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Introduction 1

- «What is around me?»

- In this part, we will explain some basic tools of computer
vision for helping the robot to perceive its world.

- We will try to understand how the robot can localize itself
with a vision system ( mono-camera, multi-camera,
LIDAR, RGB-D cameras...)



Introduction

HOW UBER'S FIRST SELF-DRIVING CAR WORKS

Top mounted LIDAR beams 1.4 million
laser points per second to create a 3D
map of the car's surroundings.

ﬁﬁmﬂmﬂ:ﬂﬂmw

rrap Into calor so the car can
see traffic light changes.

There are 20 cameras looking
for braking wvehicles, pedestrians,
and other obstacles.

Irf—_h“m“ the roof
rack let the car position
Itself via GPS.

LIDAR modules on the from, rear, and sides K.lu:-m:l-lmllrnl:mm'nI1'|'li'mcwunrrrmvrltﬂimunt
help detect obstacles in blind spots. everything runs without overheating.
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ACTIVE SENSORS

- Use external devices that emit light wavelength, signal or
patterns to interact with the scene.

- The data generated by this external source are gathered
by the sensor to deduce information on the environment
around the robot.

- This conversion can be carried out in many ways
depending upon the type of sensors.

- 4 main technologies: RADAR, LiDAR, Structured-Light
and Time-of-Flight.



1. Active and Passive Sensors 5

RADAR

- Radio Detection and Ranging uses radio wave to
compute velocity and/or range to an object.

- Large wavelenght
v'works with large distance
Xlow resolution

NN ®
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Principle Radar sensor



1. Active and Passive Sensors 6

LIDAR

- Light Detection and Ranging uses a laser that is emitted
and received back

- Small wavelength
xworks with small distance

v'high resolution 4
B e

LIDAR ' LIDAR Data

Principle



1. Active and Passive Sensors

Structured light

- Project bi-dimensional patterns to estimate the dense
depth information of the object surface points.

- The main role of the projected patterns is to establish
correspondences between the known pattern

vLight, small, low energy consuming
v'Color + 3D information in one shot
x Sensitive to the light condition.
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Principle

5



1. Active and Passive Sensors 8

Structured light

Kinect 1
RGB : 640480
Depth : 320*240

Processed Image fromm Snect



1. Active and Passive Sensors 9

Time-of-Flight Cameras

- Range imaging that measure the time of flight of a signal
between camera and the object

- The artificial illumination may be provided by laser or LED
v'Can provide Color + 3D data in one shot
v'No sensitive to the light condition

xLow resolution compared to 2D cameras

Ambient light does >\ 1/ A

X EXpenS|Ve not Interfere with — O —

-

the pulsed IRlight 7/ N

dlg — ".—
ncode e -
ightveer = 2% 2
Camera + pulsed e e “gefieC Target
pulse oo e ™ R ight Vi

IR light source gl S gt

el SwissRanger 4000

ol 176*144
Camera will only
accept reflected IR light
with the correct pulse

Principle




1. Active and Passive Sensors 10

Time-of-Flight Cameras

Kinect 2
RGB : 19201080
Depth : 5127424




1. Active and Passive Sensors 11

PASSIVE SENSORS

- Gather data through the detection of vibrations, light,
radiation, heat or other phenomena occurring in the
environment without external devices.

- Commonly, the passive sensors used in robotics are
cameras.




1. Active and Passive Sensors

1826 : « Point de vue du gras » (Nicéphore Niepce)



1. Active and Passive Sensors

2019 : Photo of Shanghai, 195 billion pixels



1. Active and Passive Sensors 14

CAMERAS : multifocal

5

Stereoscopic cameras

Snherical camera



1. Active and Passive Sensors

CAMERAS : multimodal

Polarimetric camera

15



1. Active and Passive Sensors 16

CAMERAS

v"This sensor gives a rich information about the scene

v'High Resolution

xSome computer vision tools are required to obtain 3D
data.

