
Algebraic Methods in Mechanism Analysis and

Synthesis

Manfred L. Husty, Martin Pfurner, Hans-Peter Schröcker,

Katrin Brunnthaler

University Innsbruck, Institute of Basic Sciences in Engineering, Unit Geometry and CAD

Technikerstraße 13, A6020 Innsbruck, Austria

email: manfred.husty, martin.pfurner,hans-peter.schoecker,

katrin.brunnthaler@uibk.ac.at

Abstract: Algebraic methods in connection with classical multidimensional geometry

have proven to be very efficient in the computation of direct and inverse kinematics of

mechanisms as well as the explanation of strange, pathological behavior. In this paper we

give an overview of the results achieved within the last years using the algebraic geometric

method, geometric preprocessing and numerical analysis. We provide the mathematical

and geometrical background, like Study’s parametrization of the Euclidean motion group,

the ideals belonging to mechanism constraints and methods to solve polynomial equa-

tions. The methods are explained with different examples from mechanism analysis and

synthesis.
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1 Introduction

There are many different mathematical methods in dealing with mechanism analysis and

synthesis. Matrix and vector methods are most common to derive equations that describe

the mechanisms (see e.g. Angeles [1]). Generally these methods have the disadvantage,

that one has to deal with sines and cosines, which are eliminated using half tangent

substitutions. Within the last ten years algebraic methods have become successful in

solving problems in mechanism analysis and synthesis. One of the main reasons are

the advances in solving systems of polynomial equations. Many algorithms have been

developed, all of them heavily relying on the use of computer algebra systems (see e.g.

Dickenstein et.al. [9]).

In mechanism science is important to find the simplest mathematical modeling of a

mechanism, because the systems of equations describing the mechanisms generally are very

complicated. Therefore it seems to be advantageous to have additionally a geometrical

setting for the interpretation of the equations. Kinematic image spaces provide such

a setting. They have been introduced by W. Blaschke [5] and E. Study [25] and have

been forgotten for long time. The main contribution of this overview paper is to show

that geometric preprocessing and an understanding of the multidimensional geometry of

kinematic image spaces is crucial to find simple sets of equations, which then can be solved

efficiently using all the advances in computer algebra and the newly introduced methods

in polynomial equation solving.

The paper is organized as follows: In the remaining part of the introduction the math-

ematical background and the algebraic-geometric method to derive constraint equations

for mechanism analysis and synthesis is provided. Section 2 gives then the application of

the devised algorithms to mechanism analysis, especially the inverse kinematics of serial

6R-chains and the determination of the motion of overconstrained mechanisms. Section

3 deals with the synthesis of Bennett mechanisms.
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1.1 Study-Model of SE(6)

Euclidean displacements D ∈ SE(6) can be described by (see [13, 19])

D : x′ = Ax + t, (1)

where x′ resp. x represent a point in the fixed resp. moving frame, A is a 3 × 3 proper

orthogonal matrix and t = (t1, t2, t3)
T is the translation vector, connecting the origins

of moving and fixed frame. Expanding the dual quaternion representation (see [13, Sec-

tion 3.3.2]) and using an operator approach, the matrix operator corresponding to the

normalized dual quaternion q = (x0, x1, x2, x3)
T + ε(y0, y1, y2, y3)

T is given by

M :=



1 0 0 0

t1 x2
0+x2

1−x2
3−x2

2 −2x0x3 + 2x2x1 2x3x1 + 2x0x2

t2 2x2x1 + 2x0x3 x2
0 + x2

2 − x2
1 − x2

3 −2x0x1 + 2x3x2

t3 −2x0x2 + 2x3x1 2x3x2 + 2x0x1 x2
0+x2

3−x2
2−x2

1


(2)

where
t1 = 2x0y1 − 2y0x1 − 2y2x3 + 2y3x2,

t2 = 2x0y2 − 2y0x2 − 2y3x1 + 2y1x3,

t3 = 2x0y3 − 2y0x3 − 2y1x2 + 2y2x1.

(3)

The point [(x, y, z)T is transformed to (x′, y′, z′)T according to

(1, x′, y′, z′)T = M · (1, x, y, z)T .

The entries (xi, yi) in the transformation matrix M have to fulfill the quadratic identity

x0y0 + x1y1 + x2y2 + x3y3 = 0 (4)
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and at least one xi is different from 0. The lower right 3 × 3 sub-matrix of M is an ele-

ment of the special orthogonal group SO(3)+ and the xi are the Euler parameters. This

representation of Euclidean displacements is sometimes called Study representation and

the parameters xi, yi are called Study parameters. This allows the following multidimen-

sional geometric interpretation: Eq. (4) defines a six dimensional quadric hyper-surface

in a seven dimensional projective space P 7. This quadric S2
6 is called Study quadric and

serves as a point model for Euclidean displacements. The quadric S2
6 is of hyperbolic type

and has the following properties:

1. The maximal linear spaces on S2
6 are three dimensional (generator spaces).

2. Each tangent space cuts S2
6 in a five dimensional cone.

3. The generator space x0 = x1 = x2 = x3 = 0 is one of the 3-spaces mentioned above

but it does not represent regular displacements, because in this space all Euler

parameters are zero. Therefore this space has to be cut out of S2
6 . A quadric with

one generator space removed is called sliced.

A detailed treatment of more properties of S2
6 can be found in [24, Chapter 10]. The

mapping

κ : D → P ∈ P 7 (5)

M(xi, yi)→ (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
T 6=

(0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T

is called kinematic mapping and maps each Euclidean displacement D to a point P on

S2
6 ⊂ P 7.

Given a displacement D as in Eq. (1) it is straightforward to compute the Study

parameters xi, yi. One can use one of the following formulas to compute the Euler

parameters xi directly from the 3× 3 proper orthogonal matrix A = (aij)i,j=1,...,3:
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x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12

x0 : x1 : x2 : x3 = a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13

x0 : x1 : x2 : x3 = a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32

x0 : x1 : x2 : x3 = a21 − a12 : a31 + a13 : a23 + a32 : 1− a11 − a22 + a33.

(6)

These formulas are already due to Study [25]. If A is non-symmetric, we can always take

the first proportion of Eq.(6). If A is symmetric, then it describes a rotation about an

angle of π and the first formula fails. In this case we can always resort to one of the three

remaining proportions. It should be noted, that at least one of the four proportions in

Eq.(6) is nonzero. The yi are given by

y0 = −1

2
(t3x3 + t2x2 + t1x1),

y1 = −1

2
(t3x2 − t2x3 − t1x0),

y2 = −1

2
(−t3x1 + t1x3 − t2x0),

y3 = −1

2
(−t3x0 + t2x1 − t1x2). (7)

Remark 1. Planar displacements and spherical displacements are included in the model

presented above. The kinematic image of spherical displacements is obtained from Eq.(2)

by setting yi = 0:

M :=



1 0 0 0

0 x2
0+x2

1−x2
3−x2

2 −2x0x3 + 2x2x1 2x3x1 + 2x0x2

0 2x2x1 + 2x0x3 x2
0+x2

2−x2
1−x2

3 −2x0x1 + 2x3x2

0 −2x0x2 + 2x3x1 2x3x2 + 2x0x1 x2
0+x2

3−x2
2−x2

1


It should be noted, that spherical displacements generate linear 3-spaces on S2

6 . Because

we have ∞3 points in the Euclidean three space, which can serve as centers for spherical

5



displacements, there are ∞3 3-spaces of this type on the Study quadric. The kinematic

image of planar displacements could be obtained by setting y0 = y1 = x2 = x3 = 0. The

kinematic images of planar displacements also generate 3-spaces on S2
6 . Because there are

∞3 planes in the Euclidean three space we have ∞3 3-spaces on of this type on S2
6 .

