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Introduction

Kinematics is basic for the analysis and synthesis of mechanisms and robots.
After establishing the kinematics of a mechanical system follows dynamics, control,. . .

• In kinematics one tries to answer fundamental questions arising in the analysis and synthesis of
kinematic chains.

• Kinematic chains are constituent elements of serial or parallel robots, wired robots, humanoid
robots, walking and jumping machines or rolling and autonomous robots.

• The fundamental questions, going far beyond the classical kinematics involve the number of solutions,
complex or real to solve, for example, forward or inverse kinematics, the description of singular
solutions, workspace or synthesis questions.

• Such problems are often described by systems of multivariate algebraic or functional equations
and it turns out that even relatively simple kinematic problems involving multi-parameter systems lead to
complicated nonlinear equations.

• Geometric insight and geometric preprocessing are often key to the solution.
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Introduction

Analytic description of kinematic chains:

• Parametric and implicit representations

• Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler
parameters, Study parameters, quaternions, dual quaternions)

• Most the time vector loop equations are used to describe the chains

• Very often only a single numerical solution is obtained

• Complete analysis and synthesis needs all solutions

• We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms
from algebraic geometry

• An important task is to find the simplest algebraic constraint equations, that describe the chains.

• Geometric and algebraic preprocessing is needed before elimination, Gröbner base computation or
numerical solution process starts

• Algebraic constraint equations yield answers to the overall behavior of a kinematic chain→ Global
Kinematics
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Basics of Robot Kinematics

• Design parameter: parameters that determine the geometry and topology of the mechanism.

• Joint coordinates: Lengths or angles of the actuators.

• Cartesian coordinates: Parameters that determine the relative position and orientation of end-effector
frame to base frame.

• Workspace: Set of all poses (=positions and orientations) that can be reached by the manipulator in
presence of limits of active and passive joints.

• Degree of freedom (dof): Number of independent coordinates to define the pose of a mechanism
(robot).

• Singular configuration: Special configuration of the mechanism links which implies a local reduction
(serial) or a local increase (parallel) of mobility.

• Self Motion: Global singularity which leads to a one- or multi-parameter motion of the manipulator with
locked inputs.

• Working Mode: Multiple configurations of the input chains.

• Operation Mode: Multiple output motions of a manipulator.
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Parametrizations of SE(3)
Euclidean displacement:

γ : R3 → R3, x 7→ Ax + a (1)

A proper orthogonal 3× 3 matrix, a, x ∈ R3 . . . vector

• group of Euclidean displacements: SE(3)

• SE(3) is a non-commutative group of transformations.

• Two notations to collect rotation and translation in a homogeneous 4× 4 transformation matrix.

[
w

x

]
7→
[

1 oT

a A

]
·
[
w

x

] [
x

w

]
7→
[
oT 1

A a

]
·
[

x

w

]
. (2)

classical European notation American notation
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Parametrizations of the rotation matrix A

Parametrizations are constructed from elementary properties of A:

“proper orthogonal”: columns are orthogonal unit vectors and the determinant is 1.

A has 9 entries but only 3 are independent!

• Euler angles. Every Euclidean rotation matrix can be parameterized with three rotations about three non
coplanar axes.


cos (γ) − sin (γ) 0

sin (γ) cos (γ) 0

0 0 1

 ,


cos (β) 0 sin (β)

0 1 0

− sin (β) 0 cos (β)

 ,


1 0 0

0 cos (α) − sin (α)

0 sin (α) cos (α)


• Elementary rotations about axes of the coordinate system.

• 12 essential different sequences→ 12 different parameterizations,

• ∃ parametrization singularities (gimbal lock)
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A =


cos (γ) cos (β) − sin (γ) cos (α) + cos (γ) sin (β) sin (α) sin (γ) sin (α) + cos (γ) sin (β) cos (α)

sin (γ) cos (β) cos (γ) cos (α) + sin (γ) sin (β) sin (α) − cos (γ) sin (α) + sin (γ) sin (β) cos (α)

− sin (β) cos (β) sin (α) cos (β) cos (α)



rotation angle ϕ and rotation axis [v1, v2, v3]T

cosϕ =
1

2
(trace(A)− 1),

v1 : v2 : v3 = a32 − a23 : a31 − a13 : a12 − a21
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• Rodrigues Parameters: Every rotation matrix A can be computed via

A = (I− S)−1 · (I + S)

where S is 3× 3 skew symmetric and I is identity matrix.