- Main steps :
- Feature detection and matching

- Calibration
- Pose estimation / Visual Odometry / Bundle adjustment



17

SOME BASIC IMAGE
PROCESSING TOOLS

Optical Flow

Features detection




2. Some basic image processing tools 18

Feature detection

HARRIS detector

- Principle : detect points based on intensity variation in a
local neighborhood

A patch is a go candidate for matching if it is very
distinctive

MLE Tl

R. Collins, Penne State




2. Some basic image processing tools 19

Feature detection

HARRIS detector
pixel p = (u,v)

Ep)= ) wzyl(z+uy+o)-I(zy)

(H?W ‘\

neighborhood
By a Taylor Expansion:
E(p) = [u, v]M[u, v]"

Image derivatives matrix: [

Weighted function

M = Z w(x,y)

12 ley]
(z,y)eW

LI, I



2. Some basic image processing tools 20

Feature detection

HARRIS detector

This matrix plays an important role in image processing
because it characterizes the homogeneity of a patch.

This disparity can be estimated by its eigenvalues :

Corner response descriptor

R = det(M) — k(traceM)?
k € 10.04,0.06]

R is “large” for a corner

v Fast
v" Rotation invariant

X Not scale invariant

R. Collins, Penne State



2. Some basic image processing tools 21

Feature detection

SIFT

Scale-invariant Feature Transform is inspired by Harris
detector by making a detector/descriptor scale invariant.

Difference of Gaussian (DoG) :
D((E, Y, 0) = (G(.’E, Y, kO’) - G((E, Y, 0)) * I(.’E, y)

G(z,y,0) Gaussian at scale o

R. Collins, Penne State



2. Some basic image processing tools 22

Feature detection

SIFT - detector

A A A

Scale T T e e
e AT
ST e e

Scale
(first
ociave)

(=)
VA A i R A T e

Gaussian Gaussian (DOG) Feature extraction

DoG computation based on M matrix

D. Lowe — IJCV 2004
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Feature detection

SIFT - descriptor

H[¥
e

Image gradients Keypoint descriptor

v" Robust to rotation and scale, to change
in illumination, camera view point
X Time consuming

D. Lowe — IJCV 2004
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Feature detection

SURF

Speeded Up Robust Features approximate DoG by 2D-
Haar wavelets and use the integral images to speed up the

computation.

Haar kernels to approximate DoG

1

1

v Robust to rotation and scale, to change
in illumination

v’ 3-7 times faster than SIFT

X Less efficient than SIFT



2. Some basic image processing tools 25

Feature detection

FAST

Features from Accelerated Segment Test uses a circle of
16 pixels stored and analyzed as a vector.

p is a corner if : TR
HREER  TEEEEE
) ll.l_l:;‘._:%;'??l!. 11

For a set S of N contiguous pixel :
I(z) > I(p) +t

or

I(z) < I(p) —t

v Robust to rotation
v Fast
X Less robust to change illumination



2. Some basic image processing tools 26

Feature detection

BRISK

Binary Robust Invariant Scalable Keypoints use FAST
detector in a multiresolution scheme for scaling invariance.

log,(n r scale

v Robust to rotation and scale

v Fast
X Less robust to change illumination




2. Some basic image processing tools 27

Feature detection

ORB

Oriented Fast and Rotated BRIEF is a combination of FAST
detector and BRIEF descriptor (Binary Robust Independent
Elementary Features)

v" Robust to rotation and scale

v’ Fast

v" Good alternative to SIFT and SURF
v' Use in many SLAM methods



2. Some basic image processing tools 28

Feature detection

Rotation Scale Repeatability | Localization | Robustness Efficiency
Invariant Invariant accuracy

HARRIS
SIFT X X +++ +++ +++ +
SURF X X ++ ++ ++ ++
FAST X ++ ++ ++ +++
BRISK X X +++ ++ ++ +++
ORB X X +++ ++ ++ +++

Performance comparison



2. Some basic image processing tools

Optical flow

29

I((z(t),y(t)),t) an image sequence
Determine the Optical Flow means to compute the 2D

motion field:

V((z(t), y(t),t) = (

(t) (t))
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Yosemite sequence




2. Some basic image processing tools 30

Optical flow

Main hypothesis : The brightness constancy.

The brightness of a physical point in the image does not
change over the time.

