

Mathematical Tools for Analysis and Synthesis of Mechanisms and Robots

Manfred Husty Sophia Antipolis January 2019

Overview

- Introduction
- Parameterizations of SE(3)
- Quaternions Kinematic Mapping
- Plücker Coordinates
- Serial Chains
- Varieties-Ideals
- Constraint Equations
 - Geometric Constraint Equations
 - Elimination Method
 - Linear Implicitation Algorithm (LIA)

Kinematics is basic for the analysis and synthesis of mechanisms and robots. After establishing the kinematics of a mechanical system follows dynamics, control,...

In kinematics one tries to answer fundamental questions arising in the *analysis and synthesis of kinematic chains.*

- In kinematics one tries to answer fundamental questions arising in the *analysis and synthesis of kinematic chains.*
- Kinematic chains are constituent elements of *serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.*

- In kinematics one tries to answer fundamental questions arising in the *analysis and synthesis of kinematic chains.*
- Kinematic chains are constituent elements of *serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.*
- The fundamental questions, going far beyond the classical kinematics involve the number of solutions, complex or real to solve, for example, *forward or inverse kinematics*, the description of *singular solutions*, *workspace or synthesis* questions.

- In kinematics one tries to answer fundamental questions arising in the *analysis and synthesis of kinematic chains.*
- Kinematic chains are constituent elements of *serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.*
- The fundamental questions, going far beyond the classical kinematics involve the number of solutions, complex or real to solve, for example, *forward or inverse kinematics*, the description of *singular solutions*, *workspace or synthesis* questions.
- Such problems are often described by **systems of multivariate algebraic or functional equations** and it turns out that even relatively simple kinematic problems involving multi-parameter systems lead to complicated nonlinear equations.

- In kinematics one tries to answer fundamental questions arising in the *analysis and synthesis of kinematic chains.*
- Kinematic chains are constituent elements of *serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.*
- The fundamental questions, going far beyond the classical kinematics involve the number of solutions, complex or real to solve, for example, *forward or inverse kinematics*, the description of *singular solutions*, *workspace or synthesis* questions.
- Such problems are often described by **systems of multivariate algebraic or functional equations** and it turns out that even relatively simple kinematic problems involving multi-parameter systems lead to complicated nonlinear equations.
- Geometric insight and geometric preprocessing are often key to the solution.

Analytic description of kinematic chains:

• Parametric and implicit representations

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- · Complete analysis and synthesis needs all solutions

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry
- An important task is to find the simplest algebraic constraint equations, that describe the chains.

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry
- An important task is to find the simplest algebraic constraint equations, that describe the chains.
- Geometric and algebraic preprocessing is needed before elimination, Gröbner base computation or numerical solution process starts

- Parametric and implicit representations
- Different parametrizations of the displacement group *SE*(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry
- An important task is to find the simplest algebraic constraint equations, that describe the chains.
- Geometric and algebraic preprocessing is needed before elimination, Gröbner base computation or numerical solution process starts
- * Algebraic constraint equations yield answers to the overall behavior of a kinematic chain \rightarrow Global Kinematics

• Design parameter: parameters that determine the geometry and topology of the mechanism.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.
- **Workspace:** Set of all poses (=positions and orientations) that can be reached by the manipulator in presence of limits of active and passive joints.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.
- **Workspace:** Set of all poses (=positions and orientations) that can be reached by the manipulator in presence of limits of active and passive joints.
- **Degree of freedom (dof):** Number of independent coordinates to define the pose of a mechanism (robot).

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.
- **Workspace:** Set of all poses (=positions and orientations) that can be reached by the manipulator in presence of limits of active and passive joints.
- **Degree of freedom (dof):** Number of independent coordinates to define the pose of a mechanism (robot).
- **Singular configuration:** Special configuration of the mechanism links which implies a local reduction (serial) or a local increase (parallel) of mobility.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.
- **Workspace:** Set of all poses (=positions and orientations) that can be reached by the manipulator in presence of limits of active and passive joints.
- **Degree of freedom (dof):** Number of independent coordinates to define the pose of a mechanism (robot).
- **Singular configuration:** Special configuration of the mechanism links which implies a local reduction (serial) or a local increase (parallel) of mobility.
- **Self Motion:** Global singularity which leads to a one- or multi-parameter motion of the manipulator with locked inputs.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.
- **Workspace:** Set of all poses (=positions and orientations) that can be reached by the manipulator in presence of limits of active and passive joints.
- **Degree of freedom (dof):** Number of independent coordinates to define the pose of a mechanism (robot).
- **Singular configuration:** Special configuration of the mechanism links which implies a local reduction (serial) or a local increase (parallel) of mobility.
- Self Motion: Global singularity which leads to a one- or multi-parameter motion of the manipulator with locked inputs.
- Working Mode: Multiple configurations of the input chains.

- Design parameter: parameters that determine the geometry and topology of the mechanism.
- Joint coordinates: Lengths or angles of the actuators.
- **Cartesian coordinates:** Parameters that determine the relative position and orientation of end-effector frame to base frame.
- **Workspace:** Set of all poses (=positions and orientations) that can be reached by the manipulator in presence of limits of active and passive joints.
- **Degree of freedom (dof):** Number of independent coordinates to define the pose of a mechanism (robot).
- **Singular configuration:** Special configuration of the mechanism links which implies a local reduction (serial) or a local increase (parallel) of mobility.
- Self Motion: Global singularity which leads to a one- or multi-parameter motion of the manipulator with locked inputs.
- Working Mode: Multiple configurations of the input chains.
- Operation Mode: Multiple output motions of a manipulator.

Parametrizations of SE(3)

Euclidean displacement:

$$\gamma \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad \mathbf{x} \mapsto \mathbf{A}\mathbf{x} + \mathbf{a}$$
 (1)

A proper orthogonal 3 \times 3 matrix, $\boldsymbol{a}, \boldsymbol{x} \in \mathbb{R}^3 \dots$ vector

- group of Euclidean displacements: SE(3)
- * SE(3) is a non-commutative group of transformations.
- * Two notations to collect rotation and translation in a homogeneous 4×4 transformation matrix.

$$\begin{bmatrix} w \\ \mathbf{x} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{1} & \mathbf{o}^{\mathsf{T}} \\ \mathbf{a} & \mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} w \\ \mathbf{x} \end{bmatrix} \qquad \qquad \begin{bmatrix} \mathbf{x} \\ w \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{o}^{\mathsf{T}} & \mathbf{1} \\ \mathbf{A} & \mathbf{a} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ w \end{bmatrix}. \tag{2}$$

classical European notation

American notation

Parametrizations of the rotation matrix A

Parametrizations are constructed from elementary properties of A:

"proper orthogonal": columns are orthogonal unit vectors and the determinant is 1.

- A has 9 entries but only 3 are independent!
 - *Euler angles.* Every Euclidean rotation matrix can be parameterized with three rotations about three non coplanar axes.

$$\begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

- Elementary rotations about axes of the coordinate system.
- * 12 essential different sequences ightarrow 12 different parameterizations,
- ∃ parametrization singularities (gimbal lock)

$$\mathbf{A} = \begin{bmatrix} \cos(\gamma)\cos(\beta) & -\sin(\gamma)\cos(\alpha) + \cos(\gamma)\sin(\beta)\sin(\alpha) & \sin(\gamma)\sin(\alpha) + \cos(\gamma)\sin(\beta)\cos(\alpha) \\ \sin(\gamma)\cos(\beta) & \cos(\gamma)\cos(\alpha) + \sin(\gamma)\sin(\beta)\sin(\alpha) & -\cos(\gamma)\sin(\alpha) + \sin(\gamma)\sin(\beta)\cos(\alpha) \\ -\sin(\beta) & \cos(\beta)\sin(\alpha) & \cos(\beta)\cos(\alpha) \end{bmatrix}$$

rotation angle φ and rotation axis $[v_1, v_2, v_3]^T$

$$\cos \varphi = \frac{1}{2}(\operatorname{trace}(A) - 1),$$

$$v_1: v_2: v_3 = a_{32} - a_{23}: a_{31} - a_{13}: a_{12} - a_{21}$$

• Rodrigues Parameters: Every rotation matrix A can be computed via

$$\mathbf{A} = (\mathbf{I} - \mathbf{S})^{-1} \ \cdot (\mathbf{I} + \mathbf{S})$$

where \boldsymbol{S} is 3 \times 3 skew symmetric and \boldsymbol{I} is identity matrix.

with

$$\mathbf{S} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix} \qquad \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \frac{b_1^2 - b_2^2 - b_3^2 + 1}{b_1^2 + b_2^2 + b_3^2 + 1} & 2 \frac{b_2 b_1 - b_3}{b_1^2 + b_2^2 + b_3^2 + 1} & 2 \frac{b_3 b_1 + b_2}{b_1^2 + b_2^2 + b_3^2 + 1} \\ 2 \frac{b_2 b_1 + b_3}{b_1^2 + b_2^2 + b_3^2 + 1} & - \frac{b_1^2 - b_2^2 + b_3^2 - 1}{b_1^2 + b_2^2 + b_3^2 + 1} & - 2 \frac{-b_2 b_3 + b_1}{b_1^2 + b_2^2 + b_3^2 + 1} \\ 2 \frac{b_3 b_1 - b_2}{b_1^2 + b_2^2 + b_3^2 + 1} & 2 \frac{b_2 b_3 + b_1}{b_1^2 + b_2^2 + b_3^2 + 1} & - \frac{b_1^2 + b_2^2 - b_3^2 - 1}{b_1^2 + b_2^2 + b_3^2 + 1} \end{bmatrix}$$

$$\tan\frac{\varphi}{2} = \sqrt{b_1^2 + b_2^2 + b_3^2} \qquad v_1 : v_2 : v_3 = b_1 : b_2 : b_3$$