• with

S =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 I =

 1 0 0

0 1 0

0 0 1



A =


b1

2−b22−b32+1
b12+b22+b32+1

2 b2 b1−b3
b12+b22+b32+1

2 b3 b1+b2
b12+b22+b32+1

2 b2 b1+b3
b12+b22+b32+1

− b1
2−b22+b3

2−1
b12+b22+b32+1

−2 −b2 b3+b1
b12+b22+b32+1

2 b3 b1−b2
b12+b22+b32+1

2 b2 b3+b1
b12+b22+b32+1

− b1
2+b2

2−b32−1
b12+b22+b32+1



tan
ϕ

2
=
√
b2

1 + b2
2 + b2

3 v1 : v2 : v3 = b1 : b2 : b3

• parametrization singularity ϕ = π

• b1 are algebraic parameters
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• Euler Parameters: b1 = c1/c0, b2 = c2/c0, b3 = c3/c0

A =


c0

2+c1
2−c22−c32

c02+c12+c22+c32 −2 c0 c3−c1 c2
c02+c12+c22+c32 2 c0 c2+c3 c1

c02+c12+c22+c32

2 c0 c3+c1 c2
c02+c12+c22+c32

c0
2−c12+c2

2−c32

c02+c12+c22+c32 −2 c0 c1−c2 c3
c02+c12+c22+c32

−2 c0 c2−c3 c1
c02+c12+c22+c32 2 c0 c1+c2 c3

c02+c12+c22+c32
c0

2−c12−c22+c3
2

c02+c12+c22+c32



• ci four homogeneous parameters, singularity free,

• possible normalizations c2
0 + c2

1 + c2
2 + c2

3 = 1 or c0 = 1

• Euler parameters are identical to the the (Hamiltonian) quaternions describing rotations
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Quaternions

The set of quaternions H is the vector space R4 together with the quaternion multiplication

(a0, a1, a2, a3) ? (b0, b1, b2, b3) = (a0b0 − a1b1 − a2b2 − a3b3,

a0b1 + a1b0 + a2b3 − a3b2,

a0b2 − a1b3 + a2b0 − a3b1,

a0b3 − a1b2 − a2b1 + a3b0).

(3)

• The triple (H,+, ?) (with component wise addition) forms a skew field.

• The real numbers can be embedded into this field via x 7→ (x, 0, 0, 0)

• vectors x ∈ R3 are identified with quaternions of the shape (0, x).
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Every quaternion is a unique linear combination of the four basis quaternions 1 = (1, 0, 0, 0), i = (0, 1, 0, 0),
j = (0, 0, 1, 0), and k = (0, 0, 0, 1).

The multiplication table is

? 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Example: elementary rotations about coordinate axes:

rx = 1 + ui, ry = 1 + vj, rz = 1 + wk,

Conjugate quaternion and norm are defined as

A = (a0,−a1,−a2,−a3), ‖A‖ =
√
A ? A =

√
a2

0 + a2
1 + a2

2 + a2
3. (4)
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3. (4)
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Kinematic mapping

Study’s kinematic mapping κ:
κ : α ∈ SE(3) 7→ x ∈ P7

pre-image of x is the displacement α

1

∆


∆ 0 0 0

p x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

r 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

 (5)

p = 2(−x0y1 + x1y0 − x2y3 + x3y2),

q = 2(−x0y2 + x1y3 + x2y0 − x3y1),

r = 2(−x0y3 − x1y2 + x2y1 + x3y0),

(6)

∆ = x2
0 + x2

1 + x2
2 + x2

3.

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0, xi not all 0

[x0 : · · · : y3]T Study parameters = parametrization of SE(3) with dual quaternions
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S2
6 : Study quadric

Named after

Eduard Study (23.3.1862-6.1.1930)
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Kinematic mapping

How do we get the Study parameters when a proper orthogonal matrix A = [aij] and the translation vector
a = [ak]T are given?

Cayley map, not singularity free (180◦)

Rotation part:
x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12

= a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13

= a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32

= a21 − a12 : a31 + a13 : a23 − a32 : 1− a11 − a22 + a33

(7)

In general, all four proportions of Eq. (7) yield the same result. Translation part:

2y0 = a1x1 + a2x2 + a3x3, 2y1 = −a1x0 + a3x2 − a2x3,

2y2 = −a2x0 − a3x1 + a1x3, 2y3 = −a3x0 + a2x1 − a1x2.
(8)
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Example 1

Rotation about x-axis:

Q =


1 0 0 0

0 1 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ

 .
Its kinematic image, computed via (7) and (8) is

r = [1 + cosϕ : sinϕ : 0 : 0 : 0 : 0 : 0 : 0].

As ϕ varies in [0, 2π), r describes a straight line on the Study quadric which reads after algebraization with
half-tangent substitution

rx = [1 : u : 0 : 0 : 0 : 0 : 0 : 0].

The other two elementary rotations about y− and z−axis can be written in Study parameters as:

ry = [1 : 0 : v : 0 : 0 : 0 : 0 : 0], rz = [1 : 0 : 0 : w : 0 : 0 : 0 : 0].
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Example 2

R-P-R chain (P fixed translation)

M =



1 0 0 0

0 1 0 0

0 0 cos (t) − sin (t)

0 0 sin (t) cos (t)


, N =



1 0 0 0

0 1 0 0

0 0 1 0

2 a 0 0 1


, K =



1 0 0 0

0 cos (s) 0 − sin (s)

0 0 1 0

0 cos (s) 0 sin (s)


,

L = M · N · K =



1 0 0 0

0 cos (s) 0 − sin (s)

−2 sin (t) a − sin (t) cos (s) cos (t) − sin (t) sin (s)

2 cos (t) a cos (t) cos (s) sin (t) cos (t) sin (s)


