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Abstract Various mathematical formulations are used to describe mecha-
nism and robot kinematics. This mathematical formulation is the basis for
kinematic analysis and synthesis, i.e., determining displacements, veloci-
ties and accelerations, on the one hand, and obtaining design parameters
on the other. Vector/matrix formulation containing trigonometric functions
is arguably the most favoured approach used in the engineering research
community. A less well known but nevertheless very successful approach
relies on an algebraic formulation. This involves describing mechanism
constraints with algebraic (polynomial) equations and solving these equa-
tion sets, that pertain to some given mechanism or robot, with the powerful
tools of algebraic and numerical algebraic geometries.

In the first section of this chapter the algebraic formulation of Euclidean
displacements using Study coordinates (or dual quaternions) will be re-
called. Then it will be shown how constraint equations of different kine-
matic chains can be derived using either geometric insight, elimination
methods or the linear implicitization algorithm (LIA). LIA will be described
in detail because it can be used even without deep kinematic and geomet-
ric insight into the properties of the kinematic chain. In case the kinematic
chain consists of only elementary joints the constraint equations consist of
a set of polynomial equations. In the language of algebraic geometry the
corresponding polynomials form an ideal which can be treated with almost
classical methods, that might not be well known in the engineering commu-
nity. Therefore in the third section these methods will be recalled and it will
be shown how they can be used to derive the properties of the kinematic
entities. In the last section we apply the introduced algebraic methods to
the complete analysis of the 3-UPU-TSAI parallel manipulator.

1 Introduction

The mathematical description of mechanisms or robots needs essentially two in-
gredients: the description of Euclidean displacements and the mathematical de-
scription of the mechanical device itself. The literature (e.g. Bottema and Roth
(1979)) knows many different representations of the Euclidean displacement group
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SE(3) such as Euler angles, Rodrigues parameters, Euler parameters, Study pa-
rameters, quaternions and dual quaternions. Within this chapter the algebraic de-
scription of mechanisms is sought and therefore Study parametrization will be used
throughout. Concerning the description of the mechanisms we adopt the following
point of view: No matter how complicated the mechanism might be, it consist of
one or more kinematic chains. The kinematic chain is a serial assembly of joints
and links and the mechanism or the robot is a serial, parallel or hybrid assembly of
kinematic chains. Vector/matrix formulation containing trigonometric functions is
arguably the most favoured approach used in the engineering research community.
Most of the time vector loop equations are used to describe the kinematic chains
and very often only a single numerical solution to the basic tasks like inverse or di-
rect kinematics is obtained. Complete analysis and synthesis of mechanisms needs
all solutions. Therefore the use of algebraic constraint equations is proposed as to
be able to use strong methods and algorithms from algebraic geometry or numeri-
cal algebraic geometry (see Sommese and Wampler (2005)). An important task is
to find the simplest algebraic constraint equations, that describe the chains, because
after establishing these equations they have to be processed with different solution
algorithms. Geometric and algebraic preprocessing is needed before elimination,
Groebner base computation or numerical solution processes start. An important
feature of algebraic constraint equations is that they provide a complete descrip-
tion of the overall motion behavior of the mechanism. This chapter is therefore a
contribution to Global Kinematics .

2 Parametrization of SE(3)

Euclidean three space is the three dimensional real vector space R3 together with
the usual scalar product xT y = ∑

3
i=1 xiyi. A Euclidean displacement is a mapping

γ : R3→ R3, x 7→MRx+a (1)

where MR ∈ SO(3) is a proper orthogonal three by three matrix and a∈R3 is a vec-
tor. The entries of MR fulfill the well-known orthogonality condition MT

R · MR =
I3, where I3 is the three by three identity matrix.

