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 Robots and robotics
 Kinematics
 Differential Kinematics
 Statics
 Dynamics

Outline
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B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and 
Control, Springer, London, 2009, DOI 10.1007/978-1-4471-0449-0
 Chapter 1 ─ Introduction
 Chapter 2 ─ Kinematics
 Chapter 3 ─ Differential Kinematics

and Statics
 Chapter 7 ─ Dynamics

MOOC Robotics Foundations – Robot Modelling
https://www.federica.eu/c/robotics_foundations_i_robot_modelling

The Textbook
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http://www.springer.com/gp/book/9781846286414
http://dx.doi.org/10.1007/978-1-4471-0449-0
https://www.federica.eu/c/robotics_foundations_i_robot_modelling
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B. Siciliano, O. Khatib, Springer Handbook of Robotics 2nd Edition, Springer, 
Heidelberg, 2016, DOI 10.1007/978-3-319-32552-1
 Chapter 2 ─ Kinematics
 Chapter 3 ─ Dynamics
 Chapter 4 ─ Mechanisms and

Actuation

The Handbook
Robot Modelling 4/83

http://www.springer.com/us/book/9783319325507
http://dx.doi.org/10.1007/978-3-319-32552-1
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Robots !!!

Mars
Oceans
Hospitals
Factories
Schools
Homes
...

Today

Tomorrow

Intelligent
Personal

Pervasive
Disappearing

Ubiquitous
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 Robot (robota = subordinate labour)
 One of humans' greatest ambitions has been to give life to their artifacts 

(mythology)
 Common people continue to imagine the robot as an android who can speak, 

walk, see, and hear, with an appearance very much like that of humans 
(science fiction)

 The robot is seen as a machine that, independently of its exterior, is able to 
execute tasks in an automatic way to replace or improve human labour 
(reality)

What is a Robot?
Robot Modelling 6/83
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What is a Robot?
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Evolution of Robotics

NEED for 
useful 
machinesHumans’ 

DREAM of 
replicating 
themselves Industrial 

Robotics

Field
Robotics

Personal 
Robotics

Manufacturing 
Applications

Spatial 
Applications

Medical 
Applications

Humanoid 
Robotics

Service 
Robotics

1960-1980

1980-2000

1990-2010

2000-2020

?
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A 50 Year Journey
Robot Modelling 9/83
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From Factories to Our Homes

Industry ServiceField

Automotive
Chemical

Electronics
Food

Aerial
Space

Underwater
Search and rescue

Domestic
Edutainment
Rehabilitation

Medical

Level of Autonomy
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The Journey Continues
Robot Modelling 11/83
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Definition of Robotics

hand/arm
control 

motor
control

visual feedback

haptic
feedback

CONTROL ACTUATORS

SENSORS

intelligent connection between perception and action
Robot Modelling 12/83
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Components of a Robotic System

 Mechanical system 
 Locomotion apparatus (wheels, crawlers, mechanical legs)
 Manipulation apparatus (mechanical arms, end-effectors, artificial hands)

 Actuation system 
 Animates the mechanical components of the robot
 Motion control (servomotors, drives, transmissions

 Sensory system 
 Proprioceptive sensors (internal information on system)
 Exteroceptive sensors (external information on environment)

 Control system 
 Execution of action set by task planning coping with robot and environment’s constraints
 Adoption of feedback principle
 Use of system models

Robot Modelling 13/83



GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 22 January 2018

Robot Mechanical Structure

 Mechanical structure of robot manipulator: sequence of rigid bodies (links) 
interconnected by means of articulations (joints) 
 Arm ensuring mobility
 Wrist conferring dexterity
 End-effector performing the task required of robot

 Mechanical structure 
 Open vs. closed kinematic chain

 Mobility 
 Prismatic vs. revolute joints

 Degrees of freedom 
 3 for position + 3 for orientation

 Workspace 
 Portion of environment the manipulator’s end-effector can access

Robot Modelling 14/83
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Relationship between the joint positions and the end-effector pose
 Representations of orientation

 Rotation matrix
 Euler angles
 Four-parameter representations

 Direct kinematics
 Homogeneous transformations
 Denavit-Hartenberg convention
 Examples

 Inverse kinematics
 Solution of three-link planar arm
 Solution of anthropomorphic arm
 Solution of spherical wrist

Kinematics
Robot Modelling 15/83
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Pose of Rigid Body
Robot Modelling 16/83

