#### **GdR Robotics Winter School: Robotics Principia**

# **Requirements for Sensor-based Control**

François Chaumette

Inria Univ Rennes, CNRS, IRISA, Rennes





# Requirements

Basics in basic math and geometry:

- Linear algebra, pseudo-inverse, SVD, null space: see slides 3 to 5
- Changes of frames, rotations, velocity screw: see slides 6 to 8

Basics in robotics

• Geometric/kinematic robot model, robot Jacobian: see Modeling course

Basics in control

• P, PI, kinematic control: see Control course

Basic in sensors

MA C

Inría

- Sensor model and calibration: see Perception course
- Hand-"eye" calibration: see slides 9 to 14

RISA

# (Moore-Penrose) Pseudo inverse

The  $n \times m$  pseudo inverse  $\mathbf{A}^+$  of any  $m \times n$  matrix  $\mathbf{A}$  is the only one matrix such that

$$\begin{cases} \mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A} \\ \mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+} \\ \left(\mathbf{A}\mathbf{A}^{+}\right)^{T} = \mathbf{A}\mathbf{A}^{T} \\ \left(\mathbf{A}^{+}\mathbf{A}\right)^{T} = \mathbf{A}^{+}\mathbf{A} \end{cases}$$

Widely used for solving any (over/under)-constrained least-squares linear system:

If we look for vector  $\mathbf{x}$  such that  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$  is minimal, then  $\hat{\mathbf{x}} = \mathbf{A}^+ \mathbf{b}$  is the only one solution such that  $\|\hat{\mathbf{x}}\|$  is also minimal



# **Pseudo inverse**

Let  $r = \operatorname{rank}(\mathbf{A})$ 

Ínría 6 EIRISA

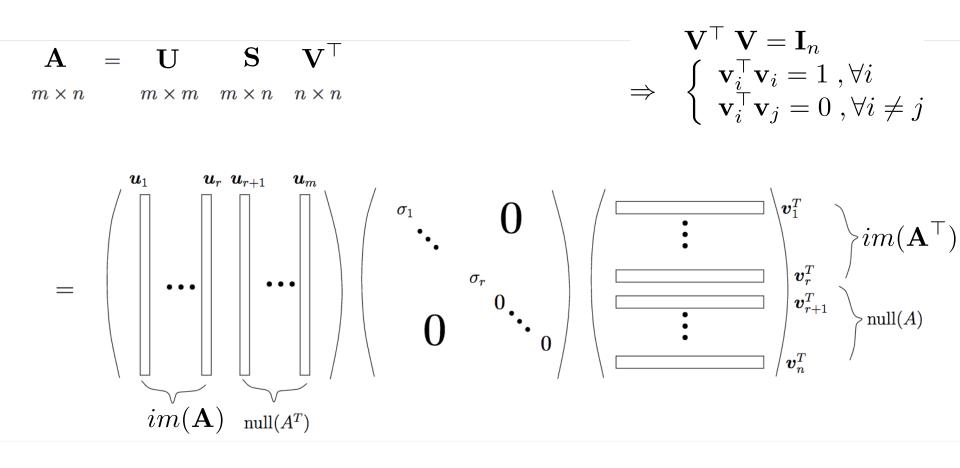
• If 
$$m = n = r$$
,  $\mathbf{A}^+ = \mathbf{A}^{-1}$ 

• If 
$$m > n$$
 and  $r = n$ ,  $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$   
In that case:  $\mathbf{A}^+ \mathbf{A} = \mathbf{I}_n$  (left inverse)

• If 
$$m < n$$
 and  $r = m$ ,  $\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T)^{-1}$   
In that case:  $\mathbf{A}\mathbf{A}^+ = \mathbf{I}_m$  (right inverse)

 In general, use the Singular Value Decomposition (SVD) A = USV<sup>T</sup> where UU<sup>T</sup> = I<sub>m</sub>, VV<sup>T</sup> = I<sub>n</sub> and S has 0 elements everywhere apart r values σ<sub>i</sub> ≠ 0 on its diagonal then A<sup>+</sup> = VS<sup>+</sup>U<sup>T</sup> where S<sup>+</sup> is 0 everywhere apart r values 1/σ<sub>i</sub> ≠ 0 on its diagonal

