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Preliminary note
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1. Introduction
2. Modeling
3. Task specification 
4. Control

Overview

• In this talk, focus on vision-based control / visual servoing
• But all concepts are valid for any exteroceptive sensor providing 

measurements related to the relative pose between the robot and its 
environment (proximity sensors, laser, depth map, RGB-D camera, 2D US 
probe, omnidirectional camera, audio sensor, …)



Winter School: Robotics Principia 

References

3

[1] S. Hutchinson, G. Hager, P. Corke: A tutorial on visual servo control, 

IEEE. Trans. on Robotics and Automation, 12(5):651-670, October 1996. 

[2] F. Chaumette, S. Hutchinson: Visual servoing and visual tracking, In The 
Handbook of Robotics, B. Siciliano, O. Khatib (eds.), Chap 24, pp. 563-583, 

Springer, 2008. 

[3] P. Corke: Robotics, Vision and Control, Springer, 2011. 

[4] F. Chaumette: Visual servoing. In Robot Manipulators: Modeling, Performance    
Analysis and Control, E. Dombre, W. Khalil (eds.), Chap. 6, pp. 279-336, ISTE, 

2007. 

Software

• ViSP: http://visp.inria.fr
C++ open source library for real time visual tracking and visual servoing

http://visp.inria.fr/
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Open loop robot positioning
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For a given desired pose 

• Compute only once the                                                            

displacement to be done

or
Advantages: 
• Only one image to be processed and one very fast displacement to be 

achieved if the full system is perfectly calibrated
Drawback:
• Not robust to modeling and calibration errors
Better approach: closed-loop sensor-based control: visual servoing
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What is visual servoing?

5

Vision-based closed loop control of a dynamic system

Advantages: 
• Positioning accuracy
• Robustness with respect to modeling/calibration errors
• Reactive to changes (target tracking)
• Alternative to SLAM: achieve a task with the minimal information required

Drawback:
• Need many images to be processed
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A wide spectrum of applications
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Just need a camera and a robot
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What are the best features?       IBVS / PBVS
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(but not same properties)
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(Basic) control law / stability analysis
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Example 1: reaching a local minimum using L̂s
+
= L+

s

10
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Example 2: reaching the global minimum using L̂s
+
= L+

s |s=s∗

11
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Example 3: reaching a singularity of Ls

Example : rotation of 180◦ around the optical axis

s composed of image points

Cartesian coordinates Cylindrical coordinates

Using L+
s Using L+

s or L+
s |s=s∗

At singularity, rank Ls = 2 Perfect behavior

12
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What are the best features?
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Bad choice                                Perfect choice (for this configuration)
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Modeling issues
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1. Basics
2. 3D visual features
3. 2D visual features
4. Numerical methods
5. Photometric features
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Kinematic screw (instantaneous velocity)

v = (υ,ω) : kinematic screw between the camera and the scene

expressed at C in Fc

ω : rotational velocity : [ω]× = oR⊤
c
oṘc = −oṘ⊤

c
oRc

υ : translational velocity at C : υ(O) = −υ(C)− ω × CO

To express v at O in Fo : ov = oVc v with oVc =

[
oRc [otc]×oRc

03
oRc

]

We can decompose v as v = vc − vo

where vc : camera kinematic screw, expressed at C in Fc

vo : object kinematic screw, expressed at C in Fc

15
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The interaction matrix

A set s of k visual features is given by a function from SE3 to Rk :

s = s(p(t))

where p(t) is the pose between the camera and the scene.