.
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Its kinematic image, computed via (7) and (8) is

l =



1 + cos (s) + cos (t) + cos (t) sin (s)

sin (t) + sin (t) sin (s)

− sin (s)− cos (t) cos (s)

− sin (t) cos (s)

− sin (t) a (− sin (s)− cos (t) cos (s))− cos (t) a sin (t) cos (s)

cos (t) a (− sin (s)− cos (t) cos (s))− (sin (t))2 a cos (s)

sin (t) a (1 + cos (s) + cos (t) + cos (t) sin (s))− cos (t) a (sin (t) + sin (t) sin (s))

− cos (t) a (1 + cos (s) + cos (t) + cos (t) sin (s))− sin (t) a (sin (t) + sin (t) sin (s))



.

after algebraization with half-tangent substitution:

l = [1 : u : v : uv : −uav : av : ua : −a].
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Planar displacements: x2 = x3 = 0, y0 = y1 = 0

1

x2
0 + x2

3

 x2
0 + x2

3 0 0

−2(x0y1 − x3y2) x2
0 − x2

3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0 − x2

3


SE(2) (we omit the last row and the last column)

Spherical displacements: yi = 0 (→ Euler parameters!)

1

∆

x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

 (9)

where ∆ = x2
0 + x2

1 + x2
2 + x2

3. → SO+(3)

generate 3-spaces on S2
6

more properties:

J. Selig, Geometric Fundamentals of Robotics, 2nd. ed. Springer 2005
Husty, Pfurner, Schröcker, Brunnthaler. Algebraic methods in mechanism analysis and synthesis. Robotica,
25(6):661-675, 2007.
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(Hamiltonian) Quaternions are closely related to spherical kinematic mapping.

Consider a vector a = [a1, a2, a3]T and a matrix X of the shape (9).

The product b = X · a can also be written as
B = X ? A ? X

where X = (x0, x1, x2, x3), ‖X‖ = 1 and A = (0,a), B = (0,b).

From this follows:

Spherical displacements can also be described by unit quaternions and spherical kinematic mapping maps a
spherical displacement to the corresponding unit quaternion.
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General Euclidean displacements → extend the concept of quaternions.

A dual quaternion Q is a quaternion over the ring of dual numbers

Q = Q0 + εQ1,

where ε2 = 0, Q0,Q1 are Hamiltonian quaternions, e.g. Q0 = (q0, q1, q2, q3).
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The algebra of dual quaternions has eight basis elements 1, i, j, k, ε, εi, εj, and εk and the multiplication table

? 1 i j k ε εi εj εk

1 1 i j k ε εi εj εk

i i −1 k −j εi −ε1 εk −εj
j j −k −1 i εj −εk −ε1 εi

k k j −i −1 εk εj −εi −ε1
ε1 ε εi εj εk 0 0 0 0

εi εi −ε1 εk −εj 0 0 0 0

εj εj −εk −ε1 εi 0 0 0 0

εk εk εj −εi −ε1 0 0 0 0
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Dual quaternions know two types of conjugation.

The conjugate quaternion and the conjugate dual quaternion of a dual quaternion Q = x0 + εy0 + x + εy are
defined as

Q = x0 + εy0 − x− εy and Qe = x0 − εy0 + x− εy,

respectively. The norm of a dual quaternion is

‖Q‖ =
√
QQ.

The equation b = X · a where X is a matrix of the shape (5) can be written as

B = Xe ? A ? X

where X = x + εy, ‖X‖ = 1, x = (x0, . . . , x3)T , y = (y0, . . . , y3)T , and x · y = 0.

Last condition is precisely the Study condition

A and B are dual quaternions of the type: A = 1 + εa, B = 1 + εb
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Example: Elliptic Motion( double slider) - Oldham
motion

Double slider (tramel motion) Oldham motion

Doubleslider : [4 + (t2 + 1), 0, 0, 4t(t2 + 1), 0, d(3t2 − 1),−dt(t3 − 3, 0]T

Oldham : [4 + (t2 + 1), 0, 0,−4t(t2 + 1), 0,−d(3t2 − 1), dt(t3 − 3, 0]T
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Example: Elliptic Motion( double slider) - Oldham
motion

E =


1 0 0 0

d
2

1−t2
t2+1

− 1−t2
t2+1

2t
t2+1

0

− d
2

2t
t2+1

2t
t2+1

1−t2
t2+1

0

0 0 0 1

 O =


1 0 0 0

− d
2
t4−6t2+1

t2+1
1−t2
t2+1

− 2t
t2+1

0

− d
2

2t(1−t2)
t2+1

2t
t2+1

1−t2
t2+1

0

0 0 0 1


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Plücker Coordinates

Definition

Let X(x0 : x1 : x2 : x3) and Y(y0 : y1 : y2 : y3) be two different points of a line p ∈ P3, then

pik :=

∣∣∣∣∣xi xk
yi yk

∣∣∣∣∣ (i, k : 0, . . . , 3, i 6= k) (10)

are called homogeneous Plücker-Coordinates (line coordinates) von p.