The group of all Euclidean displacements is denoted by SE(3). It is a conve-
nient convention to write Eq. (1) as product of a four by four matrix and a four
dimensional vector according to1[

1
x

]
7→M ·

[
1
x

]
=

[
1 oT

a MR

]
·
[

1
x

]
. (2)

1Note that homogeneous coordinates in this chapter are written in the European notation, with ho-
mogenizing coordinate on first place.
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The displacements Eq.(2) can be parameterized in different ways. In many appli-
cations Euler angles or Rodrigues parameters are used to parameterize the matrix
MR. In the aim of using algebraic tools an algebraic version of the complete 4×4
displacement operator is adopted. This parametrization of the spatial Euclidean
transformation matrix M ∈ SE(3) is named after E. Study (Study (1903)) and can
be written as follows (for detailed information on this approach see Husty and
Schröcker (2012)):

M =

(
x2

0 + x2
1 + x2

2 + x2
3 0>

a MR

)
, a =

2(−x0y1 + x1y0− x2y3 + x3y2)
2(−x0y2 + x1y3 + x2y0− x3y1)
2(−x0y3− x1y2 + x2y1 + x3y0)

 (3)

MR =

x2
0 + x2

1− x2
2− x2

3 2(x1x2− x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0− x2

1 + x2
2− x2

3 2(x2x3− x0x1)

2(x1x3− x0x2) 2(x2x3 + x0x1) x2
0− x2

1− x2
2 + x2
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The vector a represents the translational part and MR represents the rotational part
of the transformation operator M. The parameters x0,x1,x2,x3,y0,y1,y2,y3 which
appear in the matrix M are called Study-parameters of the transformation M and
we can consider them as a projective point in P7. The mapping

κ : SE(3)→ P ∈ P7 (4)

M(xi,yi) 7→ (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
T 6= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T

is called kinematic mapping and maps each Euclidean displacement of SE(3) to a
point P on a quadric S2

6 ⊂ P7. In this way, every projective point (x0 : x1 : x2 : x3 :
y0 : y1 : y2 : y3) ∈ P7 represents a spatial Euclidean transformation, if it fulfills the
following equation of S2

6:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (5)

and the inequality:
x2

0 + x2
1 + x2

2 + x2
3 6= 0. (6)

Eq. (6) is a normalization term and points with x0 = x1 = x2 = x3 = 0 do not rep-
resent Euclidean transformations, they form the 3-dimensional exceptional gener-
ator contained in S2

6. The points on S2
6 are called kinematic image points of the

corresponding displacement and the seven dimensional projective space is called
kinematic image space. More information on this parametrization can be found in
Husty and Schröcker (2012), where especially the relation of the Study parameters
to dual quaternions is highlighted.

Very often the practical question arises how to compute the Study parameters
when an other parameterization is given. Let therefore A be an orthogonal 3× 3

3



matrix and a = (a1,a2,a3)
T a 3-dim vector that determine a displacement Eq.(2).

Then the entries of Matrix MR can be found by one of the four relations:

x0 : x1 : x2 : x3 = 1+a11 +a22 +a33 : a32−a23 : a13−a31 : a21−a12

= a32−a23 : 1+a11−a22−a33 : a12 +a21 : a31 +a13

= a13−a31 : a12 +a21 : 1−a11 +a22−a33 : a23 +a32

= a21−a12 : a31 +a13 : a23−a32 : 1−a11−a22 +a33

(7)

In general, all four proportions of Eq. (7) yield the same result. If, however, 1+
a11 + a22 + a33 = 0 the first proportion yields 0 : 0 : 0 : 0 and is invalid. We can
use the second proportion instead as long as a22 + a33 is different from zero. If
this happens we can use the third proportion unless a11 +a33 = 0. In this last case
we resort to the last proportion which yields 0 : 0 : 0 : 1. Having computed the
first four Study parameters the remaining four parameters y0 : y1 : y2 : y3 can be
computed from

2y0 = a1x1 +a2x2 +a3x3,

2y1 =−a1x0 +a3x2−a2x3,

2y2 =−a2x0−a3x1 +a1x3,

2y3 =−a3x0 +a2x1−a1x2.