Hyper-planes in P 7 are determined by linear equations in the point coordinates:

uT · x = 0 (8)

where u is a 8-tuple. The entries of u are called hyperplane coordinates and x describes

an arbitrary point X in P 7. The relation 8 determines the duality in P 7. The intersection

of the hyper-plane with S2
6 yields a five parametric set of displacements.

For the following it will be important to have an understanding of the effect of coor-

dinate transformations in the Cartesian space to the representation of displacements in

the kinematic image space. Let A be a displacement having the image space coordinates

A(a0 : a1 : a2 : a3 : a4 : a5 : a6 : a7)

A =
1

∆1


a2
0 + a2

1 + a2
2 + a2

3 0 0 0

2(a4a1 − a5a0 − a7a2 + a6a3) a2
0 + a2

1 − a2
2 − a2

3 2(a1a2 − a0a3) 2(a1a3 + a0a2)

2(a4a2 − a6a0 − a5a3 + a7a1) 2(a1a2 + a0a3) a2
0 − a2

1 + a2
2 − a2

3 2(a2a3 − a0a1)

2(a4a3 − a7a0 − a6a1 + a5a2) 2(a1a3 − a0a2) 2(a2a3 + a0a1) a2
0−a2

1−a2
2+a2

3

,

where ∆1 = a2
0 + a2

1 + a2
2 + a2

3. Let furthermore T be a fixed transformation with image

space coordinates T (t0 : t1 : t2 : t3 : t4 : t5 : t6 : t7). A change of coordinates in the base

system is represented by a left multiplication of the transformation matrix A with the
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coordinate transformation matrix T. The Study parameters of this matrix product are:

t ◦ a = ∆



a0t0 − a1t1 − a2t2 − a3t3

a0t1 + a1t0 + t2a3 − t3a2

a0t2 + a2t0 + a1t3 − a3t1

a0t3 + a3t0 + a2t1 − a1t2

a0t4 − a1t5 − a2t6 − a3t7 + a4t0 − a5t1 − a6t2 − a7t3

a0t5 + a1t4 − a2t7 + a3t6 + a4t1 + a5t0 − a6t3 + a7t2

a0t6 + a1t7 + a2t4 − a3t5 + a4t2 + a5t3 + a6t0 − a7t1

a0t7 − a1t6 + a2t5 + a3t4 + a4t3 − a5t2 + a6t1 + a7t0



(9)

where

∆ =
a0t0 − a1t1 − a2t2 − a3t3

(a2
0 + a2

1 + a2
2 + a2

3)(t
2
0 + t21 + t22 + t23)

.

As the Study parameters are homogeneous ∆ can be omitted. It is possible to write Eq.

(9) as a transformation matrix Tb in P 7 multiplied by the vector a:

t ◦ a = Tba

where

Tb =



t0 −t1 −t2 −t3 0 0 0 0

t1 t0 −t3 t2 0 0 0 0

t2 t3 t0 −t1 0 0 0 0

t3 −t2 t1 t0 0 0 0 0

t4 −t5 −t6 −t7 t0 −t1 −t2 −t3

t5 t4 −t7 t6 t1 t0 −t3 t2

t6 t7 t4 −t5 t2 t3 t0 −t1

t7 −t6 t5 t4 t3 −t2 t1 t0



. (10)
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A coordinate transformation in the moving frame is described by right multiplication

A · T. Performing the same procedure as before one obtains the representation of this

transformation in the kinematic image space as

a ◦ t = Tma

where

Tm =



t0 −t1 −t2 −t3 0 0 0 0

t1 t0 t3 −t2 0 0 0 0

t2 −t3 t0 t1 0 0 0 0

t3 t2 −t1 t0 0 0 0 0

t4 −t5 −t6 −t7 t0 −t1 −t2 −t3

t5 t4 t7 −t6 t1 t0 t3 −t2

t6 −t7 t4 t5 t2 −t3 t0 t1

t7 t6 −t5 t4 t3 t2 −t1 t0



. (11)

The index m indicates the transformation in the moving frame. Summarizing the obser-

vations above yields

Theorem 1. Coordinate transformations in the base or moving frame of a manipulator

can be written as projective transformations in the kinematic image space. The elements

of the matrices describing these transformations are linear in only one of its Study pa-

rameters.

1.1.1 Properties of Tb and Tm

Lemma 1. The matrix product of Tb and Tm is commutative.

Proof. We rewrite the matrices Tb and Tm, using the 4× 4 matrices A,B,C and D:

Tb =

 A 0

B A

 Tm =

 C 0

D C
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Then the products are:

Tb ·Tm =

 AC 0

BC + AD AC

 Tm ·Tb =

 CA 0

DA + CB CA


The 4 × 4 sub matrices A,B,C and D are well known in geometry. They describe the

CLIFFORD-translations in an elliptic space (see Giering [10]). The commutativity of

CLIFFORD-translations yields the commutativity of the product of Tb and Tm. The

same result can be obtained by direct computations.

In other words, Lemma 1 expresses that it does not matter which coordinate trans-

formation is performed first in the kinematic image space. This is what one would expect

because of the same fact in the Euclidean space.

Lemma 2. The inverse matrices T−1
b and T−1

m can be obtained by the substitution T →

T̃ , (t0 → t0, t1 → −t1, t2 → −t2, t3 → −t3, t4 → t4, t5 → −t5, t6 → −t6, t7 → −t7) in Tb

resp. Tm.

Proof. Direct computation of Tb · T̃b (resp. Tm · T̃m) yields a multiple of the unit matrix.

Because of the homogeneity of the Study-parameters this multiple can be omitted.

Lemma 3. The matrices Tb and Tm describe transformations in the kinematic image

space, that map points of S2
6 onto points of S2

6 . Furthermore, the exceptional generator of

this quadric, defined by x0 = x1 = x2 = x3 = 0, is mapped onto itself and points of the

quadric in this exceptional 3-space having the equation y2
0 + y2

1 + y2
2 + y2

3 = 0 are mapped

onto points on the same quadric.

Proof. Because of the construction of the matrices Tb and Tm the transformed points Tb·a

and Tm · a have to fulfill the equation of S2
6 . The second part of the lemma is also easy

to see. Points in the exceptional generator have coordinates (0 : 0 : 0 : 0 : y0 : y1 : y2 : y3).

Because of the upper right 4 × 4 zero matrix in Tb and Tm, the transformed point
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has to lie within this generator and has coordinates (0 : 0 : 0 : 0 : y0 : y1 : y2 :

y3). Substitution of these coordinates into the equation y2
0 + y2

1 + y2
2 + y2

3 = 0 yields

(y2
1 + y2

2 + y2
3 + y2

4)(t20 + t21 + t22 + t23) = 0. Therefore, if the point lies on this quadric before

the transformation, then it is contained in the quadric after the transformation.

The transformations Tb and Tm are point transformations. In the following the action

of coordinate transformations in the Cartesian space on hyper-planes in the kinematic

image space is derived.

Lemma 4. Let T be a point transformation in P 7 and a point X ∈ P 7 described by x

and

X → X̃ = T · x.

This point transformation transforms the hyperplane with the equation

uT · x = 0

into the hyperplane

ũT · x̃ = 0

where ũ = (TT )−1 · u. That means that this (TT )−1 is the corresponding transformation

for the hyperplane coordinates u. Furthermore T transforms a quadric described by the

equation

xT ·A · x = 0

into the quadric

x̃T · Ã · x̃ = 0,

where Ã = (TT )−1 ·A ·T−1.