I((z(t),y(t)),t) = I((x(to), y(to)), o)

By derivation, we obtain the Optical Flow Constraint
Equation :

ol
VI.T + = =0,

2 unknowns, 1 equation => Aperture problem
2 solutions to overcome this problem :
Dense & Sparse approaches



2. Some basic image processing tools

Optical flow

Horn-Schunk methods (1981):
Hyp: the optical flow is smooth
Optical flow constraint :

Hy(7) = / / (?I.7+gt—1)2dzdy.

Regularization term
Ho(V) = f / Vo) 2dzdy.

Horn and Schunck estimate 77 which minimizes :

E(V) = Hi(V) + oHy(V)

31



2. Some basic image processing tools 32

Optical flow

Lucas-Kanade methods (1981):
Hyp: the optical flow is constant on the neighborhood W

E(V(p,q) =miny Y w*(p,q) [?I(p,q)?(p,q)Jr%(p,q)]

(P, ) EW(5,q)

T is computed by:

Z(p,q)ew(p’q) w(ma y)IwIt

Where M is the image derivatives matrix



ROBUST TECHNIQUES

RANSAC
M-Estimator




Robust estimation

- In practice, a lot of data are noisy
- Noise in the image
- Bad matching
- Bad motion estimation
- Occultation
- Dynamic objects in the 3D scene

- Thus, computer vision tools require robust estimation



3. Robust techniques 35

Toy example

X = (xl,cf(2 X 0 < f(Xi, Xi, - Xi)
M data n points are needed to compute @

[ ’. o . )
[ ] ° o ® .. @ — (@1, @2 ®p) o
. . e pvariables to describe X o o °
® . ® .. ® ) . . .



3. Robust techniques

Toy example

Least mean square

O = m1n Z(l — by; — ax;)*e

36
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RANSAC (RANdom Sample Consensus)

.(xi'yi)

Example : line fitting
X=X =¥)i=1.m

ax; + by; =c V (x;,y;)
® = (a,b,c)

How many points of X do we need in order to estimate @7



3. Robust techniques 38

RANSAC (RANdom Sample Consensus)

A lot of problems in CV can be modelized by :

O = f(xilaxi% " xzn)

with X = (x1---x,7), M observations
n . number of data needed for estimating ©

If all the data are inliers, ® can be evaluated whatever the n
observations we choose.

In practice, some data are often corrupted !
How to ensure the robustness of the approach?



3. Robust techniques 39

RANSAC (RANdom Sample Consensus)

° °
®
] ® ®
] ¢ ..'.
® o ¢ :
® °® ° ¢
o * ® °®
¢ ’ -'. °
® . ®
° .' ®
°o® .
°®
o ® e
® ®* o
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RANSAC (RANdom Sample Consensus)
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RANSAC (RANdom Sample Consensus)

® °
®
] ® ®
] ¢ ..'.
® o ¢ :
® °® ° ¢
o * ® °®
¢ ’ -'. °
® . ®
° .' ®
°o® .
°®
o ® e
® ®* o
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RANSAC (RANdom Sample Consensus)
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RANSAC (RANdom Sample Consensus)

To ensure the convergence of the algorithm, we have to
iterate L times where :

_ log(1-p,)
log(1 —w™)

pr = success probability
w = ratio of outliers
n = number of observations needed for estimating @
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RANSAC (RANdom Sample Consensus)

With p,. = 0.99%,

En=2 mn=5 mn=8

| 6

(e}

(4p]
W=

o

A

-> it's really important to reduce the point we need to estimate the model
in order to reduce the number of iteration
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M-estimator
Example : line fitting e © )
X=X =&,Yi)i=1.m o o o
. ¢
ax; + by; =c V (x;, y;) ¢
® = (a,b,c) °

Least mean square

0= m1n Z(l — by; — ax;)*



3. Robust techniques 46

M-estimator

ldea : Replace the quadratic error

0= m1n Z(l — by; — ax;)*?

By o= g}llgzp(l — by; — ax;)
Where p is a function called M-estimator.