 Position

 Orientation
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Elementary Rotations
Robot Modelling 17/83
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Representation of a Vector
Robot Modelling 18/83



GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 22 January 2018

Rotation of a Vector
Robot Modelling 19/83
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Three equivalent geometrical meanings 
 It describes the mutual orientation between two coordinate frames; its column 

vectors are the direction cosines of the axes of the rotated frame with respect 
to the original frame

 It represents the coordinate transformation between the coordinates of a 
point expressed in two different frames (with common origin)

 It is the operator that allows the rotation of a vector in the same coordinate 
frame

Rotation Matrix
Robot Modelling 20/83
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 Rotations in current frame

Composition of Rotation Matrices
Robot Modelling 21/83
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 Rotation matrix 
 9 parameters with 6 constraints

 Minimal representation of orientation 
 3 independent parameters

Euler Angles
Robot Modelling 22/83
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Inverse Problem
Robot Modelling 23/83

 Given

 Solution
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Angle/Axis
Robot Modelling 24/83

 Four-parameter representation
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Inverse Problem
Robot Modelling 25/83

 Given

 Solution
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Unit Quaternion
Robot Modelling 26/83

 Four-parameter representation

 and                    give the same quaternion

 Quaternion extracted from                         :  

 Quaternion product:
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Inverse Problem
Robot Modelling 27/83

 Given

 Solution
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Homogeneous Representation of a Vector
Robot Modelling 28/83

 Coordinate transformation (translation + rotation)

 Inverse transformation

 Homogenous representation



GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 22 January 2018

Homogeneous Transformation Matrix
Robot Modelling 29/83

 Coordinate transformation

 Inverse transformation

 Orthogonality does not hold

 Sequence of coordinate transformations
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Type of Joints
Robot Modelling 30/83

Manipulator
 Series of rigid bodies (links) connected by means of kinematic pairs or joints

Kinematic chain (from base to end-effector)
 Open (only one sequence of links connecting

the two ends of the chain)
 Closed (a sequence of links forms a loop)

Degrees of freedom (DOFs) uniquely determine
the manipulator’s posture
 Each DOF is typically associated with a joint

articulation and constitutes a joint variable

revolute

prismatic
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Direct Kinematics Equation
Robot Modelling 31/83

 End-effector frame with respect to base frame
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Two-Link Planar Arm
Robot Modelling 32/83
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Open Chain
Robot Modelling 33/83
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Denavit-Hartenberg Parameters
Robot Modelling 34/83

 distance between
and

 coordinate of
along

 angle between axes
and      about axis

to be taken positive when
rotation is made counter-clockwise

 angle between axes           and
about axis          to be taken

positive when rotation is made
counter-clockwise
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Coordinate Transformation
Robot Modelling 35/83
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Three-Link Planar Arm
Robot Modelling 36/83

Link      
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Anthropomorphic Arm
Robot Modelling 37/83

Link      
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Spherical Wrist
Robot Modelling 38/83

Link      
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Anthropomorphic Arm with Spherical Wrist
Robot Modelling 39/83
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Joint Space and Operational Space
Robot Modelling 40/83

Joint space

 (revolute joint)
 (prismatic joint)

Operational space

Direct Kinematics Equation

 : kinematically redundant manipulator
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Inverse Kinematics
Robot Modelling 41/83

 Complexity 
 Possibility to find closed-form solutions (nonlinear equations to solve)
 Existence of multiple solutions
 Existence of infinite solutions (kinematically redundant manipulator)
 No admissible solutions, in view of the manipulator kinematic structure

 Computation of closed-form solutions 
 Algebraic intuition
 Geometric intuition

 No closed-form solutions 
 Numerical solution techniques



GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 22 January 2018

Kinematic Decoupling
Robot Modelling 42/83

Manipulators with spherical wrist 

 Compute wrist position

 Solve inverse kinematics

 Compute
 Compute 

 Solve inverse kinematics
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Relationship between the joint velocities and the end-effector linear and 
angular velocities Jacobian
 Jacobian

 Derivative of a rotation matrix
 Jacobian computation

 Differential Kinematics 
 Kinematic singularities
 Analysis of redundancy
 Analytical Jacobian

 Inverse Kinematics Algorithms 
 Jacobian (pseudo-)inverse
 Jacobian transpose
 Orientation error

Differential Kinematics
Robot Modelling 43/83
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 Differential kinematics equation