Out of the 12 determinants only 6 are relevant

p01 = p1; p02 = p2; p03 = p3; (11)

p23 = p4; p31 = p5; p12 = p6
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Ω(p) := p1p4 + p2p5 + p3p6 =
3∑
ν=1

pνpν+3 = 0 , (12)

sometime also written

Ω(p) = p01p23 + p02p31 + p03p12 = 0 (13)

1 The Plücker coordinates are independent of the choice of the points on the line

2 The Plücker coordinates can be interpreted as points in a five dimensional projective space P5

3 Ω is a hyper quadric in P5, called Plücker quadric

Plücker coordinates transform :

p→
(

A 0

a×A A

)
p

a× skew symmetric matrix belonging to translation vector a.
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Axis Coordinates

Coordinates of a plane:
e . . . u0x0 + u1x1 + u2x2 + u3x3 = 0→ [u0 : u1 : u2 : u3].

Definition

Let e1 [u0 : u1 : u2 : u3] and e2[v0 : v1 : v2 : v3] be two different planes passing through the line p, then

p̂ik :=

∣∣∣∣∣ui uk
vi vk

∣∣∣∣∣ (i, k : 0, . . . , 3; i 6= k) (14)

are called homogeneous axis coordinates of p
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line objects:

1 A linear equation in Plücker coordinates

a1p1 + a2p2 + a3p3 + a4p4 + a5p5 + a6p6 = 0

determines a linear line complex (three parametric set of lines)

2 Two linear equations in Plücker coordinates determine a linear congruence of lines (two parametric set of
lines)

3 Three linear equations in Plücker coordinates determine a hyperboloid (one parametric set of lines)

4 degenerate cases exist: singular line congruence, parabolic congruence, pencils of lines, bundles of lines
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Serial robots
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Σ0 =base frame

Σ1

Σ2

Σn−1

Σn

EE frame

Figure: Coordinate frames attached to a general nR-mechanism

Forward Kinematics

D = B ·M1 · G1 ·M2 · G2 · · · · ·Mn−1 · Gn−1 ·Mn · Gn, (15)

where B is the coordinate transformation Σ0 → Σ1,
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Coordinate transformation matrices

Gi =


1 0 0 0

ai 1 0 0

0 0 cos(αi) − sin(αi)

di 0 sin(αi) cos(αi)



Rotation Matrices

Mi =


1 0 0 0

0 cos(ui) − sin(ui) 0

0 sin(ui) cos(ui) 0

0 0 0 1


for i = 1, . . . , n
ai, di, αi . . . Denavit-Hartenberg parameters

The DH parameters completely determine the design of the manipulator. For an nR manipulator there are
exactly 3n− 4 DH parameters.
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Home Pose

top view

front view side view

perspective view

x′′

z′′

y′′′
z′′′

x′

y′

x

y

z

Every serial manipulator can be brought into a pose where all axes are parallel to a plane (here yz-plane).
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Singularities without differentiation

In the columns if the Jacobian Matrix J are the Plücker coordinates of the instantaneous locations of the
revolute axes of the robot.

In local coordinate system the axes are pi = [0, 0, 1, 0, 0, 0]

p1 = [0, 0, 1, 0, 0, 0]

p2 = A2p1

...

A = M1G1 written as line transform matrix
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Constraint varieties of 3R-chains

Algorithm:

1 Determine the constraint variety of a canonical serial 2R-chain

2 Add one more rotation -> algebraic representation of a canonical 3R chain

3 Add a (linear) base transformation in the image space -> general 3R chain

Σ0=Σ1 Σ2

Σ3

EE frame

Figure: Canonical 3R-manipulator
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Affine (Projective) Varieties - Ideals

• A set of constraints is described by a set of polynomials

• The set of polynomials forms a ring which is denoted by k[x0, . . . xn].

• If k is a field and f1, . . . , fs are polynomials in k[x0, . . . xn], and if

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0, for all 1 ≤ i ≤ s}

then V(f1, . . . , fs) is called an affine variety defined by the polynomials fi.

• The definition says essentially that the affine variety is the zero set of the defining polynomials.

• In case of homogeneous polynomials the variety is called a projective variety.

• An ideal I is a subset of k[x0, . . . xn] that satisfies the following properties:

(i) 0 ∈ I.

(ii) If f , g ∈ I, then f + g ∈ I.

(iii) If f ∈ I, g ∈ k then fg ∈ I.

D. A. Cox, J. B. Little, and D. O’Shea, Ideals, Varieties and Algorithms, Springer, third ed., 2007.
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Step 1: Fix u1

D = F ·M2 · G2 ·M3 · G3.

where F is a fixed transformation, given by M1(u10) · G1. F and G3 are coordinate transformations in the base
and moving frame of the 2R-manipulator

Σ0=Σi Σi+1

EE frame

Figure: Canonical 2R-mechanism

matrix representation of this 2R-chain becomes

D = M2 · G2 ·M3.
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Parametric representation of the constraint variety

x0

x1

x2

x3

y0

y1

y2

y3



=



(cos(u2) cos(u3) − sin(u2) sin(u3) + 1)(1 + cos(α2))

(cos(u2) + cos(u3)) sin(α2)

(sin(u2) − sin(u3)) sin(α2)

(cos(u2) sin(u3) + sin(u2) cos(u3))(1 + cos(α2))

1
2
a2(cos(u2) cos(u3) − sin(u2) sin(u3) + 1)(sinα2)

− 1
2
a2(cos(u2) + cos(u3))(1 + cos(α2))

− 1
2
a2(sin(u2) − sin(u3))(1 + cos(α2))

1
2
a2(cos(u2) sin(u3) + sin(u2) cos(u3))(sin(α2))



.