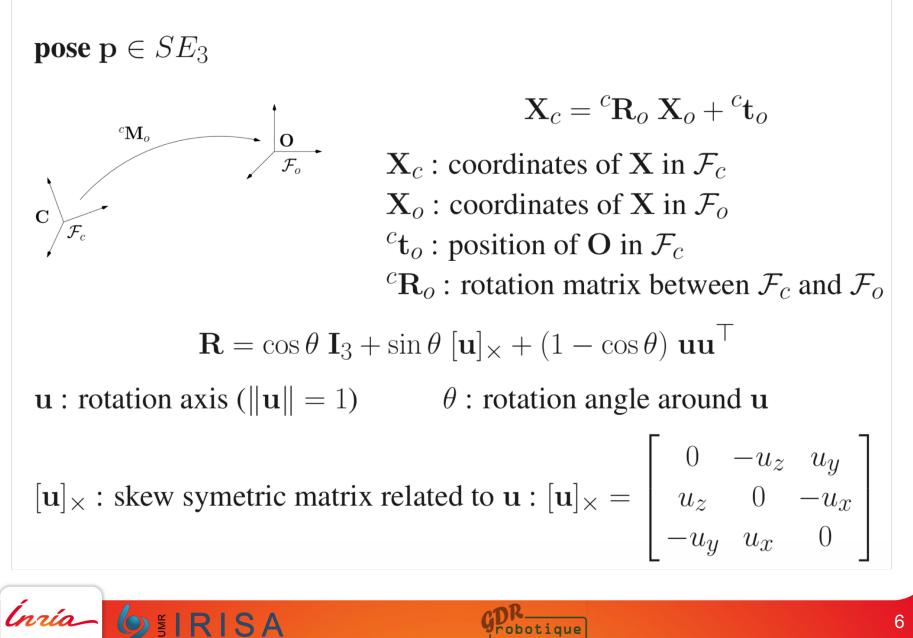
# **SVD** decomposition







#### **Change of frames**



## How to go from R to $\theta u$

From Rodrigues formula

$$\mathbf{R} = \cos\theta \, \mathbf{I}_3 + \sin\theta \, \left[\mathbf{u}\right]_{\times} + (1 - \cos\theta) \mathbf{u} \mathbf{u}^{\top}$$

botique

we easily obtain

Ínia 6 EIRISA

$$\begin{cases} \theta = \operatorname{Arccos}\left(\operatorname{tr} \mathbf{R} - 1\right)/2 \\ \left[\theta \mathbf{u}\right]_{\times} = \frac{1}{2\operatorname{sinc}\theta}\left(\mathbf{R} - \mathbf{R}^{\top}\right) \\ \text{where sinc } \theta = \frac{\sin\theta}{\theta} \qquad (\operatorname{sinc} 0 = 1) \\ \text{For } \theta = \pi \quad \begin{cases} u_x = \sqrt{(1 + r_{11})/2} \\ u_y = \sqrt{(1 + r_{22})/2} \\ u_z = \sqrt{(1 + r_{33})/2} \end{cases} \end{cases}$$

#### **Kinematic screw (instantaneous velocity)**

 $\mathbf{v} = (\boldsymbol{v}, \boldsymbol{\omega})$ : kinematic screw between the camera and the scene expressed at C in  $\mathcal{F}_c$  (which is moving)

 $\boldsymbol{\omega} : \text{rotational velocity} : \qquad [\boldsymbol{\omega}]_{\times} = {}^{o}\mathbf{R}_{c}^{\top o}\dot{\mathbf{R}}_{c} = -{}^{o}\dot{\mathbf{R}}_{c}^{\top o}\mathbf{R}_{c}$  $\boldsymbol{v} : \text{translational velocity at } \mathbf{C} : \qquad \boldsymbol{v}(\mathbf{O}) = -\boldsymbol{v}(\mathbf{C}) - \boldsymbol{\omega} \times \mathbf{CO}$ 

To express 
$$\mathbf{v}$$
 at  $\mathbf{O}$  in  $\mathcal{F}_o$ :  ${}^o\mathbf{v} = {}^o\mathbf{V}_c \mathbf{v}$  with  ${}^o\mathbf{V}_c = \begin{bmatrix} {}^o\mathbf{R}_c & [{}^o\mathbf{t}_c] \times {}^o\mathbf{R}_c \\ \mathbf{0}_3 & {}^o\mathbf{R}_c \end{bmatrix}$ 