It minimizes by an iteratively re-weighted least squares

v(r,0)
| T

Influence function
Derivative of p

= arg m1n Z —wiry  with  w;i(r,0) =



3. Robust techniques

M-estimator

47

a - B 8 ® & B & -] A B

(a) (b)

(@) p(x) = x? (b) its influence function ¥ = 2x
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M-estimator
: f':- :..-
& I'. | " In' II'I
: Il'll I III' ———————
i I'll | 'IIII .'II
i II'II x: '._ f
(a) (b)

if |z| <o
elseif,

(b) its influence function

¥(z,0) = {

z(z?>—-0%)? if |z|<o
0 elseif.
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M-estimator

Example : line fitting
X=X =¥)i=1.m

ax; + by; = c¢ V (x3,¥;)

® = (a,b,c)
M-estimator
M
0= {2,%2 p(1 = by; — ax;)

=1




FROM 2D CAMERAS TO 3D
RECONSTRUCTION AND
MOTION

Camera modeling and calibration
Epipolar geometry
Multiple view geometry
Bundle adjustment

Agarwal et al., Building Rome in one day, ICCV 2009



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Mapping a 3D point to a 2D image point : 3 mappings

Sought after world to image mapping

Mapping 1 ~ 3D displacement
| Euclidean transformation)

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

First mapping : From 3D world to Camera

O Models camera displacements : position and orientation
In homogeneous coordinates:

- 5 o

= Ris a (3 x 3) rotation matrix: RTR = I and det(R)=1 b ¢

= tis a (3 x 1) translation vector Y

» Q is the world homogeneous coordinates of the 3D point Q"-' 7z
I

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Second mapping : From Camera to Retina

Maps R? to R?

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Second mapping : From Camera to Retina

0 Camera-centered 3D point coordinates : Q.~(X,. Y. Z. 1)T

)

 Retina-centered coordinates: v
C

X |
u=fz+" and v=f —

C

C
in homogeneous coordinates (; ~
! |

OIn matrix form, the projection can be written as:
XC

f oo o0y
(6)~(o 7 0 o)(
1 0 01 0 .

1

%h
N:k

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Third mapping : From Retina to Image

Image

‘k\'orld

Z‘\' The principal point liss coordinates Iy and yp in the image

Maps R? to R?

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Third mapping : From Retina to Image

a kx: ky: are the density of pixels along u and v, e.g. in number of pixels per mm
U We have:

x=ku+ xy and y=k,v+ y,

which in matrix form gives:
¥ k., 0 xo\ su
yi=1(0 ky Yo Il V
1 0o o 1/

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Mapping 2+3: Camera to Image

X k., 0 x\/f 0 0 0
O 5 9ELe Y
1 0 0 1 0 1

ka 0 xﬂ
= ( 0 fk yu)(ﬂ
0 0 1/\0

p -

K

o (%
0/\ ¢
L 0o of5
10 o)( ¥

1

1 Kis the camera caﬁbration 1
1 K contains the ‘internal’ or ‘i

N 1< 2

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Camera Modeling

Mapping 1+2+3: World to Image

Tk 0 2%\71 0 0 0

e~ 0 fk, y|[o 1 0 o Bt

00 TAUE I B T (P

or q~ (KR Kt)Q
3

O P is the perspective projection matrix: P is a (3 x 4) matrix
O K contains the ‘internal’ or ‘intrinsic’ camera parameters

O R and t are the ‘extinsic’ or ‘external’ camera parameters, also called the
pose of the camera

D. Sidibe — Computer Vision — Université de Bourgogne



4. From 2D cameras to 3D reconstruction and motion

Calibration

The goal is to estimate P

q~ (KR Kt)Q

Camera calibration Toolbox for Matlab (Bouguet)



Structure from motion




4. From 2D cameras to 3D reconstruction and motion

Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry between two

views.

It is independent of scene, and only depends on the cameras’ internal
parameters and relative pose.