By inspection and direct substitution one can verify easily that these coordinates satisfy four independent
linear equations:

Hc11 : a2 sin(α2)x0 − 2(1 + cos(α2))y0 = 0,

Hc12 : a2(1 + cos(α2))x1 + 2 sin(α2)y1 = 0,

Hc13 : a2(1 + cos(α2))x2 + 2 sin(α2)y2 = 0,

Hc14 : a2 sin(α2)x3 − 2(1 + cos(α2))y3 = 0.

Applying half tangent substitution (al2 = tan α2
2 ) these equations rewrite to

Hc11 : 2a2al2x0 − 4y0 = 0,

Hc12 : 2a2x1 + 4al2y1 = 0,

Hc13 : 2a2x2 + 4al2y2 = 0,

Hc14 : 2a2al2x3 − 4y3 = 0.

(16)

The constraint variety of a canonical A 2-R chain is represented by four linear equations.
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Step 2: Add variation of u1

Hc1(v1) :

(a2al2 − v1d2 − al3a1 − al3a3 − al1a1 − a2al2al3al1 − al3v1d2al1

− al3d3al1v1 − a3al1 − d3v1)x0 + (−al3v1d2 + a2al2al3 + a2al2al1

+ a1 + a3 − al3al1a1 + v1d2al1 − al3a3al1 + d3al1v1 − al3d3v1)x1

+ (a1v1 − d2al1 + al3d3 − d3al1 + a2al2al1v1 + al3d2 − al3al1a1v1

− al3a3al1v1 + a3v1 + a2al2al3v1)x2 + (−a3al1v1 + d2 + d3 − al1a1v1

+ a2al2v1 − al3a1v1 + al3d2al1 + al3d3al1 − a2al2al3al1v1 − al3a3v1)x3

+ 2(al3al1 − 1)y0 − 2(al3 + al1)y1 − 2(al1v1 + al3v1)y2 + 2(al3al1v1 − v1)y3 = 0

Step 3: if necessary add a base transformation -> general 3R-chain

All general 3R chains can be written without specifying the Denavit Hartenberg parameters
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Inverse kinematics of the general 6R-mechanism

M1 · G1 ·M2 · G2 ·M3 · G3 ·M4 · G4 ·M5 · G5 ·M6 · G6 = A

A is the given endeffector pose w.r.t. the base coordinate system

Σ1

Σ1

ΣL = ΣR

ΣL

ΣR

EE frame

EE frame

Figure: Cutting of the 6R into two 3R serial chains
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Constraint variety of the left 3R-chain (= canonical 3-R chain):

T1 = M1 · G1 ·M2 · G2 ·M3 · G3.

Constraint variety of the right 3R-chain (= general 3R-chain):

T2 = A · G−1
6 ·M−1

6 · G−1
5 ·M−1

5 · G−1
4 ·M−1

4 .

Theorem

Geometrically the solution of the inverse kinematic problem of a serial 6R-chain is equivalent to the
intersection of eight one parameter sets of hyperplanes with S2

6 in P7.
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Constraint Equations

• Using geometric properties of the mechanism

properties can be for example: one point of the moving system (end effector system) is bound to move
on a line, a circle, a sphere or a plane.

• Elimination method

parametric description of the motion of the moving system→ resultant methods or dialytic elimination
methods to derive the algebraic equations.

disadvantage: introduction of “spurious” solutions. In simple cases this method can be very efficient.

• Linear implicitization algorithm (LIA)

guarantees a complete solution of the elimination.

algorithm essentially solves an overconstrained linear system which can be very large in case of high
degree polynomial constraint equations.
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Geometric constraint equations

Example: planar 3-RRR manipulator

X2
1 + X2

2 − 2mX0X1 − 2nX0X2 + (m2 + n2 − r2)X2
0 = 0

(x2 + y2 + m2 − 2mx + n2 − 2ny− r2)x2
0 + 4(my− nx)x0x3 + 4(m− x)x0y1+

4(n− y)x0y2 + (x2 + y2 + m2 + 2mx + n2 + 2ny− r2)x2
3 + 4(y + n)x3y1−

4(x + m)x3y2 + 4y2
1 + 4y2

2 = 0.
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P1 = [1, 0, 0]T , P2 = [1,A2, 0]T , P3 = [1,A3,B3]T ,

p1 = [1, 0, 0]T , p2 = [1, a2, 0]T , p3 = [1, a3, b3]T .