- parametrization singularity $\varphi=\pi$
- *b*₁ are algebraic parameters

• Euler Parameters: $b_1 = c_1/c_0, b_2 = c_2/c_0, b_3 = c_3/c_0$

$$\mathbf{A} = \begin{bmatrix} \frac{c_0^2 + c_1^2 - c_2^2 - c_3^2}{c_0^2 + c_1^2 + c_2^2 + c_3^2} & -2 \frac{c_0 c_3 - c_1 c_2}{c_0^2 + c_1^2 + c_2^2 + c_3^2} & 2 \frac{c_0 c_2 + c_3 c_1}{c_0^2 + c_1^2 + c_2^2 + c_3^2} \\ 2 \frac{c_0 c_3 + c_1 c_2}{c_0^2 + c_1^2 + c_2^2 + c_3^2} & \frac{c_0^2 - c_1^2 + c_2^2 - c_3^2}{c_0^2 + c_1^2 + c_2^2 + c_3^2} & -2 \frac{c_0 c_1 - c_2 c_3}{c_0^2 + c_1^2 + c_2^2 + c_3^2} \\ -2 \frac{c_0 c_2 - c_3 c_1}{c_0^2 + c_1^2 + c_2^2 + c_3^2} & 2 \frac{c_0 c_1 + c_2 c_3}{c_0^2 + c_1^2 + c_2^2 + c_3^2} & \frac{c_0^2 - c_1^2 - c_2^2 + c_3^2}{c_0^2 + c_1^2 + c_2^2 + c_3^2} \end{bmatrix}$$

• c_i four homogeneous parameters, singularity free,

- possible normalizations $c_0^2 + c_1^2 + c_2^2 + c_3^2 = 1$ or $c_0 = 1$
- · Euler parameters are identical to the the (Hamiltonian) quaternions describing rotations

Quaternions

The set of quaternions $\mathbb H$ is the vector space $\mathbb R^4$ together with the quaternion multiplication

$$(a_{0}, a_{1}, a_{2}, a_{3}) \star (b_{0}, b_{1}, b_{2}, b_{3}) = (a_{0}b_{0} - a_{1}b_{1} - a_{2}b_{2} - a_{3}b_{3}, a_{0}b_{1} + a_{1}b_{0} + a_{2}b_{3} - a_{3}b_{2}, a_{0}b_{2} - a_{1}b_{3} + a_{2}b_{0} - a_{3}b_{1}, a_{0}b_{3} - a_{1}b_{2} - a_{2}b_{1} + a_{3}b_{0}).$$
(3)

- The triple $(\mathbb{H},+,\star)$ (with component wise addition) forms a skew field.
- The real numbers can be embedded into this field via $x\mapsto (x,0,0,0)$
- * vectors $\mathbf{x} \in \mathbb{R}^3$ are identified with quaternions of the shape $(\mathbf{0}, \mathbf{x})$.

Every quaternion is a unique linear combination of the four basis quaternions $\mathbf{1} = (1, 0, 0, 0)$, $\mathbf{i} = (0, 1, 0, 0)$, $\mathbf{j} = (0, 0, 1, 0)$, and $\mathbf{k} = (0, 0, 0, 1)$.

The multiplication table is

*	1	i	j	k
1	1	i	j	k
i	i	- 1	k	—j
j	j	$-\mathbf{k}$	- 1	i
k	k	j	—i	- 1

Example: elementary rotations about coordinate axes:

$$r_x = \mathbf{1} + u\mathbf{i}, \quad r_y = \mathbf{1} + v\mathbf{j}, \quad r_z = \mathbf{1} + w\mathbf{k},$$

Every quaternion is a unique linear combination of the four basis quaternions $\mathbf{1} = (1, 0, 0, 0)$, $\mathbf{i} = (0, 1, 0, 0)$, $\mathbf{j} = (0, 0, 1, 0)$, and $\mathbf{k} = (0, 0, 0, 1)$.

The multiplication table is

*	1	i	j	k
1	1	i	j	k
i	i	- 1	k	—j
j	j	$-\mathbf{k}$	- 1	i
k	k	j	—i	- 1

Example: elementary rotations about coordinate axes:

$$r_x = \mathbf{1} + u\mathbf{i}, \qquad r_y = \mathbf{1} + v\mathbf{j}, \qquad r_z = \mathbf{1} + w\mathbf{k},$$

Conjugate quaternion and *norm* are defined as

$$\overline{A} = (a_0, -a_1, -a_2, -a_3), \quad \|A\| = \sqrt{A \star \overline{A}} = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2}.$$
(4)

Kinematic mapping

Study's kinematic mapping *x*:

 $\varkappa: \alpha \in \mathrm{SE}(3) \mapsto \mathbf{x} \in \mathbb{P}^7$

Study's kinematic mapping *x*:

$$\varkappa: \alpha \in \mathrm{SE}(3) \mapsto \mathbf{x} \in \mathbb{P}^7$$

pre-image of **x** is the displacement α

$$\begin{aligned} \frac{1}{\Delta} \begin{bmatrix} \Delta & 0 & 0 & 0 \\ p & x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ q & 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ r & 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix} \\ p = 2(-x_0y_1 + x_1y_0 - x_2y_3 + x_3y_2), \\ q = 2(-x_0y_2 + x_1y_3 + x_2y_0 - x_3y_1), \\ r = 2(-x_0y_3 - x_1y_2 + x_2y_1 + x_3y_0), \end{aligned}$$
(5)

Study's kinematic mapping \varkappa :

 $\Delta = x_0^2 +$

$$arkappa: lpha \in \operatorname{SE}(\mathsf{3}) \mapsto \mathsf{x} \in \mathbb{P}^7$$

pre-image of ${\bf x}$ is the displacement α

$$\frac{1}{\Delta} \begin{bmatrix} \Delta & 0 & 0 & 0 \\ p & x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ q & 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ r & 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
(5)
$$p = 2(-x_0y_1 + x_1y_0 - x_2y_3 + x_3y_2),$$
$$q = 2(-x_0y_2 + x_1y_3 + x_2y_0 - x_3y_1),$$
$$r = 2(-x_0y_3 - x_1y_2 + x_2y_1 + x_3y_0),$$
$$x_1^2 + x_2^2 + x_3^2.$$

 $[x_0:\cdots:y_3]^T$ Study parameters = parametrization of SE(3) with dual quaternions

Named after

Eduard Study (23.3.1862-6.1.1930)

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Cayley map, not singularity free (180 $^{\circ}$)

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Cayley map, not singularity free (180 $^{\circ}$)

Rotation part:

$$x_{0}: x_{1}: x_{2}: x_{3} = 1 + a_{11} + a_{22} + a_{33}: a_{32} - a_{23}: a_{13} - a_{31}: a_{21} - a_{12}$$

$$= a_{32} - a_{23}: 1 + a_{11} - a_{22} - a_{33}: a_{12} + a_{21}: a_{31} + a_{13}$$

$$= a_{13} - a_{31}: a_{12} + a_{21}: 1 - a_{11} + a_{22} - a_{33}: a_{23} + a_{32}$$

$$= a_{21} - a_{12}: a_{31} + a_{13}: a_{23} - a_{32}: 1 - a_{11} - a_{22} + a_{33}$$
(7)

In general, all four proportions of Eq. (7) yield the same result. Translation part:

$$2y_0 = a_1x_1 + a_2x_2 + a_3x_3, \quad 2y_1 = -a_1x_0 + a_3x_2 - a_2x_3, 2y_2 = -a_2x_0 - a_3x_1 + a_1x_3, \quad 2y_3 = -a_3x_0 + a_2x_1 - a_1x_2.$$
(8)

Rotation about x-axis:

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\varphi & -\sin\varphi \\ 0 & 0 & \sin\varphi & \cos\varphi \end{bmatrix}.$$

Its kinematic image, computed via (7) and (8) is

$$\mathbf{r} = [1 + \cos \varphi : \sin \varphi : 0 : 0 : 0 : 0 : 0 : 0].$$

As φ varies in [0, 2π), **r** describes a straight line on the Study quadric which reads after algebraization with half-tangent substitution

 $\mathbf{r}_{x} = [\mathbf{1}: u: \mathbf{0}: \mathbf{0}: \mathbf{0}: \mathbf{0}: \mathbf{0}: \mathbf{0}].$

Rotation about x-axis:

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\varphi & -\sin\varphi \\ 0 & 0 & \sin\varphi & \cos\varphi \end{bmatrix}.$$

Its kinematic image, computed via (7) and (8) is

$$\mathbf{r} = [\mathbf{1} + \cos \varphi : \sin \varphi : \mathbf{0}].$$

As φ varies in [0, 2π), **r** describes a straight line on the Study quadric which reads after algebraization with half-tangent substitution

$$\mathbf{r}_{x} = [1: u: 0: 0: 0: 0: 0: 0].$$

The other two elementary rotations about y – and z –axis can be written in Study parameters as:

$$\mathbf{r}_{y} = [\mathbf{1}: \mathbf{0}: \mathbf{v}: \mathbf{0}: \mathbf{0}: \mathbf{0}: \mathbf{0}: \mathbf{0}], \mathbf{r}_{z} = [\mathbf{1}: \mathbf{0}: \mathbf{0}: \mathbf{w}: \mathbf{0}: \mathbf{0}: \mathbf{0}: \mathbf{0}].$$

R-P-R chain (P fixed translation)

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(t) & -\sin(t) \\ 0 & 0 & \sin(t) & \cos(t) \end{bmatrix}, \quad \mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2a & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(s) & 0 & -\sin(s) \\ 0 & 0 & 1 & 0 \\ 0 & \cos(s) & 0 & \sin(s) \end{bmatrix}.$$

R-P-R chain (P fixed translation)

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(t) & -\sin(t) \\ 0 & 0 & \sin(t) & \cos(t) \end{bmatrix}, \quad \mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2a & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(s) & 0 & -\sin(s) \\ 0 & 0 & 1 & 0 \\ 0 & \cos(s) & 0 & \sin(s) \end{bmatrix},$$

$$\mathbf{L} = \mathbf{M} \cdot \mathbf{N} \cdot \mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(s) & 0 & -\sin(s) \\ -2\sin(t)a & -\sin(t)\cos(s) & \cos(t) & -\sin(t)\sin(s) \\ 2\cos(t)a & \cos(t)\cos(s) & \sin(t) & \cos(t)\sin(s) \end{bmatrix}$$