X

I3

-."rz

lll-./
2 ¥
AN

Rzt

L]
L G
~— epipolar line for x

A

S —

x5 [t21]x Ro171 = 23 Eo121 = 0




4. From 2D cameras to 3D reconstruction and motion

Epipolar Geometry

E=[T]xR
E is of rank 2

det(F) =0

o 0 O]
E=U|0 o 0|V7T
0 0 0

1
EE'E — 5Trace(EET)E =0



4. From 2D cameras to 3D reconstruction and motion

Epipolar Geometry: 8 pts algorithm

E can be estimated thanks the linear 8 points algorithm

€11 €12 €13
/
pEp=20 E = |ear e eo3

€31 €32 €33

p=(z,y,1) p' = (2",9,1)
r'xer; + x'yers + 2'e1s + y'xesr + y'yess + y'eas + ez + yero +e33 =0

For n correspondences:

-/ / / / / /
rir1 Ty ry T yivi oy T oyr 1

/ / / / / /
ToTy TolUn T YnTn YnYn Yn Tn  Yn 1_




4. From 2D cameras to 3D reconstruction and motion

Epipolar Geometry: 8 pts algorithm

We have an homogeneous system Ae=0 which can be
estimated up to scgle by least mean square

. 2
min E HAeH such as HeH =1
(A
i=1




4. From 2D cameras to 3D reconstruction and motion

Epipolar Geometry: 5 pts algorithm

[~/ / / / / /
r1Tr1 Ty1r xr7 v iy Yy v oyr 1

Ae = e =10

/ / / / / /
LTy TolUn Lo YnZn YpYn Yp Lo  Yn 1_

With n = 5, the problem is over determined (matrix 5 *9) :
E=xX+4+yY + 2Z +wW
det(F) =0
EETE — %Trace(EET )E =0

but

D. Nister, « An efficient solution to the five-
point relative pose problem », PAMI 2004



4. From 2D cameras to 3D reconstruction and motion

Bundle Adjustment

- In multiple view geometry, we can conjointly refine the 3D
position of the cameras (R,t) and the 3D reconstruction

. n m
i@ -
:!D-Mod?l‘-‘\",' | ;an{l) E E ’Uij d(K]RJ [Il = tj] Xi, xzj)z
s gt Nt St i=1 j=1 \
4-%
%& Vij = 0 if point i is invisible in image j
s T ok V;; = 1 if pointiis visible in image |

nonlinear least-squares algorithms such as Levenberg
Marquardt



4. From 2D cameras to 3D reconstruction and motion

Y. Furukawa, J. Ponce, Accurate, Dense, and Robust Multi-View
Stereopsis, PAMI 2010



FROM 3D POINT CLOUD TO
3D MOTION

ICP .
Dense RGB-D registration ‘ ‘ ‘




5. From 3D point cloud to 3D motion 69

3D sensors

- Let’s suppose that we directly have 3D data taken at 2
different positions (LIDAR, RGBD cameras...)

How to register green data on

black data?
This registration is related to the

3D sensor motion (R, T)




5. From 3D point cloud to 3D motion

|CP : lterative Closest Point

- X ={X4,..., X, }andy ={Y,,...,Y,.},2 3D point

clouds

If X and)) are matched, the
problem consists in finding R
and t solution of :

Y |IRX; 4+t — Y|
=1



5. From 3D point cloud to 3D motion 71

|CP : lterative Closest Point

Y IIRX: +t - Y,
=1

The solution is computed by SVD decomposition of the
matrix

W=UDVT =) "X/;xY']
=1

with X,-':{Xl —j,,xm—j}

Y={Y1-Y,....,. Y=V}



5. From 3D point cloud to 3D motion

|CP : lterative Closest Point

- When X and ) are not matched, the problem becomes
more difficult. It's solved iteratively by the following

algorithm:

Algorithm 1 Compute the rigid transformation i and ¢ between two point clouds A" and Y

input : two point clouds X" and JV, an initialization (R, ty), €, threshold.
output : the rigid transformation /i and ¢
(R.t) + (Ro, to)
while not converged do
fori « lto n do
m; + FindClosest PointInY (RX; +T)
if |BX; + T - Y| < dimax then
w; — 1
else
whi + 0
end if
end for
(R, T) + argmind_,_ w||RX; + T - Y|
end while
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5. From 3D point cloud to 3D motion

Dense RGB-D registration

- Let us suppose that we have conjointly depth and color
data (RGB-D cameras)