Revolute input joints:

m1 = l1
1−u2

1+u2 , m2 = l2
1−v2

1+v2 + A2, m3 = l3
1−w2

1+w2 + A3,

n1 = l1
2u

1+u2 , n2 = l2
2v

1+v2 , n3 = l3
2w

1+w2 + B3.
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h1 : (l21 − k2
1)(x2

0 + x2
3) + 4l1

(
1− u2

1 + u2
(x0y1 − x3y2) +

2u

1 + u2
(x0y2 + x3y1)

)
+ 4(y2

1 + y2
2) = 0,

h2 :

(
r1r2v

2 + r3r4)

v2 + 1

)
x2

0 +

(
r5r6v

2 + r7r8)

v2 + 1

)
x2

3 − 4a2(x0y1 + x3y2)+

4(l2
1− v2

1 + v2
+ A2)(x0y1 − x3y2) + 4l2

2v

1 + v2
(a2x0x3 + x0y2 + x3y2) + 4(y2

1 + y2
2) = 0,

h3 :
(q2

1 + q2)w2 + 4l3(B3 − b3)w + q2
4 + q2q3

1 + w2
x2

0 +

(
4

(
l3(1− w2)

w2 + 1
+ A3

)
b3 − (4(

2wl3

1 + w2
+ B3))a3)

)
x0x3(

−4a3 + 4l3
1− w2

w2 + 1
+ 4A3

)
x0y1 +

(
−4b3 +

8wl3

(w2 + 1
+ 4B3

)
x0y2 +

(
4b3 +

8wl3

w2 + 1
+ 4B3

)
x3y1

+

(
−4a3 − 4l3

1− w2

w2 + 1
− 4A3

)
x3y2

(q2
5 + q6q7)w2 + 4l3(B3b3)w + q2

8 + q6q7

1 + w2
x2

3 + 4(y2
1 + y2

2) = 0,

Using the three equations h1, h2, h3 and a normalization condition one can solve the direct kinematics (DK),
the inverse kinematics (IK), the forward and the inverse singularities completely.
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The following design variables are assigned to a 3-RRR planar parallel manipulator:

A2 = 16,A3 = 9,B3 = 6, a2 = 14, a3 = 7, b3 = 10, l1 = 10, l2 = 17, l3 = 13,

k1 =
√

75, k2 =
√

70, k3 = 10.

Three input variables are given by

u =
1

2
, v = 1,w =

√
3

3
.

Constraint equations simplify considerably

h1 : 25x2
3 + 32x3y1 − 24x3y2 + 4y2

1 + 4y2
2 + 24y1 + 32y2 + 25 = 0,

h2 : 1119x2
3 + 68x3y1 − 120x3y2 + 4y2

1 + 4y2
2 − 952x3 + 8y1 + 68y2 + 223 = 0,

h3 : 620 x3 +
2025 x3

2

4
− 130

√
3−

191

4
+ 40 y1 x3 + 34 y1 − 90 x3 y2 − 40 y2 + 4 y1

2+

4 y2
2 +

(
20x3

2 + 4 y1x3 − 28x3 + 4y2

)(13
√

3

2
+ 6

)
+
(
x3

2 + 1
)(13

√
3

2
+ 6

)2

=0.
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Direct Kinematics:

1012018158645001 x3
6 + 373126531431576

√
3x3

5 + 828170897821956
√

3x3
4

− 1870238901095276 x3
5 − 3830372502668712

√
3x3

3 − 309592552617273 x3
4−

1367698801300104
√

3x3
2 + 5703740216839288 x3

3 + 2552443644341760
√

3x3+

2666944473586507 x3
2 − 584052482710476

√
3− 4438269370622172 x3+

1009620776386125 = 0.
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Inverse Kinematics

h1 : 25u2x2
3 + 40u2x3y2 + 4u2y2

1 + 4u2y2
2 − 40u2y1 + 80ux3y1 + 25u2 + 80uy2 + 25x2

3−

40x3y2 + 4y2
1 + 4y2

2 + 40y1 + 25 = 0

h2 : 99v2x2
3 − 52v2x3y2 + 4v2y2

1 + 4v2y2
2 − 60v2y1 + 136vx3y1 + 155v2 − 1904vx3+

136vy2 + 2139x2
3 − 188x3y2 + 4y2

1 + 4y2
2 + 76y1 + 291 = 0 (17)

h3 : 165w2x2
3 + 64w2x3y1 − 12w2x3y2 + 4w2y2

1 + 4w2y2
2 − 328w2x3 − 44w2y1 − 16w2y2+

832wx2
3 + 104wx3y1 + 37w2 − 728wx3 + 104wy2 + 997x2

3 + 64x3y1 − 116x3y2 + 4y2
1+

4y2
2 − 208w + 712x3 + 60y1 − 16y2 + 14 = 0.
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Singularities

Joẏ + Jiṫ = 0, (18)

where

Jo =



∂n
∂x0

∂n
∂x3

0 0

∂h1
∂x0

∂h1
∂x3

∂h1
∂y1

∂h1
∂y2

∂h2
∂x0

∂h2
∂x3

∂h2
∂y1

∂h2
∂y2

∂h3
∂x0

∂h3
∂x3

∂h3
∂y1

∂h3
∂y2

 , Ji =


0 0 0 0

0 ∂h1
∂u 0 0

0 0 ∂h2
∂v 0

0 0 0 ∂h3
∂w

 ,

Forward singularities: ṫ = [0, 0, 0, 0]T

Joẏ = 0.