We get

ṡ =
∂s

∂p
ṗ = Ls v

where Ls is the interaction matrix related to s

(Jacobian ∂s
∂p ≈ Ls since ṗ = Lp v)

Using vc and vo, we obtain :

ṡ = Ls (vc − vo)

16
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The feature Jacobian Js

Eye-in-Hand system Eye-to-Hand system

ṡ = Ls
cVn

nJn(q) q̇ + ∂s
∂t ṡ = −Ls

cVn
nJn(q) q̇ + ∂s

∂t
= Js q̇ + ∂s

∂t = −Ls
cV∅

∅Vn
nJn(q) q̇ + ∂s

∂t

17
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Modeling issues
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1. Basics
2. 3D visual features
3. 2D visual features
4. Numerical methods
5. Photometric features
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3D visual features with one camera

Based on pose estimation p̂(t) from Fc to Fo using

• an image of the object: x(t)

• the knowledge of the object 3D model: X

• an estimation of the camera intrinsic parameters: xc, yc, fx, fy

p̂(t) = p̂(x(t),X, xc, yc, fx, fy)

Pose estimation problem ∼ camera calibration problem

(intrinsic camera parameters already known)

19
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3D visual features with one camera

Estimated pose p̂(t) = p̂(x(t),X, xc, yc, fx, fy)

⇒ ˙̂p(t) =
∂p̂

∂x
ẋ =

∂p̂

∂x
Lx v ⇒ Lp̂ =

∂p̂

∂x
Lx

where Lx is known but ∂p̂∂x is unknown (and sometimes unstable)

20
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3D visual features
Under the strong hypothesis that 3D estimation is perfect:

∂p̂

∂p
= I6 ⇒ ˙̂p = ṗ = Lpv

• parameters θu that represent rotation c∗Rc

Lθu =
[
03 Lω

]
where Lω = I3 +

θ

2
[u]× + (1−

sincθ
sinc2θ2

) [u]2×

Lω such that Lωθu = L−1
ω θu = θu

• coordinates of a 3D pointX :
Ẋ = υ(X) = −υ(C)− ω ×CX = −υ +CX× ω = −υ + [X]×ω

⇒ LX =
[
−I3 [X]×

]
=

⎡

⎢⎣
−1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0

⎤

⎥⎦

2321
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3D visual features for an eye-in-hand system

Lcto = [ −I3 [cto]× ] Lotc = [ oRc 03 ]

L∅tc
= [ ∅Rc 03 ] Lc∗tc

= [ c∗Rc 03 ]

22
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PBVS   
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Modeling issues
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1. Basics
2. 3D visual features
3. 2D visual features
4. Numerical methods
5. Photometric features
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2D visual features: image point coordinates

Perspective projection : x = (x, y)

x = X/Z , y = Y/Z

⇒

{
ẋ = [ 1/Z 0 −X/Z2 ] Ẋ

ẏ = [ 0 1/Z −Y/Z2 ] Ẋ

x

Using a mobile camera and a fixed point:

Ẋ = υ(X) = −υ(C)− [ω]×CX =
[
−I3 [X]×

]
v

We obtain:

ẋ = Lx v where Lx =

[
−1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z 1 + y2 −xy −x

]

25
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2D visual features: image point coordinates

When x = y = 0 (principal point):

Lx =

[
−1/Z 0 0 0 −1 0
0 −1/Z 0 1 0 0

]

A single point is adequate to control υx or ωy and υy or ωx

Using several points (at least 3) allows to control the 6 dof.

s =

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦⇒ Lx =

⎡

⎢⎣
Lx1

...

Lxn

⎤

⎥⎦

Be careful to singularities in the interaction matrix (⇒ n ≥ 4)

26
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What’s about 3D information
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The depth      of each point appears for the 3 translational dof (true              )

• Can be approximated:

• Can be estimated:

-by triangulation with stereovision

- from pose if 3D object model available

- up to a scale factor from epipolar geometry/homography with current & desired images

- from structure from known motion 

Note:
• For IBVS, the depth has an effect on the transient phase, not on the final accuracy     

(when the system is stable)

• For PBVS, 3D is involved for both the transient phase and the final accuracy,                        

so problem in case of 3D noise 
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IBVS with points
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Using Using 



Winter School: Robotics Principia 128

Image point in cylindrical coordinates [Iwatsuki 02]

Use of (ρ, θ) for an image points instead of (x, y):

ρ =
√

x2 + y2 , θ = arctan
y

x

Corresponding interaction matrix:

Lρ = [ − cos θ
Z

− sin θ
Z

ρ
Z (1 + ρ2) sin θ −(1 + ρ2) cos θ 0 ]

Lθ = [ sin θ
ρZ

− cos θ
ρZ 0 cos θ

ρ
sin θ
ρ −1 ]

Better decoupling between υz and ωz

Be careful for the principal point (x = y = ρ = 0, θ undefined)

29
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Image point for a stereovision system

30
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2D visual features: geometrical primitives

Po : configuration of an object feature parameterized by Po

pi = π(Po) : configuration of an image feature parameterized by pi

Noting Po = ϕ(Po) and pi = ψ(pi), we get

pi = ν(Po) = ψ ◦ π ◦ ϕ−1(Po)

We also have Po = ϕ ◦ δ(p)⇒ pi = ψ ◦ π ◦ δ(p) = ν ◦ ϕ ◦ δ(p)

W ⊆ SE3 −→ U ⊆ Po −→ V ⊆ Pi

(p) δ (Po) π (pi)⏐⏐⏐⏐⏐⏐"
ϕ

⏐⏐⏐⏐⏐⏐"
ψ

Rn −→ Rm −→ Rk

(Po) ν = ψ ◦ π ◦ ϕ−1 (pi) σ (s)

Finally s = σ(pi) ⇒ Ls =
∂s
∂pi

∂pi
∂Po

LPo

31
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Modeling a geometrical primitive

3D primitive: h(X,Po) = 0

2D primitive: g(x,pi) = 0

Limb surface: ⇒ 1/Z = µ(x,Po)

(planar limb surface⇔ 1/Z = Ax + By + C)

13332
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Summary

3D primitives 2D primitives Parameterization

point point (x, y) or (ρ, θ)

segment segment (x1, y1, x2, y2)
(xm/l, ym/l, 1/l,α)

straight line straight line (ρ, θ)

circle ellipse (xg, yg, µ20, µ11, µ02)

sphere ellipse (xg, yg, a = πr2)

cylinder 2 straight lines (ρ1, θ1, ρ2, θ2)

planar object moments (a, xg, yg, θ, ...)

Ls also available for distance from a point to a straight line,

angle between two straight lines, etc.

33
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IBVS with straight lines

34
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Modeling issues
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1. Basics
2. 3D visual features
3. 2D visual features
4. Numerical methods
5. Photometric features
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Other approach: direct numerical estimation

Using N measurements of vc and corresponding ṡ around s∗

• Off-line learning of Ls:

With 1 measurement, Ls vc = ṡ : k equations and k × 6 unknowns

With N(≥ 6), Ls A = B where A ∈ R6×N and B ∈ Rk×N

⇒ L̂s = BA+

• Off-line learning of L+
s (better method):

With 1 measurement, L+
s ṡ = vc : 6 equations and 6× k unknowns

With N(≥ k), L+
s B = A ⇒ L̂+

s = AB+

• Other methods: neural networks,...

Methods valid locally around s∗ only since Ls is not constant.

Stability impossible to demonstrate

36
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Other approach: direct numerical estimation

On-line iterative estimation (based on Broyden update):

L̂s(t + 1) = L̂s(t) +
α

vc⊤vc

(
ṡ− L̂s(t)vc

)
vc

⊤

Be careful to initial value L̂s(t0)
Stability impossible to demonstrate

May be useful for unknown complex objects or unmodeled systems

37
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Modeling issues
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1. Basics
2. 3D visual features
3. 2D visual features
4. Numerical methods
5. Photometric features
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A new family of visual servoing: photometric VS

39

Remove the image processing part: 
• No more extraction nor tracking visual measurements near video rate

Advantages:
• Robustness to image processing errors and noise!
• End-to-end control (here without deep learning)
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Photometric/direct/dense visual servoing
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highly non linear

Drawbacks: small convergence domain, strange robot trajectory

Modeling:                             (function of the image content)

But no feature extraction, tracking nor matching
+ excellent positioning accuracy