Proof. If uT · x = 0 and X → X̃ = T · x, then one has to look for a ũ such, that

ũT · x̃ = ũT ·T · x = 0. This implies that uT = ũT ·T or ũ = (TT )−1u.
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If xT · A · x = 0 and X → X̃ = T · x, then one has to look for a Ã such, that x̃T ·

Ã · x̃ = (T · x)T · Ã · T · x = xT · TT · Ã · T · x. This implies that A = TT · Ã · T or

Ã = (TT )−1 · Ã ·T−1

1.2 Constraint Varieties for Mechanism Analysis and Synthesis

The basic idea to analyze mechanisms with kinematic mapping is the following: every

mechanism generates a certain set of points, curves, surfaces or higher dimensional object

of up to five dimensions in the image space. Generally the dimension of the object

corresponds to the degree of freedom of the mechanism. If for example one point of the

moving system of a spatial mechanical device is bound to move on a surface, the system

still has five degrees of freedom. Therefore the mechanical constraint is mapped to a

hyper-surface in kinematic image space. From this statement we can conclude that every

mechanical system in general can be described by a system of equations. If the constraints

are of algebraic nature then the equations are algebraic (polynomials). Revolute joints

for example are algebraic constraints. The condition that one point of the moving system

is bound to move on a circle or on a sphere are algebraic constraints. For the following

we restrict the constraints to algebraic ones.

From algebraic point of view we have then a system of polynomial equations I =

(g1, . . . , gn), which corresponds to an algebraic variety V = V (g1, . . . , gn). The algebraic

varieties are the constraint surfaces. With this interpretation it is possible to use all the

progress which was made in recent years in solving systems of polynomial equations (see

[9]).

We show this idea with a simple example: consider a planar parallel manipulator

consisting of a base and a platform linked by three RPR-legs (Fig.1). In the so called

direct kinematics we are given the design of the manipulator, i.e. the design of base

and platform (the coordinates (B1, C1, C2, a1, a2, b1, b2, c1, c2) and the lengths of the legs

r1, r2, r3 ). The task is to find all assembly modes.
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Figure 1: 3RPR-platform

Figure 2: Geometric equivalent

Geometric preprocessing transforms the direct kinematic problem now into the follow-

ing task: given a triangle and three circles; place the triangle such that its three vertices

are on the circles (vertex A on circle k1 etc., Fig.2). The circles constitute now the me-

chanical constraints. If for a moment we just consider one circle, then we can say for

example that mechanically point A is constrained to move on circle k1. Using planar

kinematic mapping this constraint is mapped to a hyper-surface in the three dimensional

kinematic image space. It turns out that the constraint surface is a special hyperboloid

in this space (Fig.3), Bottema-Roth [6]. Algebraically this hyper-surface for the point C

is given by the equation:

h1 : (y2−
1

2
(c2+C2−x1(+C1−c1)))2+(y3−

1

2
(x1(c2−C2)−C1−c1))2−1

4
r2
3(x2

1+1) = 0. (12)
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Figure 3: Constraint surfaces in kinematic image space

From algebraic point of view we have three quadratic polynomials h1, h2, h3 which de-

termine the algebraic variety V = V (h1, h2, h3). The dimension of this variety is zero, it

consists of 8 points. Six of these points are solutions to the direct kinematics problem,

two of the points are always complex and do not solve the task.

2 Application to Mechanism Analysis

In this section we show how the above developed theory is applied to mechanism analysis.

We show how the representation of coordinate transformations in the image space helps to

simplify the inverse kinematic algorithm presented in Husty et. al.[16, 17]. Furthermore

we show how the jump of the dimension of the algebraic solution varieties determine

over-constrained 6R chains.

It should be noted that this approach was already successfully applied to the analysis

of parallel mechanisms to derive the direct kinematics and to determine architecturally

singular and pathologically movable platform mechanisms [12, 14, 15].
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2.1 Kinematic Image of a 3R Serial Chain

To solve the inverse kinematics of a general 6R we will split the 6R into two 3R chains.

Therefore it will be important to derive the kinematic image of 3R chains. The advantage

of the algorithm developed before is, that we only have to derive the corresponding variety

in a canonical form. This means we can place the 3R chain in the Cartesian space in the

most suitable way and perform the coordinate transformation to a general position in the

kinematic image space. This procedure simplifies the necessary computations such that

it is possible to write the equations of the constraint manifolds completely general, i.e.

without specifying the design parameters.

Σ0=Σ1 Σ2

Σ3

EE frame

Figure 4: Canonical 3R-manipulator

If the relative position of two rotation axes is described by the usual Denavit-Harten-

berg parameters (αi, ai, di) then the coordinate transformation between the coordinate

systems attached to the rotation axes is given by:

G =



1 0 0 0

ai 1 0 0

0 0 cos(αi) − sin(αi)

di 0 sin(αi) cos(αi)


. (13)

Using this transformation we assume the axes of an nR-chain being in a canonical start
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position, where all the axes are parallel to a plane, the first rotation axis is the z-axis

of the base coordinate system and the x-axis is the common normal of first and second

rotation axis. A simple consideration shows that this is always possible and no restriction

of generality (Pfurner [22]). As shown in Fig.4 the rotation axes are always the z-axes of

the coordinate systems, therefore we can write these rotations as

Mi =



1 0 0 0

0 cos(ui) − sin(ui) 0

0 sin(ui) cos(ui) 0

0 0 0 1


, (14)

ui being the rotation parameters. The forward kinematics of a general 3R chain can be

written:

D = B ·M1 ·G1 ·M2 ·G2 · · · · ·M3 ·G3.

The constant matrix B performs the transformation of an arbitrary coordinate system

into the canonical base system of Fig.4.

In a step by step procedure the representation of the 3R in the image space will be

derived. At first we will derive the representation for the canonical chain for which B

is the identity. The transformation that brings the chain into a general position will be

performed later in the image space.

If one of the three rotation parameters of the 3R-chain is fixed for a moment, then a

2R chain remains. The kinematic image of this 2R chain is derived first. We have three

possibilities to fix a rotation parameter. The procedure is slightly different for each of the

three possibilities. We demonstrate the computation for the parameter u1. The other two

possibilities can be found in Pfurner [22].

Fixing the first revolute axis u1 = u10 (the zero in the index indicates a fixed value)
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the corresponding 2R-chain has the matrix representation

D = F ·M2 ·G2 ·M3 ·G3.

where F is a fixed transformation, given by M1(u10) · G1. F and G3 are coordinate

transformations in the base respectively moving frame of this 2R-chain. Neglecting F and

setting d2 = 0 transforms the chain into a canonical one as shown in Figure 5. Setting

d2 = 0 means no loss of generality because a transformation in the direction of the second

revolute axis can be achieved later directly in the kinematic image space. Omitting G3

transforms the end-effector frame such, that the z-axis coincides with the second axis of

this 2R-chain and the x-axis is aligned with the common normal of the two revolute axes.

Σ0=Σi Σi+1

EE frame

Figure 5: Canonical 2R-mechanism

Then the matrix representation of the remaining 2R-chain becomes

D = M2 ·G2 ·M3. (15)

The parametric representation of the constraint manifold, computed with Eqs. (6) and
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(7) reads



x0

x1

x2

x3

y0

y1

y2

y3



=



(cos(u2) cos(u3)− sin(u2) sin(u3) + 1)(1 + cos(α2))

(cos(u2) + cos(u3)) sin(α2)

(sin(u2)− sin(u3)) sin(α2)

(cos(u2) sin(u3) + sin(u2) cos(u3))(1 + cos(α2))

1
2
a2(cos(u2) cos(u3)− sin(u2) sin(u3) + 1)(sinα2)

−1
2
a2(cos(u2) + cos(u3))(1 + cos(α2))

−1
2
a2(sin(u2)− sin(u3))(1 + cos(α2))

1
2
a2(cos(u2) sin(u3) + sin(u2) cos(u3))(sin(α2))



.