Its kinematic image, computed via (7) and (8) is

 $\mathbf{I} = \begin{bmatrix} 1 + \cos(s) + \cos(t) + \cos(t)\sin(s) \\ \sin(t) + \sin(t)\sin(s) \\ -\sin(s) - \cos(t)\cos(s) \\ -\sin(s) - \cos(t)\cos(s) \\ -\sin(t)a(-\sin(s) - \cos(t)\cos(s)) - \cos(t)a\sin(t)\cos(s) \\ \cos(t)a(-\sin(s) - \cos(t)\cos(s)) - (\sin(t))^2 a\cos(s) \\ \sin(t)a(1 + \cos(s) + \cos(t) + \cos(t)\sin(s)) - \cos(t)a(\sin(t) + \sin(t)\sin(s)) \\ -\cos(t)a(1 + \cos(s) + \cos(t) + \cos(t)\sin(s)) - \sin(t)a(\sin(t) + \sin(t)\sin(s)) \end{bmatrix}$

Its kinematic image, computed via (7) and (8) is

$$\mathbf{I} = \begin{bmatrix} 1 + \cos(s) + \cos(t) + \cos(t)\sin(s) \\ \sin(t) + \sin(t)\sin(s) \\ -\sin(s) - \cos(t)\cos(s) \\ -\sin(t)\cos(s) \\ -\sin(t)a(-\sin(s) - \cos(t)\cos(s)) - \cos(t)a\sin(t)\cos(s) \\ \cos(t)a(-\sin(s) - \cos(t)\cos(s)) - (\sin(t))^2a\cos(s) \\ \sin(t)a(1 + \cos(s) + \cos(t) + \cos(t)\sin(s)) - \cos(t)a(\sin(t) + \sin(t)\sin(s)) \\ -\cos(t)a(1 + \cos(s) + \cos(t) + \cos(t)\sin(s)) - \sin(t)a(\sin(t) + \sin(t)\sin(s)) \end{bmatrix}$$

after algebraization with half-tangent substitution:

$$I = [1 : u : v : uv : -uav : av : ua : -a].$$

Planar displacements: $x_2 = x_3 = 0, y_0 = y_1 = 0$

$$\frac{1}{x_0^2 + x_3^2} \begin{bmatrix} x_0^2 + x_3^2 & 0 & 0 \\ -2(x_0y_1 - x_3y_2) & x_0^2 - x_3^2 & -2x_0x_3 \\ -2(x_0y_2 + x_3y_1) & 2x_0x_3 & x_0^2 - x_3^2 \end{bmatrix}$$

SE(2) (we omit the last row and the last column)

Spherical displacements: $y_i = 0$ (\rightarrow Euler parameters!)

$$\frac{1}{\Delta} \begin{bmatrix} x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$

where $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2$. $o SO^+(3)$

generate 3-spaces on S_6^2

(9)

Planar displacements: $x_2 = x_3 = 0, y_0 = y_1 = 0$

$$\frac{1}{x_0^2 + x_3^2} \begin{bmatrix} x_0^2 + x_3^2 & 0 & 0 \\ -2(x_0y_1 - x_3y_2) & x_0^2 - x_3^2 & -2x_0x_3 \\ -2(x_0y_2 + x_3y_1) & 2x_0x_3 & x_0^2 - x_3^2 \end{bmatrix}$$

SE(2) (we omit the last row and the last column)

Spherical displacements: $y_i = 0$ (\rightarrow Euler parameters!)

$$\frac{1}{\Delta} \begin{bmatrix} x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
(9)

where $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2$. $\rightarrow SO^+(3)$

generate 3-spaces on S_6^2

more properties:

J. Selig, Geometric Fundamentals of Robotics, 2nd. ed. Springer 2005 Husty, Pfurner, Schröcker, Brunnthaler. Algebraic methods in mechanism analysis and synthesis. Robotica, 25(6):661-675, 2007. (Hamiltonian) Quaternions are closely related to spherical kinematic mapping.

Consider a vector $\mathbf{a} = [a_1, a_2, a_3]^T$ and a matrix **X** of the shape (9).

The product $\mathbf{b} = \mathbf{X} \cdot \mathbf{a}$ can also be written as

 $B = X \star A \star \overline{X}$

where $X = (x_0, x_1, x_2, x_3)$, ||X|| = 1 and $A = (0, \mathbf{a})$, $B = (0, \mathbf{b})$.

From this follows:

(Hamiltonian) Quaternions are closely related to spherical kinematic mapping.

Consider a vector $\mathbf{a} = [a_1, a_2, a_3]^T$ and a matrix **X** of the shape (9).

The product $\mathbf{b} = \mathbf{X} \cdot \mathbf{a}$ can also be written as

 $B = X \star A \star \overline{X}$

where $X = (x_0, x_1, x_2, x_3)$, ||X|| = 1 and $A = (0, \mathbf{a})$, $B = (0, \mathbf{b})$.

From this follows:

Spherical displacements can also be described by *unit quaternions* and *spherical kinematic mapping* maps a spherical displacement to the corresponding *unit quaternion*.

General Euclidean displacements $\rightarrow\,$ extend the concept of quaternions.

A dual quaternion Q is a quaternion over the ring of dual numbers

 $Q=Q_0+\varepsilon Q_1,$

where $\varepsilon^2 = 0$, Q_0, Q_1 are Hamiltonian quaternions, e.g. $Q_0 = (q_0, q_1, q_2, q_3)$.

The algebra of dual quaternions has eight basis elements $\mathbf{1}$, \mathbf{i} , \mathbf{j} , \mathbf{k} , ε , ε , \mathbf{i} , ε , \mathbf{j} , and ε \mathbf{k} and the multiplication table

*	1	i	j	k	ε	ε i	ε j	$\varepsilon \mathbf{k}$
1	1	i	j	k	ε	ε i	εj	$\varepsilon \mathbf{k}$
i	i	- 1	k	—j	ε i	$-\varepsilon 1$	$\varepsilon \mathbf{k}$	$-\varepsilon \mathbf{j}$
j	j	$-\mathbf{k}$	- 1	i	ε j	$-\varepsilon \mathbf{k}$	$-\varepsilon 1$	$\varepsilon \mathbf{i}$
k	k	j	-i	- 1	$\varepsilon \mathbf{k}$	ε j	$-\varepsilon$ i	$-\varepsilon 1$
$\varepsilon 1$	ε	ε i	ε j	$\varepsilon \mathbf{k}$	0	0	0	0
ε i	ε i	$-\varepsilon 1$	$\varepsilon \mathbf{k}$	$-\varepsilon$ j	0	0	0	0
ε j	ε j	$-\varepsilon \mathbf{k}$	$-\varepsilon 1$	ε	0	0	0	0
$\varepsilon \mathbf{k}$	$\varepsilon \mathbf{k}$	ε j	$-\varepsilon$	$-\varepsilon 1$	0	0	0	0

Dual quaternions know two types of conjugation.

The conjugate quaternion and the conjugate dual quaternion of a dual quaternion $Q = x_0 + \varepsilon y_0 + \mathbf{x} + \varepsilon \mathbf{y}$ are defined as

$$\overline{Q} = x_0 + \varepsilon y_0 - \mathbf{x} - \varepsilon \mathbf{y}$$
 and $Q_e = x_0 - \varepsilon y_0 + \mathbf{x} - \varepsilon \mathbf{y}$,

respectively. The norm of a dual quaternion is

$$\|Q\| = \sqrt{Q\overline{Q}}.$$

Dual quaternions know two types of conjugation.

The *conjugate quaternion* and the *conjugate dual quaternion* of a dual quaternion $Q = x_0 + \varepsilon y_0 + \mathbf{x} + \varepsilon \mathbf{y}$ are defined as

$$\overline{Q} = x_0 + \varepsilon y_0 - \mathbf{x} - \varepsilon \mathbf{y}$$
 and $Q_e = x_0 - \varepsilon y_0 + \mathbf{x} - \varepsilon \mathbf{y}$,

respectively. The norm of a dual quaternion is

$$\|Q\| = \sqrt{Q\overline{Q}}.$$

The equation $\mathbf{b} = \mathbf{X} \cdot \mathbf{a}$ where \mathbf{X} is a matrix of the shape (5) can be written as

$$B = X_e \star A \star \overline{X}$$

where $X = \mathbf{x} + \varepsilon \mathbf{y}$, ||X|| = 1, $\mathbf{x} = (x_0, \dots, x_3)^T$, $\mathbf{y} = (y_0, \dots, y_3)^T$, and $\mathbf{x} \cdot \mathbf{y} = 0$.

Last condition is precisely the Study condition

A and B are dual quaternions of the type: $A = 1 + \varepsilon \mathbf{a}, B = 1 + \varepsilon \mathbf{b}$

Example: Elliptic Motion(double slider) - Oldham motion

Example: Elliptic Motion(double slider) - Oldham motion

Example: Elliptic Motion(double slider) - Oldham motion

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{d}{2} \frac{1-t^2}{t^2+1} & -\frac{1-t^2}{t^2+1} & \frac{2t}{t^2+1} & 0 \\ -\frac{d}{2} \frac{2t}{t^2+1} & \frac{2t}{t^2+1} & \frac{1-t^2}{t^2+1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{O} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{d}{2} \frac{t^4-6t^2+1}{t^2+1} & \frac{1-t^2}{t^2+1} & -\frac{2t}{t^2+1} & 0 \\ -\frac{d}{2} \frac{2t(1-t^2)}{t^2+1} & \frac{2t}{t^2+1} & \frac{1-t^2}{t^2+1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Plücker Coordinates

Definition

Let $X(x_0 : x_1 : x_2 : x_3)$ and $Y(y_0 : y_1 : y_2 : y_3)$ be two different points of a line $p \in P_3$, then

$$p_{ik} := \begin{vmatrix} x_i & x_k \\ y_i & y_k \end{vmatrix} \quad (i,k:0,\ldots,3, i \neq k)$$
(10)

are called homogeneous Plücker-Coordinates (line coordinates) von p.