Determinant of Jo → h4 = 0 polynomial of degree 10 in the unknowns x0, x3, y1, y2, u, v,w→
h1, h2, h3, h4 system of four algebraic equations
elimination of u, v,w yields a polynomial of degree 44 which describes all forward singularities

one could also eliminate the Study parameters and would get the forward singularities in joint space
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Inverse singularities:
Jiṫ = 0.

It is quite obvious that this determinant factors into three parts:

h5 :
[
(B3x

2
0 + B3x

2
3 − 2a3x0x3 − b3x

2
0 + b3x

2
3 + 2x0y2 + 2x3y1)w2+

(2A3x
2
0 + 2A3x

2
3 − 2a3x

2
0 + 2a3x

2
3 + 4b3x0x3 + 4x0y1 − 4x3y2)w

−2x0y2 − 2x3y1 − B3x
2
0 − B3x

2
3 + 2a3x0x3 + b3x

2
0 − b3x

2
3

]
l3·[

(−a2x0x3 + x0y2 + x3y1)v2 + (A2x
2
0 + A2x

2
3 − a2x

2
0 + a2x

2
3)v+

a2x0x3 + 2vx0y1 − 2vx3y2 − x0y2 − x3y1)l2] ·
[
(u2x0y2 + u2x3y1 + 2ux0y1 − 2ux3y2 − x0y2 − x3y1)l1

]
= 0.

In kinematic image space:
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Inverse singularities in joint space:

system of equations: S = {h1, h2, h3, h5} in x0, x3, y1, y2, u, v,w eliminate Study parameters!

result is equation of degree 28 in u, v,w.
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Compute one point on singularity surface and from this the pose of the manipulator!
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Elimination Method

simple recipe: Write the forward kinematics of the kinematic chain and than eliminate the motion parameters

When n degree of freedom of the kinematic chain then:
number m of constraint equations (in general ) to be expected is m = 6− n.

Example:

l = [1 : u : v : uv : −uav : av : ua : −a].

homogeneous vector equation consists of eight component equations

ρx0 = 1, ρx1 = u, ρx2 = v, ρx3 = uv, ρy0 = −auv, ρy1 = av, ρy2 = au, ρy3 = −a.

eliminate the motion parameters u and v

x3 − x1x2 = 0, y0 + ax1x2 = 0, y1 − ax2 = 0, y2 − ax1 = 0, y3 + a = 0.

five?
manipulation and observing that the Study quadric has to be fulfilled yields

y0 + ax3 = 0, y1 − ax2 = 0, y2 − ax1 = 0, y3 + a = 0.

Robotics Principia GdR Robotics Winter School January 21-25th 2019 53



Elimination Method

simple recipe: Write the forward kinematics of the kinematic chain and than eliminate the motion parameters

When n degree of freedom of the kinematic chain then:
number m of constraint equations (in general ) to be expected is m = 6− n.

Example:

l = [1 : u : v : uv : −uav : av : ua : −a].

homogeneous vector equation consists of eight component equations

ρx0 = 1, ρx1 = u, ρx2 = v, ρx3 = uv, ρy0 = −auv, ρy1 = av, ρy2 = au, ρy3 = −a.

eliminate the motion parameters u and v

x3 − x1x2 = 0, y0 + ax1x2 = 0, y1 − ax2 = 0, y2 − ax1 = 0, y3 + a = 0.

five?
manipulation and observing that the Study quadric has to be fulfilled yields

y0 + ax3 = 0, y1 − ax2 = 0, y2 − ax1 = 0, y3 + a = 0.

Robotics Principia GdR Robotics Winter School January 21-25th 2019 53



Linear Implicitization Algorithm (LIA)

Is there an algorithm that derives “automatically” from a parametric representation of the (allowed) kinematic
chain a minimal set of implicit equations that completely describes this kinematic chain?

D. R. Walter and M. L. Husty. On Implicitization of Kinematic Constraint Equations. In Machine Design &
Research (CCMMS 2010), volume 26, pages 218-226, Shanghai, 2010.

Two basic ideas:

• a kinematic chain built from only revolute and prismatic joints can be represented by a set of polynomials

• the parametric expressions have to fulfill the polynomial equations
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• there exists a one-to-one correspondence from all spatial transformations to the Study quadric

• transformation parametrized by n parameters t1, . . . , tn
• → kinematic mapping a set of corresponding points in P7

• ask now for the smallest variety V ∈ P7 (with respect to inclusion) which contains all these points

• What do we know about this variety?

• Its ideal V consists of homogeneous polynomials and contains x0y0 + x1y1 + x2y2 + x3y3, i.e. the
equation for the Study quadric S2

6.