By inspection and direct substitution one can verify easily that these coordinates satisfy

four independent linear equations:

Hc11 : a2 sin(α2)x0 − 2(1 + cos(α2))y0 = 0

Hc12 : a2(1 + cos(α2))x1 + 2 sin(α2)y1 = 0

Hc13 : a2(1 + cos(α2))x2 + 2 sin(α2)y2 = 0

Hc14 : a2 sin(α2)x3 − 2(1 + cos(α2))y3 = 0

Applying half tangent substitution (al2 = tan α2

2
) these equations rewrite to

Hc11 : a2al2x0 − 2y0 = 0

Hc12 : a2x1 + 2al2y1 = 0

Hc13 : a2x2 + 2al2y2 = 0

Hc14 : a2al2x3 − 2y3 = 0.

(16)

Similar equations have been derived by Selig [24].

In the next step we add the rotation about the first axis having the parameter u1 and

a constant transformation in the moving frame to transform it into a general position.

In this case one has to apply the (now one parametric set of) coordinate transformations
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M1 ·G1 ·G2 in the base frame and G3 in the moving frame of the 2R-chain. G2 translates

the base frame by d2 in the direction of the z-axis (same matrix as G2 but a2 = 0, α2 = 0).

This is the new and essential contribution of this work that the transformations bringing

the canonical manifolds to a general position can be performed efficiently in the kinematic

image space. Although the theory seems to be a bit complicated, its application makes

the necessary computation simple.

The necessary transformations are executed directly on the hyper-planes of Eq. (16)

which describe the canonical 2R-chain in the kinematic image space. The point transfor-

mation in the base frame would be Tb(M1) ·Tb(G1) ·Tb(G2), so according to Lemma 4

the hyperplane transformation is ((Tb(M1) · Tb(G1) · Tb(G2))
T )−1 = (Tb(M1)

T )−1 ·

(Tb(G1)
T )−1 · (Tb(G2)

T )−1. After applying the half tangent substitutions for all angles

(v1 = tan u1

2
, ali = tan αi

2
, i = 1, 2) these transformations write

(Tb(M1)
T )−1 =



1 0 0 −v1 0 0 0 0

0 1 −v1 0 0 0 0 0

0 v1 1 0 0 0 0 0

v1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −v1

0 0 0 0 0 1 −v1 0

0 0 0 0 0 v1 1 0

0 0 0 0 v1 0 0 1



,
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(Tb(G1)
T )−1 =



2 −2al1 0 0 al1a1 a1 al1 0

2al1 2 0 0 −a1 al1a1 0 −al1

0 0 2 −2al1 −al1 0 al1a1 a1

0 0 2al1 2 0 al1 −a1 al1a1

0 0 0 0 2 −2al1 0 0

0 0 0 0 2al1 2 0 0

0 0 0 0 0 0 2 −2al1

0 0 0 0 0 0 2al1 2



,

(Tb(G2)
T )−1 =



2 0 0 0 0 0 0 d2

0 2 0 0 0 0 d2 0

0 0 2 0 0 −d2 0 0

0 0 0 2 −d2 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2



.

The coordinate transformation G3 in E3 of the moving frame can be performed with help

of

(Tm(G3)
T )−1 =



2 −2al3 0 0 al3a3 a3 al3d3 d3

2al3 2 0 0 −a3 al3a3 −d3 al3d3

0 0 2 2al3 −al3d3 d3 al3a3 −a3

0 0 −2al3 2 −d3 −al3d3 a3 al3a3

0 0 0 0 2 −2al3 0 0

0 0 0 0 2al3 2 0 0

0 0 0 0 0 0 2 2al3

0 0 0 0 0 0 −2al3 2



,
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where al3 = α3, in P 7. Applying all transformations of the base and moving frames on the

hyper-plane coordinates of the hyper-planes in Eq. (16) yields the four linear equations:

Hc1(v1) :

(a2al2 − v1d2 − al3a1 − al3a3 − al1a1 − a2al2al3al1 − al3v1d2al1 − al3d3al1v1 − a3al1 − d3v1)x0+

(−al3v1d2 + a2al2al3 + a2al2al1 + a1 + a3 − al3al1a1 + v1d2al1 − al3a3al1 + d3al1v1 − al3d3v1)x1+

(a1v1 − d2al1 + al3d3 − d3al1 + a2al2al1v1 + al3d2 − al3al1a1v1 − al3a3al1v1 + a3v1 + a2al2al3v1)x2+

(−a3al1v1 + d2 + d3 − al1a1v1 + a2al2v1 − al3a1v1 + al3d2al1 + al3d3al1 − a2al2al3al1v1 − al3a3v1)x3+

2(al3al1 − 1)y0 − 2(al3 + al1)y1 − 2(al1v1 + al3v1)y2 + 2(al3al1v1 − v1)y3 = 0 (17)

Hc2(v1) :

(al2a1 + al2v1d2al1 − a2al1 − al2al3al1a1 − al2al3a3al1 − al2al3v1d2 − al2d3al1v1 − a2al3 + al2a3+

al2al3d3v1)x0 + (−a2al3al1 + al2v1d2 − al2al3d3al1v1 + al2al3a1 + al2al3a3 − al2d3v1 + al2al1a1+

al2a3al1 + a2 + al2al3v1d2al1)x1 + (al2d3 − al2d2 + al2al3a1v1 − al2al3d2al1 − a2al3al1v1 + al2al1a1v1+

al2al3a3v1 + al2a3al1v1 + al2al3d3al1 + a2v1)x2 + (al2a1v1 − a2al3v1 − al2d2al1 + al2al3d2 − al2al3d3+

al2a3v1 + al2d3al1 − al2al3al1a1v1 − al2al3a3al1v1 − a2al1v1)x3 − 2(al2al3 + al2al1)y0 + 2(−al2al3al1+

al2)y1 + 2(al2v1 − al2al3al1v1)y2 − 2(al2al3v1 + al2al1v1)y3 = 0 (18)

Hc3(v1) :

(−al2a3v1 + al2al3d3 + al2a1v1 − al2d2al1 − al2al3d2 + al2al3al1a1v1 − al2al3a3al1v1 + al2d3al1−

a2al1v1 + a2al3v1)x0 + (−al2al3a3v1 + al2al3d3al1 − a2v1 + al2d2 − al2d3 − a2al3al1v1 + al2al3a1v1−

al2al3d2al1 − al2al1a1v1 + al2a3al1v1)x1 + (a2al3al1 + a2 − al2al3v1d2al1 + al2v1d2 + al2al1a1+

al2al3d3al1v1 − al2d3v1 + al2al3a3 − al2a3al1 − al2al3a1)x2 + (a2al1 − al2a1 + al2a3 − al2al3v1d2−

al2al3al1a1 − al2v1d2al1 + al2d3al1v1 + al2al3d3v1 − a2al3 + al2al3a3al1)x3 + 2(al2al3v1−

al2al1v1)y0 − 2(al2v1 + al2al3al1v1)y1 + 2(al2al3al1 + al2)y2 + 2(−al2al3 + al2al1)y3 = 0 (19)
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Hc4(v1) :

(−d2 + al3a3v1 − d3 − a3al1v1 + al3d3al1 − a2al2al3al1v1 − a2al2v1 + al1a1v1 − al3a1v1 + al3d2al1)x0+

(a1v1 − d2al1 − al3d2 − a2al2al3v1 + a2al2al1v1 + al3al1a1v1 − al3a3al1v1 − a3v1 − d3al1 − al3d3)x1+

(a2al2al3 + al3a3al1 − v1d2al1 − d3al1v1 − a2al2al1 − a1 + a3 − al3v1d2 − al3al1a1 − al3d3v1)x2+

(a2al2 + a3al1 − al3a3 − al1a1 + al3a1 − d3v1 + a2al2al3al1 + al3v1d2al1 + al3d3al1v1 − v1d2)x3+

2(al3al1v1 + v1)y0 + 2(al3v1 − al1v1)y1 + 2(al1 − al3)y2 +−2(1 + al3al1)y3 = 0 (20)

Each of the hyper-planes Hci depends on the parameter v1. Intersecting this set of

hyperplane equations yields a one parameter set of 3-spaces Tc(v1) whose intersection

with the Study quadric is the constraint manifold of the canonical serial 3R-chain.