Out of the 12 determinants only 6 are relevant

$$p_{01} = p_1; \quad p_{02} = p_2; \quad p_{03} = p_3;$$
(11)
$$p_{23} = p_4; \quad p_{31} = p_5; \quad p_{12} = p_6$$

$$\Omega(p) := p_1 p_4 + p_2 p_5 + p_3 p_6 = \sum_{\nu=1}^3 p_\nu p_{\nu+3} = 0 , \qquad (12)$$

sometime also written

$$\Omega(p) = p_{01}p_{23} + p_{02}p_{31} + p_{03}p_{12} = 0 \tag{13}$$

The Plücker coordinates are independent of the choice of the points on the line

The Plücker coordinates can be interpreted as points in a five dimensional projective space P⁵

 $\odot \Omega$ is a hyper quadric in P^5 , called Plücker quadric

Plücker coordinates transform :

$$\mathbf{p}
ightarrow \left(egin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{a}^{ imes} \mathbf{A} & \mathbf{A} \end{array}
ight) \mathbf{p}$$

 \mathbf{a}^{\times} skew symmetric matrix belonging to translation vector \mathbf{a} .

Axis Coordinates

Coordinates of a plane:

 $\mathbf{e} \ \dots \ u_0 x_0 + u_1 x_1 + u_2 x_2 + u_3 x_3 = 0 \rightarrow [u_0 : u_1 : u_2 : u_3].$

Definition

Let $\mathbf{e}_1 [u_0 : u_1 : u_2 : u_3]$ and $\mathbf{e}_2[v_0 : v_1 : v_2 : v_3]$ be two different planes passing through the line p, then

$$\widehat{p}_{ik} := \begin{vmatrix} u_i & u_k \\ v_i & v_k \end{vmatrix} \quad (i,k:0,\ldots,3; i \neq k)$$
(14)

are called homogeneous axis coordinates of p

line objects:

A linear equation in Plücker coordinates

 $a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4 + a_5p_5 + a_6p_6 = 0$

determines a *linear line complex* (three parametric set of lines)

- Two linear equations in Plücker coordinates determine a *linear congruence* of lines (two parametric set of lines)
- Three linear equations in Plücker coordinates determine a hyperboloid (one parametric set of lines)
- Ø degenerate cases exist: singular line congruence, parabolic congruence, pencils of lines, bundles of lines

Serial robots

Figure: Coordinate frames attached to a general nR-mechanism

Forward Kinematics

$$\mathbf{D} = \mathbf{B} \cdot \mathbf{M}_1 \cdot \mathbf{G}_1 \cdot \mathbf{M}_2 \cdot \mathbf{G}_2 \cdot \dots \cdot \mathbf{M}_{n-1} \cdot \mathbf{G}_{n-1} \cdot \mathbf{M}_n \cdot \mathbf{G}_n, \tag{15}$$

where ${\boldsymbol B}$ is the coordinate transformation $\Sigma_0\to \Sigma_1,$

Coordinate transformation matrices

$$\mathbf{G}_{i} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ a_{i} & 1 & 0 & 0 \\ 0 & 0 & \cos(\alpha_{i}) & -\sin(\alpha_{i}) \\ d_{i} & 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) \end{array} \right)$$

Rotation Matrices

$$\mathbf{M}_{i} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos(u_{i}) & -\sin(u_{i}) & 0 \\ 0 & \sin(u_{i}) & \cos(u_{i}) & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

for i = 1, ..., n $a_i, d_i, \alpha_i ...$ Denavit-Hartenberg parameters Coordinate transformation matrices

$$\mathbf{G}_{i} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ a_{i} & 1 & 0 & 0 \\ 0 & 0 & \cos(\alpha_{i}) & -\sin(\alpha_{i}) \\ d_{i} & 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) \end{array} \right)$$

Rotation Matrices

$$\mathbf{M}_{i} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos(u_{i}) & -\sin(u_{i}) & 0 \\ 0 & \sin(u_{i}) & \cos(u_{i}) & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

for i = 1, ..., n $a_i, d_i, \alpha_i ...$ Denavit-Hartenberg parameters

The DH parameters completely determine the design of the manipulator. For an nR manipulator there are exactly 3n - 4 DH parameters.

Home Pose

Every serial manipulator can be brought into a pose where all axes are parallel to a plane (here yz-plane).

Singularities without differentiation

In the columns if the Jacobian Matrix **J** are the Plücker coordinates of the instantaneous locations of the revolute axes of the robot.

In local coordinate system the axes are $\mathbf{p}_{i} = [0, 0, 1, 0, 0, 0]$

 $\bm{p_1} = [0,0,1,0,0,0]$

$$\mathbf{p_2} = \mathbf{A_2}\mathbf{p_1}$$

 $\mathbf{A} = \mathbf{M}_1 \mathbf{G}_1$ written as line transform matrix

Constraint varieties of 3R-chains

Algorithm:

- Determine the constraint variety of a canonical serial 2R-chain
- Add one more rotation -> algebraic representation of a canonical 3R chain
- Add a (linear) base transformation in the image space -> general 3R chain

Figure: Canonical 3R-manipulator

Affine (Projective) Varieties - Ideals

• A set of constraints is described by a set of polynomials

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, \ldots x_n]$.
- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, \ldots x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots, x_n]$, and if

 $V(f_1, ..., f_s) = \{(a_1, ..., a_n) \in k^n : f_i(a_1, ..., a_n) = 0, \text{ for all } 1 \le i \le s\}$

then $\mathbf{V}(f_1, \ldots, f_s)$ is called an affine variety defined by the polynomials f_i .

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, \ldots x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots, x_n]$, and if

 $V(f_1, ..., f_s) = \{(a_1, ..., a_n) \in k^n : f_i(a_1, ..., a_n) = 0, \text{ for all } 1 \le i \le s\}$

then $\mathbf{V}(f_1, \ldots, f_s)$ is called an affine variety defined by the polynomials f_i .

• The definition says essentially that the affine variety is the zero set of the defining polynomials.

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, \ldots x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots, x_n]$, and if

 $V(f_1, ..., f_s) = \{(a_1, ..., a_n) \in k^n : f_i(a_1, ..., a_n) = 0, \text{ for all } 1 \le i \le s\}$

then $\mathbf{V}(f_1, \ldots, f_s)$ is called an affine variety defined by the polynomials f_i .

- The definition says essentially that the affine variety is the zero set of the defining polynomials.
- In case of homogeneous polynomials the variety is called a projective variety.

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, \ldots x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots, x_n]$, and if

 $V(f_1, ..., f_s) = \{(a_1, ..., a_n) \in k^n : f_i(a_1, ..., a_n) = 0, \text{ for all } 1 \le i \le s\}$

then $\mathbf{V}(f_1, \ldots, f_s)$ is called an affine variety defined by the polynomials f_i .

- The definition says essentially that the affine variety is the zero set of the defining polynomials.
- In case of homogeneous polynomials the variety is called a projective variety.
- An ideal *I* is a subset of $k[x_0, \ldots, x_n]$ that satisfies the following properties:

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, \ldots x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots, x_n]$, and if

 $V(f_1, ..., f_s) = \{(a_1, ..., a_n) \in k^n : f_i(a_1, ..., a_n) = 0, \text{ for all } 1 \le i \le s\}$

then $\mathbf{V}(f_1, \ldots, f_s)$ is called an affine variety defined by the polynomials f_i .

- The definition says essentially that the affine variety is the zero set of the defining polynomials.
- In case of homogeneous polynomials the variety is called a projective variety.
- An ideal *I* is a subset of $k[x_0, \ldots, x_n]$ that satisfies the following properties:

```
(i) 0 \in I.
(ii) If f, g \in I, then f + g \in I.
(iii) If f \in I, g \in k then fg \in I.
```

D. A. Cox, J. B. Little, and D. O'Shea, Ideals, Varieties and Algorithms, Springer, third ed., 2007.

Step 1: Fix u_1

$$\mathbf{D} = \mathbf{F} \cdot \mathbf{M}_2 \cdot \mathbf{G}_2 \cdot \mathbf{M}_3 \cdot \mathbf{G}_3.$$

where **F** is a fixed transformation, given by $\mathbf{M}_1(u_{10}) \cdot \mathbf{G}_1$. **F** and \mathbf{G}_3 are coordinate transformations in the base and moving frame of the 2R-manipulator

Figure: Canonical 2R-mechanism

Step 1: Fix u_1

$$\mathbf{D} = \mathbf{F} \cdot \mathbf{M}_2 \cdot \mathbf{G}_2 \cdot \mathbf{M}_3 \cdot \mathbf{G}_3.$$

where **F** is a fixed transformation, given by $\mathbf{M}_1(u_{10}) \cdot \mathbf{G}_1$. **F** and \mathbf{G}_3 are coordinate transformations in the base and moving frame of the 2R-manipulator

matrix representation of this 2R-chain becomes

$$\mathbf{D} = \mathbf{M}_2 \cdot \mathbf{G}_2 \cdot \mathbf{M}_3.$$

$$\left(\begin{array}{c} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ y_{0} \\ y_{1} \\ y_{2} \\ y_{3} \end{array} \right) = \left(\begin{array}{c} (\cos(u_{2})\cos(u_{3}) - \sin(u_{2})\sin(u_{3}) + 1)(1 + \cos(\alpha_{2})) \\ (\cos(u_{2}) + \cos(u_{3})\sin(\alpha_{2}) \\ (\sin(u_{2}) - \sin(u_{3}))\sin(\alpha_{2}) \\ (\cos(u_{2})\sin(u_{3}) + \sin(u_{2})\cos(u_{3}))(1 + \cos(\alpha_{2})) \\ \frac{1}{2}a_{2}(\cos(u_{2})\cos(u_{3}) - \sin(u_{2})\sin(u_{3}) + 1)(\sin\alpha_{2}) \\ -\frac{1}{2}a_{2}(\cos(u_{2}) + \cos(u_{3}))(1 + \cos(\alpha_{2})) \\ -\frac{1}{2}a_{2}(\cos(u_{2}) + \sin(u_{2}))(1 + \cos(\alpha_{2})) \\ \frac{1}{2}a_{2}(\cos(u_{2}) \sin(u_{3}) + \sin(u_{2})\cos(u_{3}))(\sin(\alpha_{2})) \end{array} \right)$$