Geometric Jacobian
Robot Modelling 44/83
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 Differentiating

 Skew-symmetric operator

 Angular velocity

Derivative of a Rotation Matrix
Robot Modelling 45/83
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 Prismatic joint

 Revolute joint

Linear Velocity
Robot Modelling 46/83
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 Prismatic joint

 Revolute joint

Angular Velocity
Robot Modelling 47/83
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 Prismatic joint

 Revolute joint

Jacobian Computation
Robot Modelling 48/83
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 Those configurations at which the Jacobian is rank-deficient are termed 
kinematic singularities
 Reduced mobility (it is not possible to impose an arbitrary motion to the end-effector)
 Infinite solutions to the inverse kinematics problem may exist
 Small velocities in the operational space may cause large velocities in the joint space (In 

the neighbourhood of a singularity)
 Classification 

 Boundary singularities occurring when the manipulator is either outstretched or retracted 
(can be avoided)

 Internal singularities occurring inside the reachable workspace and generally caused by 
the alignment of two or more axes of motion, or else by the attainment of particular end-
effector configurations (can be encountered anywhere for a planned path in the 
operational space)

Kinematic Singularities
Robot Modelling 49/83
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Two-link Planar Arm
Robot Modelling 50/83

 The vectors                                                     and                               become 
parallel (tip velocity components are not independent)  
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Singularity Decoupling
Robot Modelling 51/83

 Choosing
 Vectors                  parallel to

the unit vectors 
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Wrist Singularities
Robot Modelling 52/83

 parallel to

 Rotations of equal magnitude
about opposite directions on  
and      do not produce any end-effector rotation
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Anthropomorphic Arm Singularities
Robot Modelling 53/83

 Elbow singularity

 conceptually equivalent to the
singularity found for the two-link
planar arm

 Shoulder singularity

 A rotation of       does not cause any
translation of the wrist position
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Analysis of Redundancy
Robot Modelling 54/83

 Differential kinematics

 If 

 In general
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Exploitation of Redundancy
Robot Modelling 55/83

 If 

 generates internal motions of the structure
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Inversion of Differential Kinematics Equation
Robot Modelling 56/83

 Nonlinear kinematics equation between the joint space and the operational 
space

 Differential kinematics equation represents a linear mapping between the 
joint velocity space and the operational velocity space

 Given an end-effector velocity       + initial conditions, compute a feasible joint 
trajectory                     that reproduces the given trajectory 
 If 

 Numerical integration rule (Euler)
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Redundant Manipulators
Robot Modelling 57/83

 Local optimal solution

 Internal motions

 Manipulability measure

 Distance from mechanical joint limits

 Distance from an obstacle
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Kinematic Singularities
Robot Modelling 58/83

 The above solutions can be computed only when the Jacobian has full rank
 Whenever     is not full rank

 If                                 It is possible to find a solution     by extracting all the linearly 
independent equations (assigned path physically executable by the manipulator)

 If                                 The system of equations has no solution (non executable path at 
manipulator’s given posture)

 Inversion in the neighborhood of singularities: Damped least-squares (DLS) 
inverse
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Analytical Jacobian
Robot Modelling 59/83

 Analytical Jacobian

 is not usually available in direct form, but requires computation of the elements of 
the relative rotation matrix
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Angular Velocity and Derivatives of Euler Angles
Robot Modelling 60/83

 Rotational velocities of Euler angles ZYZ in current frame
 As a result of
 As a result of
 As a result of

 Composition of elementary rotational velocities

 Representation singularity for
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Relationship Between Jacobians
Robot Modelling 61/83

 Geometric Jacobian
 Quantities of clear physical meaning

 Analytical Jacobian
 Differential quantities of variables defined in the operational space

 Composition of elementary rotational velocities
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Closed-Loop Inverse Kinematics Schemes
Robot Modelling 62/83

 Algorithmic solution

 Solution drift

 Operational space error

 Differentiating …

 Find
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Jacobian Pseudo-Inverse CLIK Scheme
Robot Modelling 63/83

 Error dynamics linearization 

 For a redundant manipulator
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Jacobian Transpose CLIK Scheme
Robot Modelling 64/83

 without linearizing error dynamics
Lyapunov method

 Differentiating …

 Choosing
 If                                       with               (asymptotic stability)
 If                                              if                              

with              (stuck?)
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Jacobian Transpose CLIK Scheme2
Robot Modelling 65/83