Remark 1. It has to be emphasized that the presented algorithm allows to write the

equations completely general, i.e. without specifying the DH parameters.

Remark 2. Almost the same procedure can be done with the other two possibilities. One

can fix u2 or u3 and obtains in each case a one parameter set of 3-spaces Tc(v2) and

Tc(v3) with v2 and v3 being the algebraic values of u2 and u3. It should be noted that the

intersection of each of these sets of 3-spaces and S2
6 yields the same constraint manifold.

The two other possibilities just provide a redundant description of the constraint manifold.

It is advantageous to have this description to handle all special cases that can occur (see

next remark).

Remark 3. The intersection of Tc(v1) and S2
6 fails if lies on S2

6 . This happens when the

second and the third revolute axes are parallel or intersect. In this cases one has to take

another set of hyperplane equations Tc(v2) or Tc(v3) to compute the constraint manifold.

Remark 4. If the 3R-chain is planar or spherical the equations of the hyper-planes sim-
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plify considerable. In the planar case we have:

Hcp1 : −al3x0 + x1 = 0

Hcp2 : x2 − al3x3 = 0

Hcp3 : al3a3x0 − a3x1 − al3d3x2 − d3x3 + 2y0 + 2al3y1 = 0

Hcp4 : d3x0 + al3d3x1 − a3x2 + al3a3x3 + 2al3y2 + 2y3 = 0.

(21)

and in the spherical case the equations are:

Hcw1 : al3a3x0 − a3x1 − al3d3x2 − d3x3 + 2y0 + 2al3y1 = 0

Hcw2 : a3x0 + al3a3x1 + d3x2 − al3d3x3 − 2al3y0 + 2y1 = 0

Hcw3 : al3d3x0 − d3x1 + al3a3x2 + a3x3 + 2y2 − 2al3y3 = 0

Hcw4 : d3x0 + al3d3x1 − a3x2 + al3a3x3 + 2al3y2 + 2y3 = 0.

(22)

The last step is now to introduce the general case. It differs from the canonical 3R-

chains by having a general position of the first revolute axis with respect to the fixed

coordinate system (see Figure 6).

Σ0

Σ1

Σ2

Σ3

EE frame

Figure 6: General 3R-serial-chain

Up to now the 3R-chain was always a canonical one, which means that the first axis is

coincident with the z-axis of the base frame and the DH-parameter d1 is equal to zero. To
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derive from the constraint manifold of the canonical 3R-chain the equations of the con-

straint manifold of an arbitrarily placed 3R-chain only a fixed coordinate transformation

in the base frame is needed. This can be executed directly in the kinematic image space via

the matrix (TT
b )−1 (Eq.10). Applied to the one parameter sets of 3-spaces Tc(v1), Tc(v2)

and Tc(v3), generated as intersections of the one parameter sets of hyper-planes in Eqs.

(17) - (20), resp. the hyperplane equations of Tc(v2) and Tc(v3). We also have to apply

this transformation to the fixed 3-spaces Tcp and Tcw, generated as the intersections of the

hyper-planes in Eqs. (21) and (22). This procedure yields new sets of hyper-plane equa-

tions intersecting in one parameter sets of 3-spaces resp. fixed 3-spaces. The resulting one

parameter sets of 3-spaces will be denoted by T (v1), T (v2) and T (v3). The hyperplane

equations describing these sets of 3-spaces are a little bit more complicated. Because

of limit of space they are not displayed here. They consist of approximately 200 terms

and it should be noted that they still can be computed completely general, i.e. without

specifying the DH-parameters. A complete listing of the general equations can be found

in Pfurner [22].

The hyper-plane equations describing the fixed 3-space as the constraint manifold Tp
of an arbitrary planar 3R-mechanism, where the first axis does not coincide with the

z-axis of the base frame, are

Hp1 : − 2x0(t0al3 + t1) + 2x1(−t1al3 + t0) + 2x2(−t2al3 + t3)− 2x3(t3al3 + t2) = 0,

Hp2 : 2x0(−t2 + t3al3)− 2x1(t3 + t2al3) + 2x2(t0 + t1al3) + 2x3(t1 − t0al3) = 0,

Hp3 : x0(t0al3a3 + t1a3 + t2al3d3 + t3d3 + 2t4 − 2t5al3) + x1(t1al3a3 − t0a3 + t3al3d3 − t2d3 + 2t5+

2t4al3) + x2(t2al3a3 − t3a3 − t0al3d3 + t1d3 + 2t6 + 2t7al3) + x3(t3al3a3 + t2a3 − t1al3d3−

t0d3 + 2t7 − 2t6al3) + 2y0(−t1al3 + t0) + 2y1(t1 + t0al3) + 2y2(t2 + t3al3) + 2y3(t3 − t2al3) = 0,

Hp4 : x0(t0d3 − t1al3d3 + t2a3 − t3al3a3 − 2t6al3 − 2t7) + x1(t1d3 + t0al3d3 + t3a3 + t2al3a3−

2t7al3 + 2t6) + x2(t2d3 + t3al3d3 − t0a3 − t1al3a3 + 2t4al3 − 2t5) + x3(t3d3 − t2al3d3 − t1a3+

t0al3a3 + 2t5al3 + 2t4)− 2y0(t3 + t2al3) + 2y1(t2 − t3al3) + 2y2(t0al3 − t1) + 2y3(t0 + t1al3) = 0.

(23)
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The remarkable result of this section is that we have found a completely general

description of all possible 3R-chains. The equations do not have to be computed once

more for different designs. The design parameters can be substituted directly into the

four hyperplane equations. Additionally we have a redundant description of the generated

one parameter sets of 3-spaces, so one only has to be aware about the layout of the chain

to take the appropriate set of equations. This process can be fully automated.

2.2 Properties of the constraint manifolds

To pass from the constraint manifolds of a canonical 3R-chain to those of a general,

arbitrary 3R-chain only a fixed coordinate transformation in the base frame was applied.

It is important to observe that this transformation does not change the geometric shape

and geometric properties of the manifold, but only the position in the kinematic image

space. Therefore the geometric properties for the manifolds T (vi) can be derived directly

from Tc(vi), i = 1, 2, 3. The transformation from canonical form to general position will

not change the geometric properties.

The one parameter sets of 3-spaces T (v1), T (v2) and T (v3) are well known in geometry.

Geometrically they can be obtained by the following algorithm: Take two 3-spaces in P 7

and define a linear relation between the points in these spaces what means, that each

point of one space is joined by a line with exactly one point of the other three space.