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} (\cos(u_2)\cos(u_3) - \sin(u_2)\sin(u_3) + 1)(1 + \cos(\alpha_2)) \\ (\cos(u_2)\cos(u_3))\sin(\alpha_2) \\ (\sin(u_2) - \sin(u_3))\sin(\alpha_2) \\ (\cos(u_2)\sin(u_3) + \sin(u_2)\cos(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2)\cos(u_3) - \sin(u_2)\sin(u_3) + 1)(\sin\alpha_2) \\ -\frac{1}{2}a_2(\cos(u_2) + \cos(u_3))(1 + \cos(\alpha_2)) \\ -\frac{1}{2}a_2(\cos(u_2) - \sin(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2) - \sin(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2) + \sin(u_2) - \sin(u_3))(\sin(\alpha_2)) \end{pmatrix}$$

By inspection and direct substitution one can verify easily that these coordinates satisfy four independent linear equations:

$$\begin{array}{rl} \overline{Hc}_{11}: & a_2\sin(\alpha_2)x_0 - 2(1+\cos(\alpha_2))y_0 = 0, \\ \overline{Hc}_{12}: & a_2(1+\cos(\alpha_2))x_1 + 2\sin(\alpha_2)y_1 = 0, \\ \overline{Hc}_{13}: & a_2(1+\cos(\alpha_2))x_2 + 2\sin(\alpha_2)y_2 = 0, \\ \overline{Hc}_{14}: & a_2\sin(\alpha_2)x_3 - 2(1+\cos(\alpha_2))y_3 = 0. \end{array}$$

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} (\cos(u_2)\cos(u_3) - \sin(u_2)\sin(u_3) + 1)(1 + \cos(\alpha_2)) \\ (\cos(u_2) + \cos(u_3))\sin(\alpha_2) \\ (\sin(u_2) - \sin(u_3))\sin(\alpha_2) \\ (\cos(u_2)\sin(u_3) + \sin(u_2)\cos(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2)\cos(u_3) - \sin(u_2)\sin(u_3) + 1)(\sin\alpha_2) \\ -\frac{1}{2}a_2(\cos(u_2) + \cos(u_3))(1 + \cos(\alpha_2)) \\ -\frac{1}{2}a_2(\cos(u_2) - \sin(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2) - \sin(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2) + \sin(u_2) - \sin(u_3))(\sin(\alpha_2)) \end{pmatrix}$$

By inspection and direct substitution one can verify easily that these coordinates satisfy four independent linear equations:

$$\begin{array}{ll} \overline{Hc}_{11}: & a_2\sin(\alpha_2)x_0 - 2(1 + \cos(\alpha_2))y_0 = 0, \\ \overline{Hc}_{12}: & a_2(1 + \cos(\alpha_2))x_1 + 2\sin(\alpha_2)y_1 = 0, \\ \overline{Hc}_{13}: & a_2(1 + \cos(\alpha_2))x_2 + 2\sin(\alpha_2)y_2 = 0, \\ \overline{Hc}_{14}: & a_2\sin(\alpha_2)x_3 - 2(1 + \cos(\alpha_2))y_3 = 0. \end{array}$$

Applying half tangent substitution $(al_2 = \tan \frac{\alpha_2}{2})$ these equations rewrite to

$$\frac{Hc_{11}}{Hc_{12}}: 2a_2al_2x_0 - 4y_0 = 0,
\frac{Hc_{12}}{Hc_{12}}: 2a_2x_1 + 4al_2y_1 = 0,
\frac{Hc_{13}}{Hc_{13}}: 2a_2x_2 + 4al_2y_2 = 0,
\frac{Hc_{14}}{Hc_{14}}: 2a_2al_2x_3 - 4y_3 = 0.$$
(16)

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} (\cos(u_2)\cos(u_3) - \sin(u_2)\sin(u_3) + 1)(1 + \cos(\alpha_2)) \\ (\cos(u_2) + \cos(u_3))\sin(\alpha_2) \\ (\cos(u_2) + \cos(u_3))\sin(\alpha_2) \\ (\cos(u_2)\sin(u_3) + \sin(u_2)\cos(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2)\cos(u_3) - \sin(u_2)\sin(u_3) + 1)(\sin\alpha_2) \\ -\frac{1}{2}a_2(\cos(u_2) + \cos(u_3))(1 + \cos(\alpha_2)) \\ -\frac{1}{2}a_2(\sin(u_2) - \sin(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2) + \sin(u_3))(1 + \cos(\alpha_2)) \\ \frac{1}{2}a_2(\cos(u_2) + \sin(u_3))(\sin(\alpha_2)) \end{pmatrix} .$$

By inspection and direct substitution one can verify easily that these coordinates satisfy four independent linear equations:

$$\begin{array}{rl} \overline{Hc}_{11}:&a_2\sin(\alpha_2)x_0-2(1+\cos(\alpha_2))y_0=0,\\ \overline{Hc}_{12}:&a_2(1+\cos(\alpha_2))x_1+2\sin(\alpha_2)y_1=0,\\ \overline{Hc}_{13}:&a_2(1+\cos(\alpha_2))x_2+2\sin(\alpha_2)y_2=0,\\ \overline{Hc}_{14}:&a_2\sin(\alpha_2)x_3-2(1+\cos(\alpha_2))y_3=0. \end{array}$$

Applying half tangent substitution $(al_2 = \tan \frac{\alpha_2}{2})$ these equations rewrite to

$$\frac{Hc_{11}}{Hc_{12}}: 2a_2al_2x_0 - 4y_0 = 0,
\frac{Hc_{12}}{Hc_{12}}: 2a_2x_1 + 4al_2y_1 = 0,
\frac{Hc_{13}}{Hc_{13}}: 2a_2x_2 + 4al_2y_2 = 0,
\frac{Hc_{14}}{Hc_{14}}: 2a_2al_2x_3 - 4y_3 = 0.$$
(16)

The constraint variety of a canonical A 2-R chain is represented by four linear equations.

universität Innsbruck Robotics Principia GdR Robotics Winter School January 21-25th 2019 Step 2: Add variation of u_1

$$\begin{aligned} & Hc_1(v_1): \\ & (a_2al_2 - v_1d_2 - al_3a_1 - al_3a_3 - al_1a_1 - a_2al_2al_3al_1 - al_3v_1d_2al_1 \\ & - al_3d_3al_1v_1 - a_3al_1 - d_3v_1)x_0 + (-al_3v_1d_2 + a_2al_2al_3 + a_2al_2al_1 \\ & + a_1 + a_3 - al_3al_1a_1 + v_1d_2al_1 - al_3a_3al_1 + d_3al_1v_1 - al_3d_3v_1)x_1 \\ & + (a_1v_1 - d_2al_1 + al_3d_3 - d_3al_1 + a_2al_2al_1v_1 + al_3d_2 - al_3al_1a_1v_1 \\ & - al_3a_3al_1v_1 + a_3v_1 + a_2al_2al_3v_1)x_2 + (-a_3al_1v_1 + d_2 + d_3 - al_1a_1v_1 \\ & + a_2al_2v_1 - al_3a_1v_1 + al_3d_2al_1 + al_3d_3al_1 - a_2al_2al_3al_1v_1 - al_3a_3v_1)x_3 \\ & + 2(al_3al_1 - 1)y_0 - 2(al_3 + al_1)y_1 - 2(al_1v_1 + al_3v_1)y_2 + 2(al_3al_1v_1 - v_1)y_3 = 0 \end{aligned}$$

Step 3: if necessary add a base transformation -> general 3R-chain

Step 2: Add variation of u_1

$$\begin{aligned} & Hc_1(v_1): \\ & (a_2al_2 - v_1d_2 - al_3a_1 - al_3a_3 - al_1a_1 - a_2al_2al_3al_1 - al_3v_1d_2al_1 \\ & - al_3d_3al_1v_1 - a_3al_1 - d_3v_1)x_0 + (-al_3v_1d_2 + a_2al_2al_3 + a_2al_2al_1 \\ & + a_1 + a_3 - al_3al_1a_1 + v_1d_2al_1 - al_3a_3al_1 + d_3al_1v_1 - al_3d_3v_1)x_1 \\ & + (a_1v_1 - d_2al_1 + al_3d_3 - d_3al_1 + a_2al_2al_1v_1 + al_3d_2 - al_3al_1a_1v_1 \\ & - al_3a_3al_1v_1 + a_3v_1 + a_2al_2al_3v_1)x_2 + (-a_3al_1v_1 + d_2 + d_3 - al_1a_1v_1 \\ & + a_2al_2v_1 - al_3a_1v_1 + al_3d_2al_1 + al_3d_3al_1 - a_2al_2al_3al_1v_1 - al_3a_3v_1)x_3 \\ & + 2(al_3al_1 - 1)y_0 - 2(al_3 + al_1)y_1 - 2(al_1v_1 + al_3v_1)y_2 + 2(al_3al_1v_1 - v_1)y_3 = 0 \end{aligned}$$

Step 3: if necessary add a base transformation -> general 3R-chain

All general 3R chains can be written without specifying the Denavit Hartenberg parameters

Inverse kinematics of the general 6R-mechanism

 $\textbf{M}_1 \cdot \textbf{G}_1 \cdot \textbf{M}_2 \cdot \textbf{G}_2 \cdot \textbf{M}_3 \cdot \textbf{G}_3 \cdot \textbf{M}_4 \cdot \textbf{G}_4 \cdot \textbf{M}_5 \cdot \textbf{G}_5 \cdot \textbf{M}_6 \cdot \textbf{G}_6 = \textbf{A}$

A is the given endeffector pose w.r.t. the base coordinate system

Figure: Cutting of the 6R into two 3R serial chains

Constraint variety of the left 3R-chain (= canonical 3-R chain):

$$\mathbf{T}_1 = \mathbf{M}_1 \cdot \mathbf{G}_1 \cdot \mathbf{M}_2 \cdot \mathbf{G}_2 \cdot \mathbf{M}_3 \cdot \mathbf{G}_3.$$

Constraint variety of the right 3R-chain (= general 3R-chain):

$$\textbf{T}_2 = \textbf{A} \cdot \textbf{G}_6^{-1} \cdot \textbf{M}_6^{-1} \cdot \textbf{G}_5^{-1} \cdot \textbf{M}_5^{-1} \cdot \textbf{G}_4^{-1} \cdot \textbf{M}_4^{-1}.$$

Theorem

Geometrically the solution of the inverse kinematic problem of a serial 6R-chain is equivalent to the intersection of eight one parameter sets of hyperplanes with S_6^2 in P^7 .