(8)

Example 1. A rotation about the x-axis with angle ϕ is described by the matrix

Q =


1 0 0 0
0 1 0 0
0 0 cosϕ −sinϕ

0 0 sinϕ cosϕ

 . (9)

Its kinematic image, computed via (7) and (8) is

r = [1+ cosϕ : sinϕ : 0 : 0 : 0 : 0 : 0 : 0]. (10)

As ϕ varies in [0,2π), r describes a straight line on the Study quadric which reads
after algebraization with half-tangent substitution

rx = [1 : u : 0 : 0 : 0 : 0 : 0 : 0]. (11)

It is easy to see that the other two elementary rotations about y− and z−axis can
be written in Study parameters as:

ry = [1 : 0 : v : 0 : 0 : 0 : 0 : 0],rz = [1 : 0 : 0 : w : 0 : 0 : 0 : 0]. (12)

A second example, which is already a little bit more sophisticated shows the
Study representation (or the kinematic image) of a simple 2−R chain.
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Example 2. Let M and K be the elementary rotation about the x− and the y−axis.
Let furthermore N be a translation along the z− axis. The concatenation of these
three transformations yields a 2R chain and its representation is given by L =
M ·N ·K;

M =


1 0 0 0

0 1 0 0

0 0 cos(t) −sin(t)

0 0 sin(t) cos(t)

 , N =


1 0 0 0

0 1 0 0

0 0 1 0

2a 0 0 1

 ,

K =


1 0 0 0

0 cos(s) 0 −sin(s)

0 0 1 0

0 cos(s) 0 sin(s)

 ,

L = M ·N ·K =


1 0 0 0

0 cos(s) 0 −sin(s)

−2 sin(t)a −sin(t)cos(s) cos(t) −sin(t)sin(s)

2 cos(t)a cos(t)cos(s) sin(t) cos(t)sin(s)

 .

Its kinematic image, computed via (7) and (8) is

l=



1+ cos(s)+ cos(t)+ cos(t)sin(s)

sin(t)+ sin(t)sin(s)

−sin(s)− cos(t)cos(s)

−sin(t)cos(s)

−sin(t)a(−sin(s)− cos(t)cos(s))− cos(t)asin(t)cos(s)

cos(t)a(−sin(s)− cos(t)cos(s))− (sin(t))2 acos(s)

sin(t)a(1+ cos(s)+ cos(t)+ cos(t)sin(s))− cos(t)a(sin(t)+ sin(t)sin(s))

−cos(t)a(1+ cos(s)+ cos(t)+ cos(t)sin(s))− sin(t)a(sin(t)+ sin(t)sin(s))



.

(13)
It seems that this is much more complicated than the matrix L but after alge-

braization with half-tangent substitution this yields:

l = [1 : u : v : uv :−uav : av : ua :−a]. (14)

Eq.(14) is the parametric representation of the 2R chain in Study coordinates.

5



Remark 1. In the Study representation of SE(3) planar and spherical displace-
ments are contained via setting x1 = x2 = y0 = y3 = 0 for planar displacements and
y0 = y1 = y2 = y3 = 0 for spherical displacements. Pure translations are obtained
in setting x0 = 1, x1 = 0, x2 = 0, x3 = 0.

3 Constraint equations

In the kinematic analysis or synthesis of a mechanism it is crucial to find a math-
ematical description of the overall motion capability. In this section we will show
different possibilities how a complete set of equations can be found. In this chap-
ter we are interested to find algebraic constraint equations. This restricts first of
all the design possibilities of the mechanism, as helical joints can not be described
by algebraic (polynomial) equations. As we have seen already in Example 2 the
parametric description of a serial chain is straightforward. The question is now,
how can we find the corresponding algebraic equations? Generally there are three
methods to derive these algebraic constraint equations:

• Using geometric properties of the mechanism. These properties can be for
example: one point of the moving system (end effector system) is bound to
move on a line, a circle, a sphere or a plane.

• Elimination method: Given the parametric description of the motion of the
moving system of the mechanism one can use resultant methods or dialytic
elimination methods to derive the algebraic equations. The disadvantage of
these methods is that they introduce “spurious” solutions that come from
multiple projections onto coordinate spaces. In simple cases this method
can be very efficient.