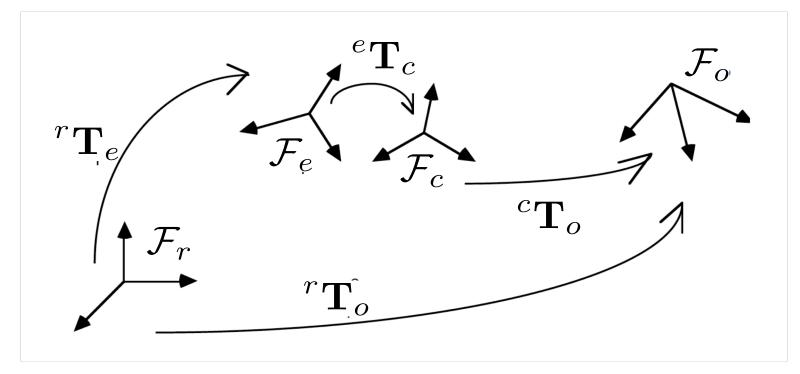
We can decompose  $\mathbf{v}$  as  $\mathbf{v} = \mathbf{v}_c - \mathbf{v}_o$ 

Ínría 6 EIRISA

where  $\mathbf{v}_c$ : camera kinematic screw, expressed at C in  $\mathcal{F}_c$  $\mathbf{v}_o$ : object kinematic screw, expressed at C in  $\mathcal{F}_c$ 

# Hand-eye calibration

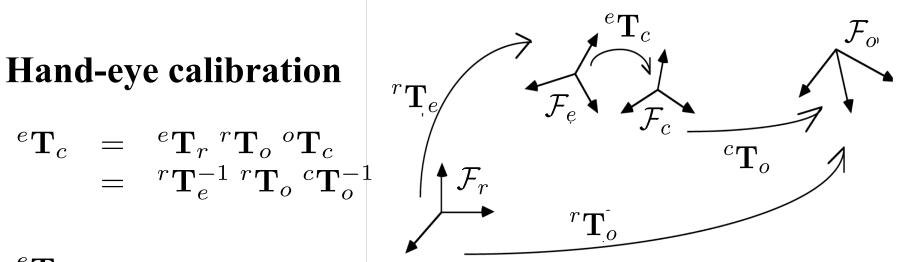
How to estimate the pose of a camera wrt. a robot? (similar problem and method when the sensor is not a camera)



Eye-in-hand configuration







- ${}^{e}\mathbf{T}_{c}$  : the (constant) pose we are looking for
- ${}^{r}\mathbf{T}_{e}$  : obtained from robot geometric model
- • ${}^{c}\mathbf{T}_{o}$  : obtained from pose estimation
- ${}^{r}\mathbf{T}_{o}$ : constant but unknown

U H

Idea:  ${}^{r}\mathbf{T}_{o}$  is the same whatever the robot/camera pose, so with 2 poses i and j:

$${}^{r}\mathbf{T}_{o} = {}^{r}\mathbf{T}_{e_{i}} {}^{e_{i}}\mathbf{T}_{c_{i}} {}^{c_{i}}\mathbf{T}_{o} = {}^{r}\mathbf{T}_{e_{j}} {}^{e_{j}}\mathbf{T}_{c_{j}} {}^{c_{j}}\mathbf{T}_{o}$$
$$= {}^{r}\mathbf{T}_{e_{i}} {}^{e}\mathbf{T}_{c} {}^{c_{i}}\mathbf{T}_{o} = {}^{r}\mathbf{T}_{e_{j}} {}^{e}\mathbf{T}_{c} {}^{c_{j}}\mathbf{T}_{o}$$

since

$${}^{e}\mathbf{T}_{c} = {}^{e_{i}}\mathbf{T}_{c_{i}} = {}^{e_{j}}\mathbf{T}_{c_{j}}$$

RISA

# Hand-eye calibration

Ínría 6 EIRISA

$$egin{array}{rll} & {}^{r}\mathbf{T}_{e_{i}} \, {}^{e}\mathbf{T}_{c} \, {}^{c_{i}}\mathbf{T}_{o} & = {}^{r}\mathbf{T}_{e_{j}} \, {}^{e}\mathbf{T}_{c} \, {}^{c_{j}}\mathbf{T}_{o} \ & \left( {}^{r}\mathbf{T}_{e_{j}} \, {}^{r}\mathbf{T}_{e_{i}} \, {}^{e}\mathbf{T}_{c} & = {}^{e}\mathbf{T}_{c} \, {}^{c_{j}}\mathbf{T}_{o} \, {}^{c_{i}}\mathbf{T}_{o} \, {}^{1}\mathbf{T}_{o} \ & \Leftrightarrow & {}^{e_{j}}\mathbf{T}_{e_{i}} \, {}^{e}\mathbf{T}_{c} & = {}^{e}\mathbf{T}_{c} \, {}^{c_{j}}\mathbf{T}_{c_{i}} \ & \Leftrightarrow & \mathbf{A} \, \mathbf{X} & = {}^{\mathbf{X}} \, \mathbf{B} \end{array}$$