 If
 bounded (increase norm of     )

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Anthropomorphic Arm
Robot Modelling 66/83

 Null space (shoulder singularity)

 If desired path is along the line normal to
the plane of the structure at the intersection
with the wrist point          algorithm gets stuck
(end-effector cannot move)

 If desired path has a non-null component
in the plane of the structure          algorithm
convergence is ensured
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Orientation Error
Robot Modelling 67/83

 Position error

 Orientation error

 Easy to specify
 Requires computation of      with inverse formulae from
 Manipulator with spherical wrist

 Compute
 Compute                                (ZYZ Euler angles)     
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Angle and Axis
Robot Modelling 68/83

 Orientation error

 Differentiating … 
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Unit Quaternion
Robot Modelling 69/83

 Orientation error

 Quaternion propagation

 Stability analysis
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Second-order Inverse Kinematics Algorithms
Robot Modelling 70/83

 Differentiating …
 Error dynamics
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Statics
Robot Modelling 71/83

Relationship between the generalized forces applied to the end-effector 
(forces) and the generalized forces applied to the joints (torques), with the 
manipulator at an equilibrium configuration
 Elementary work associated with joint torques
 Elementary work associated with end-effector forces

 Elementary displacements      virtual displacements 

 Principle of virtual work: the manipulator is at static equilibrium if and only if
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Kineto-Statics Duality
Robot Modelling 72/83

 End-effector forces                       not requiring any balancing joint torques, in 
the given manipulator posture                       
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Jacobian Transpose CLIK Scheme
Robot Modelling 73/83

 Physical interpretation of CLIK scheme with Jacobian transpose
 Ideal dynamics              (null masses and unit viscous friction coefficients)
 Elastic force         pulling end-effector towards desired posture in operational space 
 Manipulator is allowed to move only if
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Relationship between the joint actuator torques and the motion of the 
structure
 Lagrangian Formulation

 Equations of motion
 Notable properties of dynamic model

 Direct dynamics and inverse dynamics

Dynamics
Robot Modelling 74/83
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 Lagrangian = Kinetic energy – Potential energy

 Lagrange equations

 : generalized forces associated with generalized coordinates

Lagrange Formulation
Robot Modelling 75/83
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 Kinetic energy

 Potential energy

 Lagrangian

 Equations of motion

Dynamic Model of Pendulum
Robot Modelling 76/83
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 Contributions relative to the motion of each link and each joint actuator

 Lagrangian

 Inertia matrix
 symmetric
 positive definite
 configuration-dependent

Kinetic Energy and Potential Energy
Robot Modelling 77/83
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 Taking various derivatives …

Equations of Motion
Robot Modelling 78/83
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Physical Interpretation
Robot Modelling 79/83

 Acceleration terms
 The coefficient      represents the moment of inertia at Joint    axis, in the current 

manipulator posture, when the other joints are blocked
 The coefficient       accounts for the effect of acceleration of Joint     on Joint  

 Quadratic velocity terms
 The term            represents the centrifugal effect induced on Joint    by velocity of Joint

since
 The term                represents the Coriolis effect induced on Joint    by velocities of  

Joints    and
 Configuration-dependent term (gravity)

 The term     represents the torque at Joint    axis of the manipulator in the current posture



GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 22 January 2018

Robot Modelling 80/83

 Nonconservative forces doing work at manipulator joints
 Actuation torques
 Viscous friction torques
 Static friction torques (Coulomb model) 
 Balancing torques induced at joints by contact forces 

 Equations of motion

 : suitable               matrix so that

Joint Space Dynamic Model
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Robot Modelling 81/83

 Elements of

 Christoffel symbols of first type

 Notable property

 If 

principle of conservation of energy (Hamilton)

Skew-Symmetry of Matrix
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Robot Modelling 82/83

Linearity in the Dynamic Parameters

 Dynamic parameters
 Mass of link and of motor (augmented link)
 First inertia moment of augmented link
 Inertia tensor of augmented link
 Moment of inertia of rotor

 Both kinetic energy and potential energy are linear in the parameters

 Notable property
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Direct Dynamics and Inverse Dynamics

 Direct dynamics (useful for simulation)
 Given                                 (and          ),

compute                             for

 Given                                    ,
compute            and
and numerically integrate with step       :        

 Inverse dynamics (useful for planning and control)
 Given                             (and          )

compute
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