• Linear implicitization algorithm. This algorithm was introduced in Walter
and Husty (2010) and guarantees a complete solution of the elimination. The
algorithm essentially solves an overconstrained linear system which can be
very large in case of high degree polynomial constraint equations.

It is of utmost importance to start any solution process with the simplest set of
algebraic equations. There exists always a best adapted coordinate system for a
mechanism or at least for one kinematic chain in a more complicated mechanism.
When a kinematic chain is represented in its “best” adapted coordinate system
then it is called canonical chain. Furthermore geometric preprocessing, whenever
possible, is highly recommended. Both issues will be explained in detail in the next
subsections where we will discuss all three methods with representative examples.

3.1 Geometric constraint equations
The use of geometric properties to derive constraint equations will be demon-

strated with a planar 3-RRR parallel manipulator. This manipulator has been dis-

6



cussed by many authors. Many details can be found in Bonev (2002).
The manipulator consists of three anchor points P1,P2,P3 in the base and three

points p1, p2, p3 in a moving system (Fig.1). The three pairs of points are con-
nected via three planar dyads. The links in the dyads are denoted by li,ki, i =
1, . . .3. The revolute joints at the base points P1,P2,P3 are active. All other rev-
olute joints are passive. For the mathematical description we use the planar dis-

Figure 1. 3-RRR-parallel manipulator

placement subgroup parameterized by Study parameters:

M =


x0

2 + x3
2 0 0 0

−2x0 y1 +2x3 y2 x0
2− x3

2 −2x0 x3 0

−2x0 y2−2x3 y1 2x0 x3 x0
2− x3

2 0

0 0 0 x0
2 + x3

2

 . (15)

Without loss of generality we can cancel the last row and the last column and
obtain the 3×3 planar transformation matrix

A =


x0

2 + x3
2 0 0

−2x0 y1 +2x3 y2 x0
2− x3

2 −2x0 x3

−2x0 y2−2x3 y1 2x0 x3 x0
2− x3

2

 . (16)

From Fig.1, right it is obvious that, in case of fixed input parameters α,β ,γ , the
platform points p1, p2, p3 are bound to be on three circles having the “knee joints”
(e.g. J in Fig.1) as centers and radii ki.Using homogeneous coordinates (X0,X1,X2)

T

in the base coordinate system a circle with center (1,m,n)T can be written

X2
1 +X2

2 −2mX0X1−2nX0X2 +(m2 +n2− r2)X2
0 = 0 (17)
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Let p = (1,x,y)T be the coordinates of a point in the moving system, then its
coordinates in the fixed base system are given by

P = Ap =

 x2
0 + x2

3
−2x0y1 +2x3y2 +(x2

0− x2
3)x−2x0x3y

−2x0y2−2x3y1 +2x0x3x+(x2
0− x2

3)y

 . (18)

Substituting Eq.(18) into the circle equation Eq.(17) yields after factoring and can-
celling x2

0 + x2
3 the general circle constraint equation

(x2 + y2 +m2−2mx+n2−2ny− r2)x2
0 +4(my−nx)x0x3 +4(m− x)x0y1+

4(n− y)x0y2 +(x2 + y2 +m2 +2mx+n2 +2ny− r2)x2
3 +4(y+n)x3y1−

4(x+m)x3y2 +4y2
1 +4y2

2 = 0. (19)

Figure 2. Constraint hyperboloids in kinematic image space

Note that in Eq.(19) all expressions in round brackets are design constants.
Therefore the circle constraint equation allows a simple geometric interpretation
in the three dimensional kinematic image space of planar kinematics: it represents
a hyperboloid which passes, independently of the choice of the design constants,
through the points J1(0,1, I)T and J2(0,1,−I)T (see Bottema and Roth (1979),
pp.409). A further observation is that the expression 4y2

1 +4y2
2 in Eq.(19) does not

contain any design variable.
An important next step is to use the best adapted coordinate system. Without

loss of generality P1, p1 can be the origins of fixed and moving coordinate system
and P2, p2 can be on the X1 resp. x-axis of both systems. Therefore we have the
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following assignments

P1 = [1,0,0]T , P2 = [1,A2,0]T , P3 = [1,A3,B3]
T ,

p1 = [1,0,0]T , p2 = [1,a2,0]T , p3 = [1,a3,b3]
T .