Constraint Equations

• Using geometric properties of the mechanism

properties can be for example: one point of the moving system (end effector system) is bound to move on a line, a circle, a sphere or a plane.

Constraint Equations

• Using geometric properties of the mechanism

properties can be for example: one point of the moving system (end effector system) is bound to move on a line, a circle, a sphere or a plane.

Elimination method

parametric description of the motion of the moving system \rightarrow resultant methods or dialytic elimination methods to derive the algebraic equations.

disadvantage: introduction of "spurious" solutions. In simple cases this method can be very efficient.

Constraint Equations

• Using geometric properties of the mechanism

properties can be for example: one point of the moving system (end effector system) is bound to move on a line, a circle, a sphere or a plane.

Elimination method

parametric description of the motion of the moving system \rightarrow resultant methods or dialytic elimination methods to derive the algebraic equations.

disadvantage: introduction of "spurious" solutions. In simple cases this method can be very efficient.

• Linear implicitization algorithm (LIA)

guarantees a complete solution of the elimination.

algorithm essentially solves an overconstrained linear system which can be very large in case of high degree polynomial constraint equations.

Geometric constraint equations

Example: planar 3-RRR manipulator

$$X_1^2 + X_2^2 - 2mX_0X_1 - 2nX_0X_2 + (m^2 + n^2 - r^2)X_0^2 = 0$$

Geometric constraint equations

Example: planar 3-RRR manipulator

 $X_1^2 + X_2^2 - 2mX_0X_1 - 2nX_0X_2 + (m^2 + n^2 - r^2)X_0^2 = 0$

$$\begin{aligned} (x^2 + y^2 + m^2 - 2mx + n^2 - 2ny - r^2)x_0^2 + 4(my - nx)x_0x_3 + 4(m - x)x_0y_1 + \\ 4(n - y)x_0y_2 + (x^2 + y^2 + m^2 + 2mx + n^2 + 2ny - r^2)x_3^2 + 4(y + n)x_3y_1 - \\ 4(x + m)x_3y_2 + 4y_1^2 + 4y_2^2 &= 0. \end{aligned}$$

$$\begin{aligned} P_1 &= [1,0,0]^T, \quad P_2 = [1,A_2,0]^T, \quad P_3 = [1,A_3,B_3]^T, \\ p_1 &= [1,0,0]^T, \quad p_2 = [1,a_2,0]^T, \quad p_3 = [1,a_3,b_3]^T. \end{aligned}$$

Revolute input joints:

$$\begin{split} m_1 &= l_1 \frac{1 - u^2}{1 + u^2}, \quad m_2 &= l_2 \frac{1 - v^2}{1 + v^2} + A_2, \quad m_3 &= l_3 \frac{1 - w^2}{1 + w^2} + A_3, \\ n_1 &= l_1 \frac{2u}{1 + u^2}, \quad n_2 &= l_2 \frac{2v}{1 + v^2}, \quad n_3 &= l_3 \frac{2w}{1 + w^2} + B_3. \end{split}$$

$$\begin{split} h_1 &: (l_1^2 - k_1^2)(x_0^2 + x_3^2) + 4l_1 \left(\frac{1 - u^2}{1 + u^2} (x_0 y_1 - x_3 y_2) + \frac{2u}{1 + u^2} (x_0 y_2 + x_3 y_1) \right) + 4(y_1^2 + y_2^2) = 0, \\ h_2 &: \left(\frac{r_1 r_2 v^2 + r_3 r_4}{v^2 + 1} \right) x_0^2 + \left(\frac{r_5 r_6 v^2 + r_7 r_8}{v^2 + 1} \right) x_3^2 - 4a_2 (x_0 y_1 + x_3 y_2) + \\ &4(l_2 \frac{1 - v^2}{1 + v^2} + A_2) (x_0 y_1 - x_3 y_2) + 4l_2 \frac{2v}{1 + v^2} (a_2 x_0 x_3 + x_0 y_2 + x_3 y_2) + 4(y_1^2 + y_2^2) = 0, \\ h_3 &: \frac{(q_1^2 + q_2) w^2 + 4l_3 (B_3 - b_3) w + q_4^2 + q_2 q_3}{1 + w^2} x_0^2 + \left(4 \left(\frac{l_3 (1 - w^2)}{w^2 + 1} + A_3 \right) b_3 - (4(\frac{2w l_3}{1 + w^2} + B_3)) a_3) \right) x_0 x_3 \\ &\left(-4a_3 + 4l_3 \frac{1 - w^2}{w^2 + 1} + 4A_3 \right) x_0 y_1 + \left(-4b_3 + \frac{8w l_3}{(w^2 + 1} + 4B_3 \right) x_0 y_2 + \left(4b_3 + \frac{8w l_3}{w^2 + 1} + 4B_3 \right) x_3 y_1 \\ &+ \left(-4a_3 - 4l_3 \frac{1 - w^2}{w^2 + 1} - 4A_3 \right) x_3 y_2 \frac{(q_5^2 + q_6 q_7) w^2 + 4l_3 (B_3 b_3) w + q_8^2 + q_6 q_7}{1 + w^2} x_3^2 + 4(y_1^2 + y_2^2) = 0, \end{split}$$

Using the three equations h_1 , h_2 , h_3 and a normalization condition one can solve the direct kinematics (DK), the inverse kinematics (IK), the forward and the inverse singularities completely.

The following design variables are assigned to a 3-RRR planar parallel manipulator:

$$A_2 = 16, A_3 = 9, B_3 = 6, a_2 = 14, a_3 = 7, b_3 = 10, l_1 = 10, l_2 = 17, l_3 = 13,$$

 $k_1 = \sqrt{75}, k_2 = \sqrt{70}, k_3 = 10.$

Three input variables are given by

$$u = \frac{1}{2}, v = 1, w = \frac{\sqrt{3}}{3}.$$

Constraint equations simplify considerably

$$\begin{split} h_1 &: 25x_3^2 + 32x_3y_1 - 24x_3y_2 + 4y_1^2 + 4y_2^2 + 24y_1 + 32y_2 + 25 = 0, \\ h_2 &: 1119x_3^2 + 68x_3y_1 - 120x_3y_2 + 4y_1^2 + 4y_2^2 - 952x_3 + 8y_1 + 68y_2 + 223 = 0, \\ h_3 &: 620x_3 + \frac{2025x_3^2}{4} - 130\sqrt{3} - \frac{191}{4} + 40y_1x_3 + 34y_1 - 90x_3y_2 - 40y_2 + 4y_1^2 + \\ &\quad 4y_2^2 + \left(20x_3^2 + 4y_1x_3 - 28x_3 + 4y_2\right)\left(\frac{13\sqrt{3}}{2} + 6\right) + \left(x_3^2 + 1\right)\left(\frac{13\sqrt{3}}{2} + 6\right)^2 = 0. \end{split}$$

Direct Kinematics:

$$\begin{split} &1012018158645001\,{x_{3}}^{6}+373126531431576\,\sqrt{3}{x_{3}}^{5}+828170897821956\,\sqrt{3}{x_{3}}^{4}\\ &-1870238901095276\,{x_{3}}^{5}-3830372502668712\,\sqrt{3}{x_{3}}^{3}-309592552617273\,{x_{3}}^{4}-1367698801300104\,\sqrt{3}{x_{3}}^{2}+5703740216839288\,{x_{3}}^{3}+2552443644341760\,\sqrt{3}{x_{3}}+2666944473586507\,{x_{3}}^{2}-584052482710476\,\sqrt{3}-4438269370622172\,{x_{3}}+1009620776386125=0. \end{split}$$

Inverse Kinematics

$$\begin{split} h_1 &: 25u^2x_3^2 + 40u^2x_3y_2 + 4u^2y_1^2 + 4u^2y_2^2 - 40u^2y_1 + 80ux_3y_1 + 25u^2 + 80uy_2 + 25x_3^2 - \\ &\quad 40x_3y_2 + 4y_1^2 + 4y_2^2 + 40y_1 + 25 = 0 \\ h_2 &: 99v^2x_3^2 - 52v^2x_3y_2 + 4v^2y_1^2 + 4v^2y_2^2 - 60v^2y_1 + 136vx_3y_1 + 155v^2 - 1904vx_3 + \\ &\quad 136vy_2 + 2139x_3^2 - 188x_3y_2 + 4y_1^2 + 4y_2^2 + 76y_1 + 291 = 0 \\ h_3 &: 165w^2x_3^2 + 64w^2x_3y_1 - 12w^2x_3y_2 + 4w^2y_1^2 + 4w^2y_2^2 - 328w^2x_3 - 44w^2y_1 - 16w^2y_2 + \\ &\quad 832wx_3^2 + 104wx_3y_1 + 37w^2 - 728wx_3 + 104wy_2 + 997x_3^2 + 64x_3y_1 - 116x_3y_2 + 4y_1^2 + \\ &\quad 4y_2^2 - 208w + 712x_3 + 60y_1 - 16y_2 + 14 = 0. \end{split}$$

Singularities

$$d_o \dot{\mathbf{y}} + \mathbf{J}_i \dot{\mathbf{t}} = \mathbf{0},\tag{18}$$

where

$$\mathbf{J}_{o} = \begin{bmatrix} \frac{\partial n}{\partial x_{0}} & \frac{\partial n}{\partial x_{3}} & 0 & 0\\ \frac{\partial h_{1}}{\partial x_{0}} & \frac{\partial h_{1}}{\partial x_{3}} & \frac{\partial h_{1}}{\partial y_{1}} & \frac{\partial h_{1}}{\partial y_{2}}\\ \frac{\partial h_{2}}{\partial x_{0}} & \frac{\partial h_{2}}{\partial x_{3}} & \frac{\partial h_{2}}{\partial y_{1}} & \frac{\partial h_{2}}{\partial y_{2}} \end{bmatrix}, \qquad \mathbf{J}_{i} = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & \frac{\partial h_{1}}{\partial u} & 0 & 0\\ 0 & 0 & \frac{\partial h_{2}}{\partial v} & 0\\ 0 & 0 & 0 & \frac{\partial h_{2}}{\partial w} \end{bmatrix},$$