• the minimum number of polynomials to describe V corresponds to the degrees of freedom (dof) of the
kinematic chain

• If the number of generic parameters is n then m = 6− n polynomials are necessary to describe V
• Make a general ansatz of a polynomial of degree n:

p =
∑
α,β

Ckx
α
i y
β
j

• substitute the parametric equations into p
• resulting expression is a polynomial f in ti
• f has to vanish for all ti→
• all coefficients have to vanish→
• collect with respect to the powerproducts of the ti and extract their coefficients→
• system of linear equations in the

(n+7
n

)
coefficients Ck

• determine Ck
• possibly increase the degree of the ansatz polynomial
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• all coefficients have to vanish→
• collect with respect to the powerproducts of the ti and extract their coefficients→
• system of linear equations in the

(n+7
n

)
coefficients Ck

• determine Ck
• possibly increase the degree of the ansatz polynomial
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Example: Canonical leg of a Stewart-Gough platform (UPS-chain)

Denavit-Hartenberg parameters:

αi ai di

G1
π
2 0 0

G2 0 L 0

G3
π
2 0 0

G4
π
2 0 0

• Write the forward kinematics of the
canonical chain

D = M1 · G1 ·M2 · G2 ·M3 · G3 ·M4 · G4 ·M5.

• perform half-tangent substitution to make
the equations algebraic.
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x0 = − 1 + t5t1 − t5t2 − t5t1t2t3 + t2t5t1t4 − t1t4 − t5t4 − t5t3 + t4t1t2t3 + t4t2t3t5 − t1t2−
t4t3 − t4t2 + t4t1t3t5 − t1t3 + t2t3

x1 = − t4t1t2t3 − t5t1t2t3 − t2t5t1t4 − t1t2 − t4t1t3t5 − t1t3 + t1t4 + t5t1 + t4t2t3t5 − t2t3

− t4t2 + t5t2 − t4t3 + 1 + t5t3 − t5t4

x2 = t1 + t2 − t1t2t3 − t4t1t2 + t1t4t2t3t5 − t4 + t5t1t2 + t3 + t2t5t4 + t4t2t3 + t5t2t3 − t4t1t3

− t5 + t5t1t3 − t5t1t4 + t4t3t5

x3 = − t1 + t2 + t1t2t3 − t5t1t3 − t4t1t2 + t1t4t2t3t5 + t4 − t5t1t2 + t3 − t5t1t4 − t4t2t3−
t4t1t3 − t5 + t5t2t3 − t2t5t4 − t4t3t5

y0 = . . .

• Make a general Ansatz polynomial in Study coordinates.
• Substitute the above equations.
• Order with respect to the ti.

(C3L + C1L + 2C4 − 2C2)t1 + (−C7L + 2C6 + C5L + 2C8)t4t2t3t5

+ (C7L + C5L + 2C8 − 2C6)t4t1t3t5 + . . .+ (C3L + C1L + 2C4 − 2C2)t4t2t3 = 0.

Solve the linear system

(y2
0 + y2

1 + y2
2 + y2

3 −
1

4
L2(x2

0 + x2
1 + x2

2 + x2
3))λ+ (x0y0 + x1y1 + x2y2 + x3y3)µ = 0.
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how do we obtain the constraint equations of a chain in general position from the constraint equations of a
kinematic chain in canonical position?

M. Pfurner. Analysis of spatial serial manipulators using kinematic mapping. PhD thesis, University of
Innsbruck, 2006. URL http://repository.uibk.ac.at.

answer:

Changes of coordinate systems in base and end-effector coordinate system induce linear transformations of
the Study coordinates

important consequence:

These transformations make the equations more complicated but do not change their degree!!!

Robotics Principia GdR Robotics Winter School January 21-25th 2019 58



F =



1 0 0 0

A1 1 0 0

B1 0 1 0

C1 0 0 1


, M =



1 0 0 0

−a1 1 0 0

−b1 0 1 0

−c1 0 0 1


.

TmTf =



4 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 4 0 0 0 0

0 −2 a1 + 2 A1 −2 b1 + 2 B1 −2 c1 + 2 C1 4 0 0 0

2 a1 − 2 A1 0 2 c1 + 2 C1 −2 b1 − 2 B1 0 4 0 0

2 b1 − 2 B1 −2 c1 − 2 C1 0 2 a1 + 2 A1 0 0 4 0

2 c1 − 2 C1 2 b1 + 2 B1 −2 a1 − 2 A1 0 0 0 0 4



.
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Applying these transformations to the canonical chain yields

(
(a1 − A1) x′1 + (b1 − B1) x′2 + (c1 − C1) x′3 + 2 y′0

)2
+(

(−a1 + A1) x′0 + (−c1 − C1) x′2 + (b1 + B1) x′3 + 2 y′1
)2

+(
(−b1 + B1) x′0 + (c1 + C1) x′1 + (−a1 − A1) x′3 + 2 y′2

)2
+(

(−c1 + C1) x′0 + (−b1 − B1) x′1 + (a1 + A1) x′2 + 2 y′3
)2−

1

4
L2
(

4 x′0
2

+ 4 x′1
2

+ 4 x′2
2

+ 4 x′3
2
)

= 0.
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