Visual features: intensity of each pixel 
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Photometric visual servoing
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Robustness to global illumination changes by using
Robustness to outliers (occlusion) by using 
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Similar on 2D ultrasound images
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Similar on depth map
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Mixture of Gaussians

43

Enlarge the convergence domain

Control simultaneously 
• the camera motion
• the expansion parameter

(large to small)
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Photometric moments
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Going back to geometric features for enlarging the convergence domain         
and improving the robot trajectory 

Then select adequate moments (area, cog, main orientation, …)
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Overview

45

1. Introduction
2. Modeling
3. Task specification
4. Control
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Task specification
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• Just specify s* or s*(t)   
(such as an object has to appear at the center of the image)

• Specify a desired pose and deduce the value of s* 
(but 3D model of the object + camera calibration needed)

• Teach by showing: 
1. go to the desired pose;
2. acquire the corresponding image;
3. determine s* in the same way as s(t).
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Task classification: virtual link
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• The task s(t) = s* defines a virtual 
link between the sensor and its 
environment.

• This link is characterized by the set
of 3D motions such that

• dim      = class of the link
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Case of a point
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Prismatic link

S∗ = (1, 0, 0, 0, 0, 0)

Using 3 (horizontal) straight lines

3D straight lines :

hi(X,P) =

⎧
⎨

⎩
Y −

Y ∗
i

Z∗
i
Z = 0

Z − Z∗
i = 0

, i = 1, 2, 3

2D straight lines : ρi = Y ∗
i /Z

∗
i , θi = π/2

⇒ Lρiθi =

[
0 −1/Z∗

i ρi/Z
∗
i (1 + ρ2i ) 0 0

0 0 0 0 −ρi −1

]

With a 3 dof mobile robot (υx, υz,ωy), 1 straight line is sufficient.

49
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Prismatic link from an omnidirectional camera
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3 dof ground mobile robot so the observation of 1 straight line (here a circle) is 
sufficient to achieve the task
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Plane-to-plane link from proximity sensors
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A narrow beam proximity sensor provides the range Z                                  
from the sensor to the nearest object along the sensor axis. 

When the object surface is perpendicular to the sensor axis: 
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Bearing

Using a sphere with center O = (0, 0, Z0)
⇒ Image of the sphere = centered circle

Lxc = [ −1/Zc 0 0 0 −1− r2 0 ]
Lyc = [ 0 −1/Zc 0 1 + r2 0 0 ]
Lµ = [ 0 0 2r2/Zc 0 0 0 ]

with Zc = (Z2
0 −R2)/Z0 and r2 = R2/(Z2

0 −R2).

⇒ S∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 −z0 0
z0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

|Fc

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

|Fo

52
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Overview
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1. Introduction
2. Modeling
3. Task specification
4. Control
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Control
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Basic kinematics controller:                                   

with 

Time-to-convergence improved by using an adaptive gain
High initial velocities avoided using 2nd order behavior (see ViSP)

Note: If the robot is not able to apply     , use

with                                      (remember slide 17)
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A simple case k = m = n = 2

Case of a pan-tilt camera observing a point :

s = (x, y) , s∗ = (0, 0)

ė =

[
ẋ
ẏ

]
=

[
xy −(1 + x2)

1 + y2 −xy

] [
ωx
ωy

]

vc = −λ L̂s
−1

(s− s∗)

⇔

[
ωx
ωy

]
= −

λ

1 + x2 + y2

[
y
−x

]

If no error occurs, ṡ = −λ s : trajectory = straight line in the image

55
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Target tracking
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1st solution: Use an integral term to compensate for the lag                                        

- Need to tune the gain
- Efficient only for target moving at constant velocity 

2nd solution: Estimate, predict and compensate for the target motion

with          the predicted value of 

obtained for instance from a Kalman filter and with

- Need to measure the camera velocity 
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To go further
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Consider constraints: 
• visibility, occlusion, obstacles
• joint limits, singularities
• dynamics constraints: non holonomy, under-actuation
-Path planning in the image, model-predictive control, optimal control (QP)
-Redundancy (GPM), task sequencing, stack of tasks