Forward singularities: $\dot{\mathbf{t}} = [0, 0, 0, 0]^T$

 $\mathbf{J}_{o}\dot{\mathbf{y}}=\mathbf{0}.$

Determinant of $\mathbf{J}_o \rightarrow h_4 = 0$ polynomial of degree 10 in the unknowns $x_0, x_3, y_1, y_2, u, v, w \rightarrow h_1, h_2, h_3, h_4$ system of four algebraic equations elimination of u, v, w yields a polynomial of degree 44 which describes all forward singularities

one could also eliminate the Study parameters and would get the forward singularities in joint space

Inverse singularities:

$$\mathbf{J}_i \dot{\mathbf{t}} = \mathbf{0}.$$

It is quite obvious that this determinant factors into three parts:

$$h_{5}: \left[(B_{3}x_{0}^{2} + B_{3}x_{3}^{2} - 2a_{3}x_{0}x_{3} - b_{3}x_{0}^{2} + b_{3}x_{3}^{2} + 2x_{0}y_{2} + 2x_{3}y_{1})w^{2} + (2A_{3}x_{0}^{2} + 2A_{3}x_{3}^{2} - 2a_{3}x_{0}^{2} + 2a_{3}x_{3}^{2} + 4b_{3}x_{0}x_{3} + 4x_{0}y_{1} - 4x_{3}y_{2})w - 2x_{0}y_{2} - 2x_{3}y_{1} - B_{3}x_{0}^{2} - B_{3}x_{3}^{2} + 2a_{3}x_{0}x_{3} + b_{3}x_{0}^{2} - b_{3}x_{3}^{2} \right] I_{3} \cdot \left[(-a_{2}x_{0}x_{3} + x_{0}y_{2} + x_{3}y_{1})v^{2} + (A_{2}x_{0}^{2} + A_{2}x_{3}^{2} - a_{2}x_{0}^{2} + a_{2}x_{3}^{2})v + a_{2}x_{0}x_{3} + 2vx_{0}y_{1} - 2vx_{3}y_{2} - x_{0}y_{2} - x_{3}y_{1})I_{2} \right] \cdot \left[(u^{2}x_{0}y_{2} + u^{2}x_{3}y_{1} + 2ux_{0}y_{1} - 2ux_{3}y_{2} - x_{0}y_{2} - x_{3}y_{1})I_{1} \right] = 0.$$

In kinematic image space:

Inverse singularities in joint space:

system of equations: $S = \{h_1, h_2, h_3, h_5\}$ in $x_0, x_3, y_1, y_2, u, v, w$ eliminate Study parameters!

result is equation of degree 28 in u, v, w.

Inverse singularities in joint space:

system of equations: $S = \{h_1, h_2, h_3, h_5\}$ in $x_0, x_3, y_1, y_2, u, v, w$ eliminate Study parameters!

result is equation of degree 28 in u, v, w.

Compute one point on singularity surface and from this the pose of the manipulator!

Elimination Method

simple recipe: Write the forward kinematics of the kinematic chain and than eliminate the motion parameters

When *n* degree of freedom of the kinematic chain then: number *m* of constraint equations (in general) to be expected is m = 6 - n.

Elimination Method

simple recipe: Write the forward kinematics of the kinematic chain and than eliminate the motion parameters

When *n* degree of freedom of the kinematic chain then: number *m* of constraint equations (in general) to be expected is m = 6 - n.

Example:

$$I = [1 : u : v : uv : -uav : av : ua : -a].$$

homogeneous vector equation consists of eight component equations

$$\rho x_0 = 1, \rho x_1 = u, \rho x_2 = v, \rho x_3 = uv, \rho y_0 = -auv, \rho y_1 = av, \rho y_2 = au, \rho y_3 = -a.$$

eliminate the motion parameters u and v

$$x_3 - x_1x_2 = 0$$
, $y_0 + ax_1x_2 = 0$, $y_1 - ax_2 = 0$, $y_2 - ax_1 = 0$, $y_3 + a = 0$.

five?

manipulation and observing that the Study quadric has to be fulfilled yields

$$y_0 + ax_3 = 0$$
, $y_1 - ax_2 = 0$, $y_2 - ax_1 = 0$, $y_3 + a = 0$.

Linear Implicitization Algorithm (LIA)

Is there an algorithm that derives "automatically" from a parametric representation of the (allowed) kinematic chain a minimal set of implicit equations that completely describes this kinematic chain?

Linear Implicitization Algorithm (LIA)

Is there an algorithm that derives "automatically" from a parametric representation of the (allowed) kinematic chain a minimal set of implicit equations that completely describes this kinematic chain?

D. R. Walter and M. L. Husty. On Implicitization of Kinematic Constraint Equations. In Machine Design & Research (CCMMS 2010), volume 26, pages 218-226, Shanghai, 2010.

Linear Implicitization Algorithm (LIA)

Is there an algorithm that derives "automatically" from a parametric representation of the (allowed) kinematic chain a minimal set of implicit equations that completely describes this kinematic chain?

D. R. Walter and M. L. Husty. On Implicitization of Kinematic Constraint Equations. In Machine Design & Research (CCMMS 2010), volume 26, pages 218-226, Shanghai, 2010.

Two basic ideas:

- · a kinematic chain built from only revolute and prismatic joints can be represented by a set of polynomials
- the parametric expressions have to fulfill the polynomial equations
* there exists a one-to-one correspondence from all spatial transformations to the Study quadric

- * there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n

- there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - \rightarrow kinematic mapping a set of corresponding points in P^7

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - $* \rightarrow$ kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - $* \rightarrow$ kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - $* \rightarrow$ kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

substitute the parametric equations into p

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - $* \rightarrow$ kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- * substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - $* \rightarrow$ kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- * substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - * f has to vanish for all $t_i
 ightarrow$

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - f has to vanish for all $t_i \rightarrow$
 - * all coefficients have to vanish \rightarrow

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - f has to vanish for all $t_i \rightarrow$
 - * all coefficients have to vanish ightarrow
 - * collect with respect to the powerproducts of the t_i and extract their coefficients ightarrow

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- * substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - f has to vanish for all $t_i \rightarrow$
 - * all coefficients have to vanish ightarrow
 - collect with respect to the powerproducts of the t_i and extract their coefficients ightarrow
 - system of linear equations in the $\binom{n+7}{n}$ coefficients C_k

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t₁,..., t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- * substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - f has to vanish for all $t_i \rightarrow$
 - * all coefficients have to vanish ightarrow
 - * collect with respect to the powerproducts of the t_i and extract their coefficients ightarrow
 - system of linear equations in the $\binom{n+7}{n}$ coefficients C_k
- determine *C_k*

- · there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - * \rightarrow kinematic mapping a set of corresponding points in P^7
 - * ask now for the smallest variety $\mathcal{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal V consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe ${\cal V}$ corresponds to the degrees of freedom (dof) of the kinematic chain
- * If the number of generic parameters is n then m=6-n polynomials are necessary to describe ${\cal V}$
- Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{lpha,eta} C_k x_i^{lpha} y_j^{eta}$$

- * substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - f has to vanish for all $t_i \rightarrow$
 - * all coefficients have to vanish ightarrow
 - collect with respect to the powerproducts of the t_i and extract their coefficients ightarrow
 - system of linear equations in the $\binom{n+7}{n}$ coefficients C_k
- determine C_k
- possibly increase the degree of the ansatz polynomial

Example: Canonical leg of a Stewart-Gough platform (UPS-chain)

Denavit-Hartenberg parameters:

	α_i	ai	di
G ₁	$\frac{\pi}{2}$	0	0
G ₂	0	L	0
G ₃	$\frac{\pi}{2}$	0	0
G 4	$\frac{\pi}{2}$	0	0

• Write the forward kinematics of the canonical chain

 $\textbf{D} = \textbf{M}_1 \cdot \textbf{G}_1 \cdot \textbf{M}_2 \cdot \textbf{G}_2 \cdot \textbf{M}_3 \cdot \textbf{G}_3 \cdot \textbf{M}_4 \cdot \textbf{G}_4 \cdot \textbf{M}_5.$

• perform half-tangent substitution to make the equations algebraic.

$$\begin{aligned} x_0 &= -1 + t_5 t_1 - t_5 t_2 - t_5 t_1 t_2 t_3 + t_2 t_5 t_1 t_4 - t_1 t_4 - t_5 t_4 - t_5 t_3 + t_4 t_1 t_2 t_3 + t_4 t_2 t_3 t_5 - t_1 t_2 - t_4 t_3 - t_4 t_2 + t_4 t_1 t_3 t_5 - t_1 t_3 + t_2 t_3 \end{aligned}$$

$$\begin{aligned} x_1 &= -t_4 t_1 t_2 t_3 - t_5 t_1 t_2 t_3 - t_2 t_5 t_1 t_4 - t_1 t_2 - t_4 t_1 t_3 t_5 - t_1 t_3 + t_1 t_4 + t_5 t_1 + t_4 t_2 t_3 t_5 - t_2 t_3 \\ - t_4 t_2 + t_5 t_2 - t_4 t_3 + 1 + t_5 t_3 - t_5 t_4 \end{aligned}$$

$$\begin{aligned} x_2 &= t_1 + t_2 - t_1 t_2 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 - t_4 + t_5 t_1 t_2 + t_3 + t_2 t_5 t_4 + t_4 t_2 t_3 + t_5 t_2 t_3 - t_4 t_1 t_3 \\ - t_5 + t_5 t_1 t_3 - t_5 t_1 t_4 + t_4 t_3 t_5 \end{aligned}$$

$$\begin{aligned} x_3 &= -t_1 + t_2 + t_1 t_2 t_3 - t_5 t_1 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 + t_4 - t_5 t_1 t_2 + t_3 - t_5 t_1 t_4 - t_4 t_2 t_3 - t_4 t_1 t_3 - t_5 + t_5 t_2 t_3 - t_2 t_5 t_4 - t_4 t_3 t_5 \end{aligned}$$