The manifold of all these lines is called a Segre manifold. A symbolic sketch of a Segre

manifold is depicted in Fig. 7. In this figure 3-spaces, corresponding to discrete values

of v1, are drawn as boxes. Through every point of such a 3-space there is exactly one

line that belongs to the manifold. As an example p(v1) is drawn. An lower dimensional

example of a Segre manifold is a hyperboloid in E3. There one has to take two lines

instead of the 3-spaces in P 7 and a linear relation between the points on both lines. The

lines connecting the corresponding points are a regulus of a hyperboloid, a Segre manifold

in P 3. More general a Segre manifold can be defined as a topological product of two
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p(v1)

Figure 7: Symbolic sketch of SM1

linear spaces, i.e., the manifold of all ordered pairs of points of both spaces (see Naas and

Schmid [21]).

Definition 1. The Segre manifolds generated by the one parameter set of 3-spaces T (v1),

T (v2) resp. T (v3) are denoted by SM1, SM2 resp. SM3. The Segre manifolds generated

by the one parameter set of 3-spaces Tc(v1), Tc(v2) resp. Tc(v3) are denoted by SM1c, SM2c

resp. SM3c.

Summarizing the findings above one can state:

Theorem 2. The Segre manifold SM1 (SM2, SM3) is the intersection of four one param-

eter pencils of hyper-planes. The hyper-plane coordinates depend linearly on v1 (v2, v3).

Furthermore we can state:

Theorem 3. The constraint manifold of a 3R-chain is the intersection of the Study-

quadric with a Segre manifold SM1 (SM2, SM3) generated by the pencils of hyperplanes

describing T (v1) (T (v2), T (v3)).

Corollary 1. The constraint manifold of a 3R-chain is the intersection of any two of the

Segre manifolds SM1, SM2, SM3.
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2.2.1 Different representations of the Segre manifold

This section describes different representations of the Segre manifolds SMi, i = 1, 2, 3. As

stated above all three manifolds have the same intersection with S2
6 and describe therefore

the same set of displacements. Note that the difference between the three manifolds are

points outside of S2
6 . It has turned out that one has to switch between the different

descriptions when special layouts like parallelism of rotation axes occur.

Parametric representation, span of points Specify one arbitrary 3-space of T (v1) by

fixing the parameter v1 = v10. Choose four linearly independent points pk (k = 1, . . . , 4)

of this space and then let v1 vary again. Because of Theorem 2 this results in four straight

lines lk and pk(v1) = T (v1) ∩ lk. Now the points of SMi are described by

x =
4∑

k=1

λkpk(v1)

where (λ1, λ2, λ3, λ4)
T is a homogeneous quadruple. In this representation, the algebraic

degree of SMi is easily computed. It is defined as the number of intersection points of

SMi and a generic 3-space U ⊂ P 7 (see Harris [11]). Let U be the span of four points

described by u1, . . . ,u4. U and T (v1) intersect if and only if

det(p1(v1),p2(v1),p3(v1),p4(v1),u1,u2,u3,u4) = 0.

This is a polynomial of degree four in v1. Hence there exist four intersection points of

SMi and U . That means that the algebraic degree of SMi is four.

Algebraic equations In order to find a set of algebraic equations of SMi one has to

fix two parameter values v11 and v12 and let pjk = pj(vk) for j = 1, . . . , 4 and k = 1, 2.

In a projective coordinate frame with base points p11, . . . ,p41,p12, . . . ,p42 one may use

the coordinate vectors (ξ0 : · · · : ξ3 : η0 : · · · : η3)
T . In this frame, the algebraic equations
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of SMi read

det

 ξk ηl

ξk ηl

 = 0, k, l,∈ 0, . . . , 3 (24)

(see Naas et.al. [21]). Note that only three of these quadric equations are independent.

Therefore, SMi is the intersection of three hyper-quadrics. In order to find the equations

of SMi in the original coordinate frame of P 7, one has to apply the transformation y = Px

where P is the matrix

P = (p11, . . . ,p41,p12, . . .p42)

to the coordinates in Eq. (24). There exist symmetric eight by eight matrices such that

Eq. (24) reads

(ξ0, . . . , ξ3, η0, . . . , η3)
T ·Aij · (ξ0, . . . , ξ3, η0, . . . η3) = 0.

The transformed equations are (see Lemma 4)

(ξ0, . . . , ξ3, η0, . . . , η3)
T · (PT )−1AijP

−1 · (ξ0, . . . , ξ3, η0, . . . , η3) = 0.

Remark 5. It is possible to compute symbolically the system of algebraic equations of all

Segre manifolds without specifying the DH-parameters.

Intersection of hyperplanes As investigated in Section 2.1 the constraint manifold

of an arbitrary 3R-chain is the intersection of a one parameter set of 3-spaces, depending

linearly on the parameter, with S2
6 . A fixed 3-space in the seven dimensional projective

space is geometrically determined by intersecting four hyper-planes H1, . . . , H4. Alge-

braically this means it is given by four linear equations. A one parameter set of three

spaces is therefore given by the intersection of four one parameter sets of hyper-planes

Hi(v), i = 1, . . . , 4, each depending linearly on the parameter v. This parameter can be

any of the algebraic values of the rotation angles of the 3R-chain. Such a linear one pa-

27



rameter set of hyper-planes is called a pencil of hyper-planes. For each value of v the four

pencils of hyper-planes intersect in one three space of the Segre manifold. The advantage

of these hyper-plane equations to those presented in Husty et al. [17] is, that because

of the newly introduced algorithm these equations are extremely short (224 operands)

although no DH-parameter is specified. Additionally all the DH-parameters appear only

multilinear within these equations.

Remark 6. The Segre manifolds have some interesting properties. From kinematic point

of view the most interesting is the following: The Segre manifolds SM1, SM2 (with the

restriction that α1 = 0 or α2 = 0) and SM3 intersect the exceptional generator of S2
6 (the

3-space, that had to be sliced out of the Segre manifold), given by x0 = x1 = x2 = x3 = 0,

in conjugate complex lines. These lines lie in those 3-spaces of the Segre manifolds that

correspond to the parameter values vi = ±I, i = 1, 2, 3. Furthermore these lines lie on the

quadric y2
0 + y2

1 + y2
2 + y2

3 = 0 in this exceptional 3-space.

This property is important because it shows that the exceptional generator plays in

spatial kinematics a similar role as the circle points in planar kinematics. A strict proof

of the statement above can be found in Pfurner[22].

2.3 Discussion of the Inverse Kinematics of General

6R-Manipulators

In this subsection we show how the constraint manifolds of 3R-chains can be used to

solve the inverse kinematics of a general open 6R manipulator. Recall that in the inverse

kinematic problem of a serial chain the design and a pose of the end-effector of the

manipulator is known. The rotation angles ui of the revolute joints have to be computed.

To apply the theory developed before one has to break up the link between the third

and the fourth revolute axis to obtain two 3R chains. It has turned out that the best

way to do this is the following: We break up at the foot of the common normal of third

and fourth axis on the fourth axis. Moreover one has to attach two copies of a coordinate
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frame ΣL = ΣR, called the ”left” and the ”right” frame, to the resulting mechanisms in

the following way:

• The origin is the foot of the common normal of the third and fourth axis on the

fourth axis,

• the x-axis is aligned with the common normal of the third and fourth axes and

• the z-axis coincides with the fourth axis.

The resulting mechanisms are two open 3R-chains, called the ”left” and the ”right” 3R-

chain. The base frame of the left one is Σ0 and the EE frame is ΣL, the base of the right

one is Σ6 with the EE ΣR (see Fig. 8).

Σ1

Σ1

ΣL = ΣR

ΣL

ΣR

EE frame

EE frame

Figure 8: Cutting of the 6R into two 3R serial chains
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The pose of ΣL with respect to Σ0 is given by

T1 = M1 ·G1 ·M2 ·G2 ·M3 ·G3. (25)

This is exactly the canonical 3R-chain for which the canonical constraint manifold was

developed. This manifold was the intersection of one of the Segre manifolds SM1c, SM2c

or SM3c resp. the intersection of one of the 3-spaces Tcp or Tcw with the Study quadric.

