to achieve the task



Plane-to-plane link from proximity sensors

A narrow beam proximity sensor provides the range Z

Inría

from the sensor to the nearest object along the sensor axis.

When the object surface is perpendicular to the sensor axis: $\mathbf{L}_{Z} = (0 \ 0 \ -1 \ 0 \ 0 \)$

otique

 \mathbf{Z}

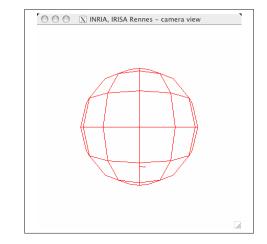
Bearing

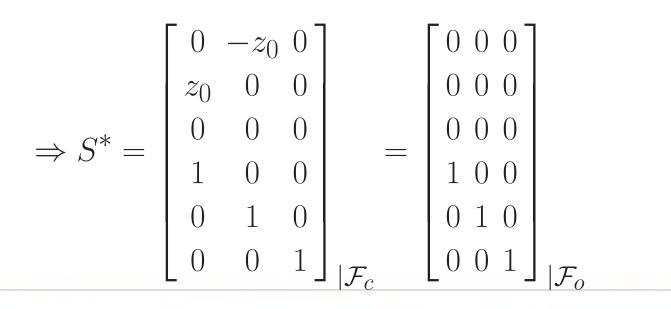
Using a sphere with center $\mathbf{O} = (0, 0, Z_0)$

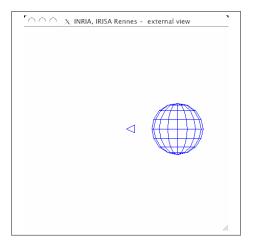
I R I S A

 \Rightarrow Image of the sphere = centered circle

$$\begin{split} \mathbf{L}_{x_c} &= \begin{bmatrix} -1/Z_c & 0 & 0 & 0 & -1 - r^2 & 0 \end{bmatrix} \\ \mathbf{L}_{y_c} &= \begin{bmatrix} 0 & -1/Z_c & 0 & 1 + r^2 & 0 & 0 \end{bmatrix} \\ \mathbf{L}_{\mu} &= \begin{bmatrix} 0 & 0 & 2r^2/Z_c & 0 & 0 & 0 \end{bmatrix} \\ \text{with } Z_c &= (Z_0^2 - R^2)/Z_0 \text{ and } r^2 = R^2/(Z_0^2 - R^2). \end{split}$$







Overview

- 1. Introduction
- 2. Modeling
- 3. Task specification
- 4. Control

Control

Basic kinematics controller: $\mathbf{v}_c = -\lambda \ \widehat{\mathbf{L}_s}^+ (\mathbf{s} - \mathbf{s}^*)$ with $\widehat{\mathbf{L}_s} = \begin{cases} \mathbf{L}_s(\mathbf{s}, \mathbf{Z}) \\ \mathbf{L}_s(\mathbf{s}, \mathbf{Z}^*) \\ \mathbf{L}_s(\mathbf{s}^*, \mathbf{Z}^*) \\ \frac{1}{2} (\mathbf{L}_s(\mathbf{s}, \mathbf{Z}) + \mathbf{L}_s(\mathbf{s}^*, \mathbf{Z}^*)) \end{cases}$

Time-to-convergence improved by using an adaptive gain $\hat{\lambda}$ High initial velocities avoided using 2nd order behavior (see ViSP)

Note: If the robot is not able to apply \mathbf{v}_c , use $\dot{\mathbf{q}} = -\lambda \, \widehat{\mathbf{J}_s}^+ \, (\mathbf{s} - \mathbf{s}^*)$

with $\widehat{\mathbf{J}_{\mathbf{s}}} = \widehat{\mathbf{L}_{\mathbf{s}}} {}^{c} \mathbf{V}_{n} {}^{n} \mathbf{J}_{n}(\mathbf{q})$ (remember slide 17)

S S A

A simple case k = m = n = 2

Case of a pan-tilt camera observing a point :

Inría

 $\mathbf{s} = (x, y), \ \mathbf{s}^* = (0, 0)$ $\dot{\mathbf{e}} = \begin{vmatrix} \dot{x} \\ \dot{y} \end{vmatrix} = \begin{vmatrix} xy & -(1+x^2) \\ 1+y^2 & -xy \end{vmatrix} \begin{vmatrix} \omega_x \\ \omega_y \end{vmatrix}$ $\mathbf{v}_c = -\lambda \, \widehat{\mathbf{L}_s}^{-1} \, (\mathbf{s} - \mathbf{s}^*)$ $\Leftrightarrow \left| \begin{array}{c} \omega_x \\ \omega_y \end{array} \right| = -\frac{\lambda}{1+x^2+y^2} \left| \begin{array}{c} y \\ -x \end{array} \right|$

If no error occurs, $\dot{s} = -\lambda s$: trajectory = straight line in the image

Target tracking

1st solution: Use an integral term to compensate for the lag

$$\mathbf{v_c} = -\lambda \mathbf{e} + \left| \mu \sum_{j=0}^k \mathbf{e}_j \right|$$
 with $\mathbf{e} = \widehat{\mathbf{L}_s}^+ (\mathbf{s} - \mathbf{s}^*)$

- Need to tune the gain μ

Inría

- Efficient only for target moving at constant velocity

$$\mathbf{v}_{c} = -\lambda \,\mathbf{e} + \frac{\widehat{\partial e}}{\partial t}$$
 with $\frac{\widehat{\partial e}}{\partial t}$ the predicted value of $\frac{\widehat{\partial e}}{\partial t} = \hat{\mathbf{e}} - \widehat{\mathbf{L}_{s}}\mathbf{v}_{c}$
obtained for instance from a Kalman filter and with $\hat{\mathbf{e}}_{k} = \frac{\mathbf{e}_{k} - \mathbf{e}_{k-1}}{\Delta t}$

– Need to measure the camera velocity \mathbf{v}_c

RISA

To go further

Consider constraints:

• visibility, occlusion, obstacles

RISA

- joint limits, singularities
- dynamics constraints: non holonomy, under-actuation
 - Path planning in the image, model-predictive control, optimal control (QP)
 - Redundancy (GPM), task sequencing, stack of tasks