In a next step one can observe that the knee joints also move on circles. These
circles can be parameterized as follows

m1 = l1 1−u2

1+u2 , m2 = l2 1−v2

1+v2 +A2, m3 = l3 1−w2

1+w2 +A3,

n1 = l1 2u
1+u2 , n2 = l2 2v

1+v2 , n3 = l3 2w
1+w2 +B3.

Substituting all assignments into the general circle constraint equations using r =
ki, i = 1 . . .3 for the respective legs, we obtain three constraint equations which
completely describe the 3-RRR parallel mechanism:

h1 : (l2
1 − k2

1)(x
2
0 + x2

3)+4l1

(
1−u2

1+u2 (x0y1− x3y2)+
2u

1+u2 (x0y2 + x3y1)

)
+

4(y2
1 + y2

2) = 0,

h2 :
(

r1r2v2 + r3r4)

v2 +1

)
x2

0 +

(
r5r6v2 + r7r8)

v2 +1

)
x2

3−4a2(x0y1 + x3y2)+

4(l2
1− v2

1+ v2 +A2)(x0y1− x3y2)+4l2
2v

1+ v2 (a2x0x3 + x0y2 + x3y2)+4(y2
1 + y2

2) = 0,

r1 := A2− k2−a2− l2, r2 := A2 + k2−a2− l2, r3 := A2− k2−a2 + l2,

r4 := A2 + k2−a2 + l2, r5 := A2 + k2 +a2− l2, r6 := A2− k2 +a2− l2,

r7 := A2 + k2 +a2 + l2, r8 := A2− k2 +a2 + l2, (20)

h3 :
(q2

1 +q2)w2 +4l3(B3−b3)w+q2
4 +q2q3

1+w2 x2
0+(

4
(

l3(1−w2)

w2 +1
+A3

)
b3− (4(

2wl3
1+w2 +B3))a3)

)
x0x3(

−4a3 +4l3
1−w2

w2 +1
+4A3

)
x0y1 +

(
−4b3 +

8wl3
(w2 +1

+4B3

)
x0y2+(

4b3 +
8wl3

w2 +1
+4B3

)
x3y1 +

(
−4a3−4l3

1−w2

w2 +1
−4A3

)
x3y2

(q2
5 +q6q7)w2 +4l3(B3b3)w+q2

8 +q6q7

1+w2 x2
3 +4(y2

1 + y2
2) = 0,

q1 := A3−a3− l3, q2 :=−b3 +B3− k3, q3 :=−b3 +B3 + k3, q4 := A3−a3 +b3,

q5 := A3− l3 +a3, q6 := b3 +B3 + k3, q7 := b3 +B3− k3, q8 := A3 +a3 + l3.

Using the three equations h1,h2,h3 and a normalization condition one can solve
the direct kinematics (DK), the inverse kinematics (IK), the forward and the inverse
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singularities completely. These are just the most important kinematic tasks which
will be shown in the sequel, but the equations can be used also for other tasks.

Direct Kinematics In the direct kinematics all design variables and the three in-
put parameters are given and the pose of the moving platform has to be computed.
Although the univariate polynomial of the direct kinematics of this manipulator
can be computed without assigning values to the design and input variables we
will show the algorithm for the example that was already used to produce Fig.1.
Before values assigned to the design parameters one should have a closer look at
the constraint equations. It is important to know that several manipulations are
allowed, such as addition, subtraction, multiplication with arbitrary polynomials
and constants without changing the solution set of the constraint equations. A
stringent mathematical formulation of this statement will be given in Section 4.
In case of the quadratic constraint equations h1,h2,h3 one can observe that a sub-
traction h1 j := h j − h1, j = 2,3 creates two new equations that are linear in the
variables y1,y2. It would be tempting to create one more difference equation, but
it is easy to show that a third difference equation would be redundant and would
not contain any new information. At least one of the three original equations has
to be kept. The detailed solution process will be shown in the following example.