Photometric error
er(p, X,t) = I(w(p, X, T),t) — I(p,t — 1)
Depth error Warping function

eD(p7Xat) — D(w(pa XaT)7t) o D(pat_ 1)

Conjoint minimization

~~

T = arg mqi,nz pi(er(p, X, 1)) + App(en(p, X, )

~Optical flow ~ ICP point to plane ICP



5. From 3D point cloud to 3D motion

Dense RGB-D registration

Dense Visual SLAM
for RGB-D Cameras

Christian Kerl, Jurgen Sturm,
Daniel Cremers

Kerl et al., Dense visual slam for rgbd
cameras, IROS 2013



5. From 3D point cloud to 3D motion

Dense RGB-D registration

Meilland et al., Dense omnidirectional RGB-D mapping of large scale outdoor
environments for real-time localisation and autonomous navigation. Journal

of Field Robotics



SLAM

Dense SLAM
Sparse SLAM

Engel et al. LSD-SLAM, ECCV14




6. Some SLAM techniques 78

SLAM

- Simultaneous Localization and Mapping methods consist
in estimating conjointly the position of the robot and the
map of the environment

- Quite similar to SFM : Structure From Motion with a

probabilistic modelization (see part |). AT

ik 1t




6. Some SLAM techniques

Sparse:

v’ Large baseline

v' Sparse 3D
reconstruction

v' Less time
consuming

Map

|.\ \ an: Vs

79
Feature-Based Direct
Input ‘ Input
Images Images \
Extract & Match Direct:
Features v" No feature
(SIFT / SURF /.. extraction
v Robust &
abstract image (o ﬁ:.itun. observations  keep full images (no abstraction) Higher
Tra::.i min phE:::ilr error accuracy
min, reprojection error :
lmi djnmm.w *“"’Jﬁ ;—* (intensity differences) | /% » v' Dense 3D
7 ¢ —_— reconstruction

est. feature-parameters ==

(3D points / normals)

est. per-pixel depth

.-: S | | (semi-dense depth map)

B,

Visual Slam, Computer Vision Group, TUM



6. Some SLAM techniques

Direct VSLAM: LSD-SLAM

- Large Scale Direct SLAM (Engel 2014)
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LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schops, Daniel Cremers
ECCV 2014, Zurich

Computer Vision Group
Department of Computer Science

Technical University of Munich
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Sparse VSLAM: PTAM

- Parallel Tracking and Stereo ntalsaon
Mapping (Klein 2016) is a

method of Monocular SLAM

that runs in real time pfoprbes i o
- Tracking and mapping are l Loely SN 1

run in parallel on different megrae Cocal
threads of a multi-core l
p rO CeSSO r ':"dd new Yes Global
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Sparse VSLAM: ORB-SLAM

- ORB-SLAM (Mur-Artal 2015)
- 3 threads : Tracking, local mapping and loop closing

TRACKING
Initial Pose Estimation
Frame 4 Eﬂnﬂm from last frame or Luli?ﬁu
| Relocalisation P
v
Map Initialization MAP

Covisibility
Graph

PLACE
RECOGNITION

ONIddYIN 1Y007

Spanning

Tree

Loop Correction Loop Detection
Enpﬁ"';iz; Loop Compute || Candidates
Graph Fusion Sim3 Detection

LOOP CLOSING
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ImEfwte Ursmprniters de e gacidn
& "'E en Ingenieria de Aragon
' ‘ Universidad Zaragoza

ORB-S5LAM2: an Open-5ource SLAM System
for Monocular, Stereo and RGB-D Cameras

s Universidad
Al Zaragoza

Raudl Mur-Artal and Juan D. Tardos

raimur@unirares tardas@unizar.es



SOME OPEN PROBLEMS

Multifocalities

Multimodalities

Visual Odometry with external sensors
Dynamic scenes
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Multifocalities

86

'C. Geyer and K. Daniilidis. Catadioptric projective geometry.

[JCV 2001.
2J. Courbon, Y. Mezouar, L. Eck, and P. Martinet. A generic

fisheye camera model for robotic applications. IROS 2007.
3X. Ying and Z. Hu. Can we consider central catadioptric
cameras and fisheye cameras within a unified imaging model.
ECCV 2004.
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Multifocalities

- For calibrated central cameras, epipolar geometry is still
valid (Essential Matrix, Homography...)->SFM pipeline
developed for perspective cameras can be used.