Which one of the constraint manifolds has to be taken depends on the DH parameters of

the 6R-manipulator because in some special cases one ore more of the Segre manifolds lie

completely on S2
6 .

The pose of ΣR with respect to Σ6 is given by

T2 = A ·G−1
6 ·M−1

6 ·G−1
5 ·M−1

5 ·G−1
4 ·M−1

4 . (26)

To achieve the representation of the constraint manifold of this right 3R-chain one has to

take the hyperplane equations representing T (v1), T (v2) and T (v3) for an arbitrary design

or the hyperplane equations representing Tp in Eqs. (23) resp. Tw for special designs.

Pfurner [22] has shown that one can adapt the coordinate systems slightly to get the

simplest set of equations. After these substitutions the one parameter sets of 3-spaces are

denoted by T (v6), T (v5) resp. T (v4), and each of them describes also a Segre manifold

denoted by SM6, SM5 resp. SM4. Each of them can serve as SMR. The four pencils of

hyper-planes corresponding to each Segre manifold are denoted by H5(vi), . . . , H8(vi) for

i = 4, 5, 6. The representations of the fixed 3-spaces are denoted by T p and Tw.

The solution of the inverse kinematics problem of a serial 6R-chain can therefore be

computed as the intersection

S2
6 ∩ SML ∩ SMR. (27)

With the understanding that a fixed 3-space is a special case of a one parameter set of

3-spaces one may summarize these results in
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Theorem 4. Geometrically the solution of the inverse kinematic problem of a serial 6R-

chain is equivalent to the intersection of eight one parameter sets of hyper-planes with S2
6

in P 7.

An investigation of the structure of the nine equations addressed in Theorem 4 reveals

the non-linearity of the problem. There are eight hyperplane equationsHi which are linear

in xi, yi and bilinear in xivq and yivq respectively xivr and yivr, i = 0, . . . , 3. vq denotes

the tangent half of one of the revolute joints of the left 3R-chain and may therefore be one

of the numbers 1, 2, 3 depending on the structure of the 3R-chain. vr denotes the tangent

half of one of the revolute joints of the right 3R-chain and may therefore be one of the

numbers 4, 5, 6 depending on the structure of the 3R-chain. Eq. (4) of S2
6 is bilinear in xi

and yi, i = 0, . . . , 3.

The solution algorithm of this intersection problem is straight forward. At first one

normalizes the Study parameters by setting one suitable coordinate, say x0 equal to one

(at least one has to be non zero!). The remaining seven Study parameters are solved

linearly from seven arbitrary hyperplane equations, say H1, . . . , H7.

Remark 7. It should be mentioned here that it is possible to solve the set of linear equa-

tions in full generality, that means without setting the DH parameters. But the output

of the solution is that big that it does not make sense to operate with this solution. It is

much faster to substitute the DH-parameters before solving the linear system.

Multiplying the solutions for the Study parameters by the common denominator yields

all Study parameters depending on the two parameters vq and vr:

xi = xi(vq, vr), yi = yi(vq, vr). (28)

Substituting these Study parameters into Eq. (4) and in the one remaining equation H8

one obtains two non-linear algebraic equations E1 = 0 and E2 = 0 in the two parameters:

E1(vq, vr) = 0, E2(vq, vr) = 0.
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Remark 8. The vanishing of E2 is the condition for intersecting the two one parameter

sets of three spaces Tc(vq) and T (vr) of SML and SMR described by H1, . . . , H4 and

H5, . . . , H8. Hence, it can be also written as the determinant

|h1,h2,h3,h4,h5,h6,h7,h8| = 0 (29)

where hi are the hyperplane coordinates of Hi for i = 1, . . . , 8.

The resultant of E1 and E2 with respect to one unknown, e.g. vr, yields a univariate

polynomial of degree 56 in the remaining unknown vq. This polynomial factors into

(1 + v2
q )

4P1(vq)P2(vq)P3(vq)
2P(vq) = 0.

(1 + v2
q ) yields the solutions vq = ±I, which belong to points in the exceptional generator

and can be therefore canceled. The polynomials P1 and P2 are of degree four in vq and

belong, after back substitution of the roots and comparing the common roots of E1 and

E2 to solutions vr = ±I. Therefore also these two polynomials can be canceled. P3 is

a polynomial of degree 12 and belongs to values of vq that yield, back substituted into

the solved linear system, solutions of the form (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0). This point is

excluded from P 7 and therefore also P3 can be omitted from this polynomial. P is the

univariate polynomial of degree 16.

Remark 9. The resultant factors in the described way in the general case. In special

cases the factorization may look different, but the factors which do not solve the whole

system can always be excluded with the same statements.

Remark 10. For every design it is possible to compute the univariate polynomial in a

short time exactly. It depends on the degree of the polynomial if the roots can be obtained

in closed form or only numerical.

Solving P for the unknown vq yields 16 roots over C. The other unknowns can be
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computed by back substitution of these solutions into E1 and E2. Solving both equations

and comparing the solutions yields one common solution of the system for vr. Note that

the solution of these unknowns are already the tangents half of two of the joint angles of

the 6R-mechanism. Having the values of these two unknowns one can substitute the 16

pairs of solutions into the Study parameters that resulted from the solutions of the linear

system in Eq. (28). This yields 16 poses where the right and the left coordinate systems

coincide (ΣL = ΣR).

The remaining task is simple: One has to compute the inverse kinematics of two 2R-

chains. To do this one has to compare the entries of the matrices describing the motion

of the remaining 2R-chains T1(u1, u2, u3) (where one of the joint variables is fixed) in Eq.

(25) and T2(u4, u5, u6) (where one of the joint variables is fixed) in Eq. (26), with the

entries of the matrix that describe the pose of ΣL = ΣR. This leads to an overdetermined

set of equations for the four unknown angles.

Theorem 1 gives another possibility to solve the inverse kinematics of the remaining

2R-chains. For every 3R-chain one has three different Segre manifolds to obtain the

constraint manifold. For the derivation of the poses where ΣL = ΣR we have used only

one of them. The computed solutions have to be on all Segre manifolds. Using this fact

one can obtain linear equations in the remaining four unknowns from the remaining four

Segre manifolds.

Overconstrained 6R-Mechanisms In case that E1 or E2 vanish or the resultant of

E1 and E2 vanishes we cannot create a univariate polynomial in one of the remaining

unknowns. The 6R-chain is overconstrained. The remaining equation or the common

factor determines the one parameter motion of the chain (see Pfurner-Husty[23]).

33



3 Synthesis of Mechanisms

Kinematic mapping can also be used in the synthesis of mechanisms. A detailed introduc-

tion into this interesting topic can be found in [19]. The mathematical tools used there

are closely related to the presented methods within this paper. But there is a difference

in the geometric interpretation of the devised equations. We show the application of our

methods in the synthesis of a Bennett mechanism.

Figure 9: Bennett mechanism

The Bennett mechanism is a closed 4R-chain. It is well known that a Bennett mech-

anism can be synthesized exactly when three poses of the end effector system are given

(Fig.9). Synthesis means that we have to find the design parameters of the mechanism

and the location of the axes in the fixed system and the location of the moving body in

the moving system. For the synthesis of such a mechanism we attach two of the revolute

axes to the fixed system and two axes to the moving (coupler) system. Now we prize

open the coupler link and obtain two open 2R-chains. The basic idea of the synthesis
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is now: We map the possible displacements of the first 2R-chain onto S2
6 . This yields

the constraint manifold M1 of the 2R-chain in the kinematic image space. The same

procedure we perform with the other 2R-chain and obtain a second constraint manifold

M2. Possible assembly modes of the two 2R-chains correspond to intersection points of

M1 andM2.