Then, decompose the rotation and translation part:

$$\begin{cases} e_{j} \mathbf{R}_{e_{i}} e_{\mathbf{R}_{c}} = e_{\mathbf{R}_{c}} c_{j} \mathbf{R}_{c_{i}} \\ (e_{j} \mathbf{R}_{e_{i}} - \mathbf{I}_{3}) e_{\mathbf{t}_{c}} = e_{\mathbf{R}_{c}} c_{j} \mathbf{t}_{c_{i}} - e_{j} \mathbf{t}_{e_{i}} \end{cases}$$

Once<sup>e</sup> $\mathbf{R}_{c}$  is known, <sup>e</sup> $\mathbf{t}_{c}$  is obtained by solving a simple linear system

 $\begin{pmatrix} e_j \mathbf{R}_{e_i} - \mathbf{I}_3 \end{pmatrix}$  is of rank 2; at least a third orientation k is necessary to obtain a full rank system with couples (i,j), (i,k) and (j,k)

# Hand-eye calibration

 $egin{array}{rcl} {}^e\mathbf{R}_c & : & heta\mathbf{u} \ {}^{e_j}\mathbf{R}_{e_i} & : & heta_e\mathbf{u}_e \ {}^{c_j}\mathbf{R}_{c_i} & : & heta_c\mathbf{u}_c \end{array}$ 

Ínría 6 1 RISA

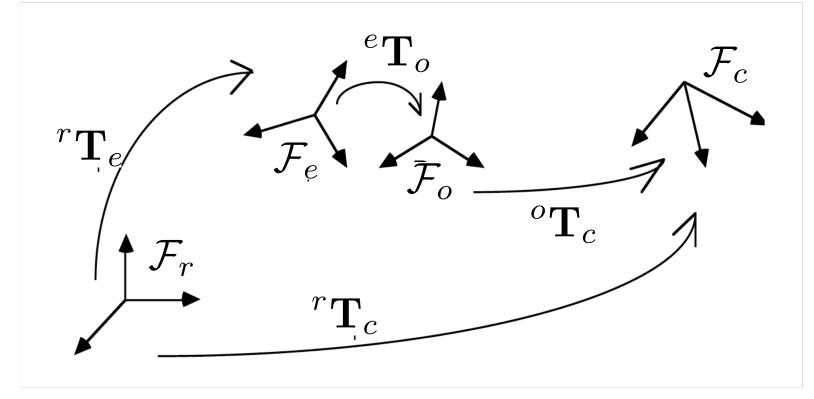
Thanks to rotation properties

 ${}^{e_j}\mathbf{R}_{e_i} {}^{e}\mathbf{R}_{c} = {}^{e}\mathbf{R}_{c} {}^{c_j}\mathbf{R}_{c_i}$  equivalent to linear system:  $[\theta_c \mathbf{u}_c + \theta_e \mathbf{u}_e]_{\times} \tan \frac{\theta}{2} \mathbf{u} = \theta_c \mathbf{u}_c - \theta_e \mathbf{u}_e$   $[\mathbf{v}]_{\times}$ : anti-symetric matrix of  $\mathbf{v}$  such that  $[\mathbf{v}]_{\times} \mathbf{u} = \mathbf{v} \times \mathbf{u}$ of rank 2; at least a third orientation k is necessary

Once  $\theta \mathbf{u}$  is known,  ${}^{e}\mathbf{R}_{c}$  is known (Rodrigues formula)

$${}^{e}\mathbf{R}_{c} = \cos\theta \mathbf{I}_{3} + \sin\theta \left[\mathbf{u}\right]_{\times} + (1 - \cos\theta) \mathbf{u}\mathbf{u}^{\top}$$

## Hand-eye calibration: eye-to-hand configuration



Similar problem:  ${}^{r}\mathbf{T}_{c} = {}^{r}\mathbf{T}_{e_{i}} {}^{e}\mathbf{T}_{o} {}^{c}\mathbf{T}_{o_{i}}^{-1} = {}^{r}\mathbf{T}_{e_{j}} {}^{e}\mathbf{T}_{o} {}^{c}\mathbf{T}_{o_{j}}^{-1}$ 

Similar resolution

6 SIRISA

nría

# References

Hand-eye calibration:

*R. Tsai, R. Lenz*: A new technique for fully autonomous efficient 3-D robotics hand-eye calibration, IEEE Transactions on Robotics & Automation, 5(3): 345–358, June1989.

Implementation (C++ source code):

• ViSP: http://visp.inria.fr