$$\begin{aligned} x_0 &= -1 + t_5 t_1 - t_5 t_2 - t_5 t_1 t_2 t_3 + t_2 t_5 t_1 t_4 - t_1 t_4 - t_5 t_4 - t_5 t_3 + t_4 t_1 t_2 t_3 + t_4 t_2 t_3 t_5 - t_1 t_2 - t_4 t_3 - t_4 t_2 + t_4 t_1 t_3 t_5 - t_1 t_3 + t_2 t_3 \end{aligned}$$

$$\begin{aligned} x_1 &= -t_4 t_1 t_2 t_3 - t_5 t_1 t_2 t_3 - t_2 t_5 t_1 t_4 - t_1 t_2 - t_4 t_1 t_3 t_5 - t_1 t_3 + t_1 t_4 + t_5 t_1 + t_4 t_2 t_3 t_5 - t_2 t_3 \\ - t_4 t_2 + t_5 t_2 - t_4 t_3 + 1 + t_5 t_3 - t_5 t_4 \end{aligned}$$

$$\begin{aligned} x_2 &= t_1 + t_2 - t_1 t_2 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 - t_4 + t_5 t_1 t_2 + t_3 + t_2 t_5 t_4 + t_4 t_2 t_3 + t_5 t_2 t_3 - t_4 t_1 t_3 \\ - t_5 + t_5 t_1 t_3 - t_5 t_1 t_4 + t_4 t_3 t_5 \end{aligned}$$

$$\begin{aligned} x_3 &= -t_1 + t_2 + t_1 t_2 t_3 - t_5 t_1 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 + t_4 - t_5 t_1 t_2 + t_3 - t_5 t_1 t_4 - t_4 t_2 t_3 - t_4 t_1 t_3 - t_5 + t_5 t_2 t_3 - t_2 t_5 t_4 - t_4 t_3 t_5 \end{aligned}$$

- Make a general Ansatz polynomial in Study coordinates.
- Substitute the above equations.
- Order with respect to the t_i .

$$\begin{aligned} x_0 &= -1 + t_5 t_1 - t_5 t_2 - t_5 t_1 t_2 t_3 + t_2 t_5 t_1 t_4 - t_1 t_4 - t_5 t_4 - t_5 t_3 + t_4 t_1 t_2 t_3 + t_4 t_2 t_3 t_5 - t_1 t_2 - t_4 t_3 - t_4 t_2 + t_4 t_1 t_3 t_5 - t_1 t_3 + t_2 t_3 \end{aligned}$$

$$\begin{aligned} x_1 &= -t_4 t_1 t_2 t_3 - t_5 t_1 t_2 t_3 - t_2 t_5 t_1 t_4 - t_1 t_2 - t_4 t_1 t_3 t_5 - t_1 t_3 + t_1 t_4 + t_5 t_1 + t_4 t_2 t_3 t_5 - t_2 t_3 \\ - t_4 t_2 + t_5 t_2 - t_4 t_3 + 1 + t_5 t_3 - t_5 t_4 \end{aligned}$$

$$\begin{aligned} x_2 &= t_1 + t_2 - t_1 t_2 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 - t_4 + t_5 t_1 t_2 + t_3 + t_2 t_5 t_4 + t_4 t_2 t_3 + t_5 t_2 t_3 - t_4 t_1 t_3 \\ - t_5 + t_5 t_1 t_3 - t_5 t_1 t_4 + t_4 t_3 t_5 \end{aligned}$$

$$\begin{aligned} x_3 &= -t_1 + t_2 + t_1 t_2 t_3 - t_5 t_1 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 + t_4 - t_5 t_1 t_2 + t_3 - t_5 t_1 t_4 - t_4 t_2 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 + t_4 - t_5 t_1 t_2 + t_3 - t_5 t_1 t_4 - t_4 t_2 t_3 - t_4 t_1 t_2 t_3 - t_5 t_1 t_4 - t_4 t_3 t_5 \end{aligned}$$

- Make a general Ansatz polynomial in Study coordinates.
- Substitute the above equations.
- Order with respect to the t_i .

$$(C_3L + C_1L + 2C_4 - 2C_2)t_1 + (-C_7L + 2C_6 + C_5L + 2C_8)t_4t_2t_3t_5 + (C_7L + C_5L + 2C_8 - 2C_6)t_4t_1t_3t_5 + \dots + (C_3L + C_1L + 2C_4 - 2C_2)t_4t_2t_3 = 0.$$

$$\begin{aligned} x_0 &= -1 + t_5 t_1 - t_5 t_2 - t_5 t_1 t_2 t_3 + t_2 t_5 t_1 t_4 - t_1 t_4 - t_5 t_4 - t_5 t_3 + t_4 t_1 t_2 t_3 + t_4 t_2 t_3 t_5 - t_1 t_2 - t_4 t_3 - t_4 t_2 + t_4 t_1 t_3 t_5 - t_1 t_3 + t_2 t_3 \end{aligned}$$

$$\begin{aligned} x_1 &= -t_4 t_1 t_2 t_3 - t_5 t_1 t_2 t_3 - t_2 t_5 t_1 t_4 - t_1 t_2 - t_4 t_1 t_3 t_5 - t_1 t_3 + t_1 t_4 + t_5 t_1 + t_4 t_2 t_3 t_5 - t_2 t_3 \\ - t_4 t_2 + t_5 t_2 - t_4 t_3 + 1 + t_5 t_3 - t_5 t_4 \end{aligned}$$

$$\begin{aligned} x_2 &= t_1 + t_2 - t_1 t_2 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 - t_4 + t_5 t_1 t_2 + t_3 + t_2 t_5 t_4 + t_4 t_2 t_3 + t_5 t_2 t_3 - t_4 t_1 t_3 \\ - t_5 + t_5 t_1 t_3 - t_5 t_1 t_4 + t_4 t_3 t_5 \end{aligned}$$

$$\begin{aligned} x_3 &= -t_1 + t_2 + t_1 t_2 t_3 - t_5 t_1 t_3 - t_4 t_1 t_2 + t_1 t_4 t_2 t_3 t_5 + t_4 - t_5 t_1 t_2 + t_3 - t_5 t_1 t_4 - t_4 t_2 t_3 - t_4 t_1 t_3 - t_5 + t_5 t_2 t_3 - t_2 t_5 t_4 - t_4 t_3 t_5 \end{aligned}$$

- Make a general Ansatz polynomial in Study coordinates.
- Substitute the above equations.
- Order with respect to the t_i .

$$\begin{aligned} (C_{3}L + C_{1}L + 2C_{4} - 2C_{2})t_{1} + (-C_{7}L + 2C_{6} + C_{5}L + 2C_{8})t_{4}t_{2}t_{3}t_{5} \\ + (C_{7}L + C_{5}L + 2C_{8} - 2C_{6})t_{4}t_{1}t_{3}t_{5} + \ldots + (C_{3}L + C_{1}L + 2C_{4} - 2C_{2})t_{4}t_{2}t_{3} = 0. \end{aligned}$$

Solve the linear system

$$(y_0^2 + y_1^2 + y_2^2 + y_3^2 - \frac{1}{4}L^2(x_0^2 + x_1^2 + x_2^2 + x_3^2))\lambda + (x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3)\mu = 0.$$

how do we obtain the constraint equations of a chain in general position from the constraint equations of a kinematic chain in canonical position?

M. Pfurner. Analysis of spatial serial manipulators using kinematic mapping. PhD thesis, University of Innsbruck, 2006. URL http://repository.uibk.ac.at.

answer:

Changes of coordinate systems in base and end-effector coordinate system induce linear transformations of the Study coordinates

important consequence:

These transformations make the equations more complicated but do not change their degree!!!

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ A_1 & 1 & 0 & 0 \\ B_1 & 0 & 1 & 0 \\ C_1 & 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -a_1 & 1 & 0 & 0 \\ -b_1 & 0 & 1 & 0 \\ -c_1 & 0 & 0 & 1 \end{bmatrix}.$$

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ A_1 & 1 & 0 & 0 \\ B_1 & 0 & 1 & 0 \\ C_1 & 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -a_1 & 1 & 0 & 0 \\ -b_1 & 0 & 1 & 0 \\ -c_1 & 0 & 0 & 1 \end{bmatrix}.$$
$$\mathbf{T}_m \mathbf{T}_f = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2a_1 + 2A_1 & -2b_1 + 2B_1 & -2c_1 + 2C_1 & 4 & 0 & 0 & 0 \\ 2a_1 - 2A_1 & 0 & 2c_1 + 2C_1 & -2b_1 - 2B_1 & 0 & 4 & 0 & 0 \\ 2b_1 - 2B_1 & -2c_1 - 2C_1 & 0 & 2a_1 + 2A_1 & 0 & 0 & 4 & 0 \end{bmatrix}.$$

Applying these transformations to the canonical chain yields

$$\left(\left(a_{1}-A_{1}\right) x_{1}'+\left(b_{1}-B_{1}\right) x_{2}'+\left(c_{1}-C_{1}\right) x_{3}'+2 y_{0}'\right)^{2}+\right. \\ \left(\left(-a_{1}+A_{1}\right) x_{0}'+\left(-c_{1}-C_{1}\right) x_{2}'+\left(b_{1}+B_{1}\right) x_{3}'+2 y_{1}'\right)^{2}+\left. \\ \left(\left(-b_{1}+B_{1}\right) x_{0}'+\left(c_{1}+C_{1}\right) x_{1}'+\left(-a_{1}-A_{1}\right) x_{3}'+2 y_{2}'\right)^{2}+\left. \\ \left(\left(-c_{1}+C_{1}\right) x_{0}'+\left(-b_{1}-B_{1}\right) x_{1}'+\left(a_{1}+A_{1}\right) x_{2}'+2 y_{3}'\right)^{2}-\frac{1}{4} L^{2} \left(4 x_{0}'^{2}+4 x_{1}'^{2}+4 x_{2}'^{2}+4 x_{3}'^{2}\right)=0.$$