- Feature detection :
- HARRIS, SIFT, SURF, FAST...are not valid!

How to adapt them?
How to compare two images coming
from two different camera sensor?
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Multimodalities

- How to compare two images coming from two modalities?

RGB vs. Thermal images



Multimodalities

modal 2D Image to 3D Model Registration via a Mutual
Alignment of Sparse and Dense Visual Features

n Crombez, Ralph Seulin, Olivier Morel, David Fofi, Cédric Demonceaux

University of Burgundy
LE2 laboratory, ERL VIBOT CMNRS 6000
2 Fue de la Fonderie, 71200 Le Creusot, France

rional Conference on Robotics and Automation 2018
Submission number: 954
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Visual odometry using external knowledge

- Epipolar geometry:
- Non calibrated : 8 pts algorithm (Fundamental Matrix)
- Calibrated : 5 pts algorithm (Essential Matrix)
- Can we reduce the number of points (Important in RANSAC)?
Yes : if IMU information are provided
3 pts algorithm (Fraundorfer, ECCV 2010)
Yes : if information related to the scene structure
4 pts algorithm (Homography)

Yes : if information related to the scene structure + IMU
2 pts algorithm (Homography)(Saurer, PAMI 2018)



Dynamic Scene

In a dynamic world, previous methods do not work

D.P. Paudel, C. Demonceaux, A. Habed, P. Vasseur, |.S. Kweon. 2D-3D Camera fusion
for Visual Odometry in outdoor environments. IROS 2014



Dynamic Scene

In a dynamic world, previous methods do not work




Dynamic Scene

C. Jiang, D. P. Paudel, Y. Fougerolle, D. Fofi, C. Demonceaux. Static and Dynamic Objects
Analysis as a 3D Vector Field. 3DV 2017
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Dynamic Scene

94
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Dynamic Scene

High Quality Reconstruction of Dynamic Objects
using 2D-3D Camera Fusion

Multimedia Attachment for IEEE International
Conference on Image Processing (ICIP'17)

Cansen Jiang, Dennis Christie, Danda Pani Paudel,
and Cedric Demonceaux
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SLAM?

Some challenges :

- Photometric calibration. Pixels corresponding to the same 3D
point may have different intensities across images

- Motion bias. Running a VO method on the same sequence
forward and backward sometimes can result in significantly
different performances.

- Rolling shutter effect. Exposing pixels within one image at
different timestamps can produce distortions that may
introduce non-trivial errors into VO systems.

N. Yang, R. Wang, W. Goa, D. Cremers, Challenges in
Monocular Visual Odometry: Photometric Calibration,
Motion Bias, and Rolling Shutter Effect, IROS 2018
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New cameras

Event cameras:

Zhou et al. Semi-Dense 3D Reconstruction with a
Stereo Event Camera. ECCV 2018
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New cameras

Plenoptic cameras:

array of microlenses which captures small image from
different viewpoints -> 3D Reconstruction

Raytrix Plenoptic camera

Crombez et al. Reliable Planar Object Pose Estimation in Light Fields From Best
Subaperture Camera Pairs. RAL 2018




HOW UBER'S FIRST SELF-DRIVING CAR WORKS

Top mounted LIDAR beams 1.4 million

There are 20 cameras locking
laser points per second to create a 30

for braking vehicles, pedestrians,

map of the car's surroundings. and other obstacles.
Aﬂﬂuidmlpmuhm/lﬁj Irﬁw“mlhmnf
map into color 8o the car can % e fa car position

see traffic Hght changes. ftself via GPS,

LIDAR modules on the front, rear, and sides k A cooling system in the car makes sure
help detect obstacles in blind spots. everything runs without overheating.
SCANCE 1fws

BRI ESS |sIEs

“In my view, (LIDAR) is a crutch that will drive companies to a local
maximum that they will find very hard to get out of. Perhaps | am wrong, and
| will look like a fool. But | am quite certain that | am not.” Elon Musk
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