Example 3. The following design variables are assigned to a 3-RRR planar par-
allel manipulator:

A2 = 16,A3 = 9,B3 = 6,a2 = 14,a3 = 7,b3 = 10, l1 = 10, l2 = 17, l3 = 13,

k1 =
√

75,k2 =
√

70,k3 = 10.

Furthermore the three input variables are given by

u =
1
2
,v = 1,w =

√
3

3
.

The three constraint equations simplify considerably

h1 : 25x2
3 +32x3y1−24x3y2 +4y2

1 +4y2
2 +24y1 +32y2 +25 = 0,

h2 : 1119x2
3 +68x3y1−120x3y2 +4y2

1 +4y2
2−952x3 +8y1 +68y2 +223 = 0, (21)

h3 : 620x3 +
2025x3

2

4
−130

√
3− 191

4
+40y1 x3 +34y1−90x3 y2−40y2 +4y1

2+

4y2
2 +
(

20x3
2 +4y1x3−28x3 +4y2

)(13
√

3
2

+6

)
+
(

x3
2 +1

)(13
√

3
2

+6

)2

=0.

In this set of equation x0 = 1 has been used as normalization. This normalization
excludes all 180◦ turns. For a complete analysis one has to check if x0 = 0 is

10



a solution. In this example it is easy to see that this is not the case. First the
equations h12 and h13 are solved for y1 and y2 and the result is substituted into h1.
This yields the univariate polynomial:

1012018158645001x3
6 +373126531431576

√
3x3

5 +828170897821956
√

3x3
4

−1870238901095276x3
5−3830372502668712

√
3x3

3−309592552617273x3
4−

1367698801300104
√

3x3
2 +5703740216839288x3

3 +2552443644341760
√

3x3+

2666944473586507x3
2−584052482710476

√
3−4438269370622172x3+

1009620776386125 = 0. (22)

This polynomial has four real and two complex roots for x3, which is the rotation
angle of the moving system :

−0.01155649481− .8571792684 I, −0.01155649481+ .85717926841 I,

−0.05446878513, .17472650281, .3874512485, .7248336963. (23)

This six values have to be substituted into the solution for y1 and y2, which then
yields the pose variables for the six solutions of the DK of this manipulator. This
procedure is shown for the first real solution. Substituting this solution into the
solutions for y1 and y2 yields

y1 = 1.3224316875, y2 =−5.5627826306. (24)

Now all pose parameters are determined and can be substituted into the transfor-
mation matrix Eq.(18):

A =


1.002966848554 0 0

−2.038867351357 0.997033151446 0.1089375702689

11.26962775615 −0.10893757026889 0.99703315144598

 .
Note that this matrix is not normalized (has no 1 at the leftmost entry of the first
row). This is due to the fact that in the image space the normalization x0 = 1 was
used. By dividing the matrix with this entry one obtains the normalized matrix

A =


1 0.0 0.0

−2.032836234114 0.9940838551976 0.1086153250488

11.23629138131 −0.1086153250488 0.9940838551976

 .
Multiplying A with the coordinates of the points p1, p2, p3 one obtains their coor-
dinates in the base system and the pose of the end-effector is given as solution of
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the DK problem.

pb
1 = [1,−2.032836234114,11.2362913813]T ,

pb
2 = [1,11.8843377387,9.715676830627]T ,

pb
3 = [1,6.01190400276,20.41682265796]T .

Fig.3 shows this solution.

Figure 3. DK solution 3-RPR

The rotation angle of the platform system can be calculated via the inverse of
the half tangent substitution

cosϕ =
1− x2

3

1+ x2
3
∧ sinϕ =

2x3

1+ x2
3
∧ x3 =−0.05446878513

⇒ ϕ =−6.23550128120984◦.

Note that the input angles were

u =
1
2
≡ 53.13010235◦, v = 1≡ 90◦, w =

√
3

3
≡ 60◦.