Due to the fact that a Bennett mechanism consists of two 2R-chains, one has to

intersect two 3-spaces L3
1, L3

2 in P 7. According to the well known dimension formula

dim(U ∩ V ) = dim(U) + dim(V )− dim(U + V ) (30)

where U, V denote sub-spaces of an n-dimensional space P n, the intersection of two 3-

spaces L3
1, L3

2 in a seven dimensional space P 7 can be:

• dim(L3
1 ∩ L3

2) = −1,⇒ intersection is empty,

• dim(L3
1 ∩ L3

2) = 0,⇒ intersection is one point,

• dim(L3
1 ∩ L3

2) = 1,⇒ intersection is a line,

• dim(L3
1 ∩ L3

2) = 2,⇒ intersection is a two-plane

• dim(L3
1 ∩ L3

2) = 3⇒ L3
1 and L3

2 coincide.

The first case is the general case. The mechanical interpretation is that two general

2R-chains never can be assembled to form a closed 4R-mechanism. There have to be

conditions to make this happen. When the constraint manifolds are chosen such that

they come from a 4R-chain, then they have exactly one point in common, which is on

S2
6 (forward kinematics of a serial 4R-chain). This fact is also a simple proof that the

inverse kinematics of a general 4R serial chain has one solution. The case of the line

intersection is only possible for special 4R-chains for which the inverse kinematics then

has two solutions, which correspond to the two intersections of the line with S2
6 . As

we know, the Bennett motion is a one-parameter-motion, represented by a curve in the
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kinematic image space. Therefore only the cases of a line, which lies completely on S2
6

or a two-plane are of interest. The case that the line is contained in S2
6 is not possible.

Following Baker [2], who argued via screws, the relative motion between opposite links

of a proper Bennett loop can be neither purely rotational nor purely translational at any

time. Since straight lines on S2
6 correspond to rotations or translations we can restrict

ourselves to the case of dim(L3
1 ∩L3

2) = 2. The kinematic image of the Bennett motion is

therefore the intersection of a two-plane with the Study-quadric S2
6 . This yields another

confirmation of the fact that the synthesis of a Bennett needs three precision points. Three

precision points correspond to three points on the Study-quadric and span the two-plane.

This agrees with [26]. Summarizing we have:

Theorem 5. Bennett motions are represented by planar sections of the Study-quadric

and vice versa.

The intersection of the two-plane and S2
6 is a quadratic curve. In this sense Bennett

motions can be regarded as the simplest non-trivial one parameter space motions. A

direct consequence of the above considerations is the following

Corollary 2. Bennett linkages are the only movable 4R-chains.

It should be noted that to the authors’ best knowledge up to now there exist only

complicated algebraic proofs of this result (see for example [18]).

Synthesis algorithm Given are three precision points A, B, C ∈ S2
6 , corresponding

to three poses of a coordinate system. The goal is to compute the design parameters of

the Bennett mechanism that guides the coupler system through these poses. The above

mentioned theorem states that the Bennett motion corresponds to the conic on S2
6 passing

through A, B and C. This conic can be parameterized rationally according to

f(s) = p0 + sp1 + s2p2, p0,p1,p2 ∈ R8.
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Applying inverse kinematic mapping by substituting the components of the vector function

f(s) into Eq. (2) yields a rational parameterization M(s) of the Bennett motion. The

trajectory of a point having homogeneous coordinates (1, x1, x2, x3)
T is the rational quartic

c(s) := (X0, X1, X2, X3)
T (s) = M(s)(1, x1, x2, x3)

T . (31)

After this step of the algorithm the motion of the coupler system of the synthesized

Bennett mechanism is determined. For the mechanical design the axes and the Denavit-

Hartenberg-parameters of the mechanism are necessary. To compute the parametric repre-

sentation of the axes we follow the procedure developed in Bottema-Roth [6] in a slightly

modified and adapted way. This is necessary because the motion is not given in the

canonical form on which the geometric arguments in Bottema-Roth [6] are based. In

Bottema-Roth [6] it is shown that there exist two pairs of conjugate complex isotropic

planes ψi, ψi (i = 1, 2) whose points have trajectories of degree three or lower. Their pair-

wise intersections consist of four complex and two real lines. The two real lines are the

moving axes of the Bennett mechanism and the paths of points on these lines are circles.

The circles are in parallel planes having centers on common axes, the two real circle axes

are the fixed axes of the mechanism. From Eq. (31) it is known that all trajectories c(s)

are parameterized with rational functions of degree four. This is also true for the cubic

trajectories and the circles. The only possibility to obtain a rational parametrization

of degree four for twisted cubics is degree elevation of a rational cubic parametrization.

Therefore in case of a cubic trajectory the parametric representation can be written in

the form

c(s) = (s− s̃)c̃(s) (32)

where s̃ ∈ R is constant and c̃(s) consists of cubic polynomials. We have to determine

points in the moving system such that they have common zeros of all of their coordinate

functions. As we know from above the solutions will be the points in the planes ψi and ψi.
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Since the homogenizing coordinate X0(s) is independent of x1, x2 and x3, we can compute

the zeros of this function. It turns out that the four zeros are pairwise conjugate complex

s1, s1, s2 and s2. The equations of the isotropic planes are found by substituting si and si

in either X1(s), X2(s) or X3(s). The computation of the mechanism’s fixed and moving

axes is now elementary. The implementation of this algorithm is straightforward. The

most expensive step is solving the quartic equation X0(s) = 0. As opposed to previous

solutions no system of equations has to be solved and no discussion of reality of roots is

necessary.

A second possibility to determine the axes is to compute the points which have planar

trajectories because these points are on the moving axes. If the trajectory of a certain

point is planar, the torsion of the trajectory has to vanish for all parameter values t.

Following Husty et al. [13], the torsion is given by

τ :=
|dc(t)
dt
, d

2c(t)
dt2

, d
3c(t)
dt3
|

|dc(t)
dt
× d2c(t)

dt2
|2

.

τ = 0 means that
dc(t)

dt
,
d2c(t)

dt2
,
d3c(t)

dt3

have to be linearly dependent. Therefore the numerator of the determinant which is a

function in t of degree 4 has to vanish identically for points on the moving axes. That

means that all five coefficients of this polynomial have to vanish. Each coefficient is a

cubic polynomial in the coordinates (x1, x2, x3) of the moving point. This gives a system

of five equations F = [G0, . . . , G4] which is solvable but has no finite number of solutions,

exactly as we expect.

For F a Gröbner basis can be determined. It turns out that the Gröbner basis contains

only four polynomials A = [B0, . . . , B3]. The moving axes belong to the zero-set of A

which is determined with help of resultants. Every possible resultant yields a polynomial
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of degree nine which factors in a polynomial of degree three and one of degree six. The

geometric interpretation of this fact is the following: The zeros of each of the the cubic

polynomials determine a cubic surface in the moving space. These cubic surfaces have six

lines in common and pairwise different three points. Two of the six lines are real. The

axes in the fixed space can be computed vial the centers of the paths of the moving axes.

For a numerical example we have to refer to Brunnthaler [8, 7].

4 Conclusion

In this overview we have discussed the application of kinematic mapping and the resulting

geometric-algebraic approach to solve problems in mechanism analysis and synthesis. It

was shown that geometric preprocessing in a multidimensional setting allowed to simplify

and subsequently solve the sets of polynomial equations linked to the mechanical problems.
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