12



Inverse Kinematics In the inverse kinematics (IK) the design variables and the
pose parameters are given. The same constraint equations can be used. We con-
tinue with Example 3.

Example 4 (continuation of Example 3). Substituting the design variables into
Eq.(20) yields

h1 : 25u2x2
3 +40u2x3y2 +4u2y2

1 +4u2y2
2−40u2y1 +80ux3y1 +25u2 +80uy2 +25x2

3−

40x3y2 +4y2
1 +4y2

2 +40y1 +25 = 0

h2 : 99v2x2
3−52v2x3y2 +4v2y2

1 +4v2y2
2−60v2y1 +136vx3y1 +155v2−1904vx3+

136vy2 +2139x2
3−188x3y2 +4y2

1 +4y2
2 +76y1 +291 = 0 (25)

h3 : 165w2x2
3 +64w2x3y1−12w2x3y2 +4w2y2

1 +4w2y2
2−328w2x3−44w2y1−16w2y2+

832wx2
3 +104wx3y1 +37w2−728wx3 +104wy2 +997x2

3 +64x3y1−116x3y2 +4y2
1+

4y2
2−208w+712x3 +60y1−16y2 +14 = 0.

This system of equations in the unknowns u,v,w allows eight different solutions
when a set of pose parameters are given. We use the results of Eqns.(22) and (23)
to compute the inverse kinematics of the pose with pose parameters

x0 = 1, x3 =−0.05446878513, y1 = 1.3224316875, y2 =−5.5627826306.

Figure 4. IK solution of 3-RRR manipulator
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The solutions for the resulting set of equations are

u = .500000,v = 1.00000,w = .57735, u = .500000,v = 1.00000,w = 3.0254,

u = 3.41747,v = 1.00000,w = .57735, u = 3.41747,v = 1.00000,w = 3.0254,

u = .500000,v = 2.46987,w = .57735, u = .500000,v = 2.46987,w = 3.0254,

u = 3.41747,v = 2.46987,w = .57735, u = 3.41747,v = 2.46987,w = 3.0254.

Fig.4 shows the complete set of eight possible solutions, consisting of all pos-
sible combinations of the pairs of solutions of each equation hi, i = 1,2,3. The
second solutions for each dyad are drawn in dashed lines. Each solution yields
a working mode of the manipulator. The first set of solutions (the first working
mode) is the one we have started with in the DK.

Singularities The system of three constraint equations S = {h1,h2,h3,n} aug-
mented with the normalization condition n : x2

0 + x2
3 = 1 (Eq.(20)) comprises the

forward and the inverse map. Therefore it can be used to compute the singularities
of both maps. Referring to Gosselin and Angeles (1990) the singularities of both
maps are given by

Joẏ+Jiṫ = 0, (26)

where

Jo =


∂n
∂x0

∂n
∂x3

0 0
∂h1
∂x0

∂h1
∂x3

∂h1
∂y1

∂h1
∂y2

∂h2
∂x0

∂h2
∂x3

∂h2
∂y1

∂h2
∂y2

∂h3
∂x0

∂h3
∂x3

∂h3
∂y1

∂h3
∂y2

 , Ji =


0 0 0 0

0 ∂h1
∂u 0 0

0 0 ∂h2
∂v 0

0 0 0 ∂h3
∂w

 ,

ẏ = [ẋ0, ẋ3, ẏ1, ẏ2]
T , ṫ = [0, u̇, v̇, ẇ]T .

Jo is the Jacobian matrix of the forward map and Ji is the Jacobian matrix of the
inverse map of the manipulator. In the literature the singularities of the inverse map
are sometimes called type 1 singularities and those of the forward map are called
type 2 singularities Bonev (2002) 2. The redundant motion which exists either on
the platform or in the joints can be infinitesimal or finite. The infinitesimal case is
treated in the following sections. The finite case, which occurs only at the presence
of specific design or pose parameters, can be detected in the solution of the direct
or inverse kinematics described in the previous sections. In the solution process

2 A refined classification, taking into account special situations which can occur for special design
parameters of the manipulator was given in Zlatanov et al. (1994).
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it happens that the elimination stops before a univariate polynomial can be found.
Then the manipulator allows a self-motion, i.e. the platform or an input chain will
move without active input. An example of this phenomenon will be shown later in
Section 4 on page 55.

Forward singularities From kinematic point of view a forward singularity oc-
curs when a parallel manipulator allows an infinitesimal (local) mobility when
all the inputs are locked. Mathematically this corresponds to the condition ṫ =
[0,0,0,0]T and substitution of this condition into Eq.(26) yields

Joẏ = 0. (27)

Eq.(27) represents a homogeneous system of linear equations. From linear algebra
it is well know that this system allows a non trivial solution if and only if detJo = 0
holds. Computing this determinant without assigning design variables is feasible
but without practical use. One has to realize that this determinant still contains all
pose parameters x0,x3,y1,y2 and all input parameters u,v,w. Adding detJo = 0 to
the system of constraint equations S yields a system of five equations. In this sys-
tem one can for example eliminate the input parameters u,v,w to obtain an equation
in the pose parameters x0,x3,y1,y2 and a normalization condition that represent in
the kinematic image space all poses which are forward singular. The disadvantage
of this equation is that the working modes cannot be distinguished. Elimination
of the pose parameters yield the singular set in the joint space. The practicality of
the latter is although questionable, because once this equation is obtained one has
to perform the direct kinematics again and only one of the obtained six solutions
yields a singular pose!

Example 5 (Continuation of Example 3). Taking the system of constraint equa-
tions (25) and computing the determinant of Jo yields a polynomial h4 of degree
10 in the unknowns x0,x3,y1,y2,u,v,w. Together with the original constraint equa-
tions h1,h2,h3 one obtains a system of four algebraic equations that allows to de-
rive a single polynomial in the Study parameters or in the joint parameters which
will comprise all forward singular poses of the manipulator. A suitable normal-
ization is still possible. The zero set of this polynomial describes a surface in the
kinematic image space or the joint space depending on which of the variables have
been eliminated. One can either eliminate the input or the output variables. Due to
the above mentioned fact that computing the singularity surface in the joint space
needs an additional computation of the forward kinematics, only the elimination of
the input parameters will be shown. To obtain a single polynomial we compute the
following sequence of resultants of equations: h14 = res(h1,h4,u) is the resultant
of h1 and h4 that eliminates u. Then we take h142 = res(h14,h2,v), which elimi-
nates v and finally we take h1423 = res(h142,h3,w) which eliminates w to arrive
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Figure 5. Section of forward singularity surface at x0 = 1,x3 = 0 in image space

at a polynomial of degree 44 in the remaining pose parameters x0,x3,y1,y2. As
spurious solutions might occur it is recommended to use a different sequence of
elimination and compare the two final polynomials. In case they are different one
has to look for their greatest common divisor. In case of the example the second se-
quence h34 = res(h3,h4,w)→ h342 = res(h34,h2,v)→ h3421 = res(h342,h1,u) was
used and this elimination yielded the same polynomial of degree 443. The degree
of the polynomial is so high because it describes all forward singularities of all
working modes. In the kinematic image space the polynomial describes a surface
of order 44. Fig. 5 shows a section of this surface at x0 = 1,x3 = 0. To show a
single singular pose of the manipulator we take the uppermost point of this curve
on the y2 axis of Fig.5. Substituting x0 = 1,x3 = 0,y1 = 0 into the polynomial of
degree 44 yields a univariate polynomial which is to big to be displayed completely

7211302724705133264896y44
2 −84741478759314858442752y43

2 − . . .

−120507924001447407269584976652803693359375000000000y2+

21775525730952737167082108233173573318481445312500 = 0.

This polynomial has twelve real roots as can be seen also in Fig.5:

3The degree of this polynomial disagrees with the results found in the thesis Bonev (2002).
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Figure 6. Forward singularity 3-RRR

−8.773883747,−7.680052573,−7.189867449,−6.457249958,
−5.253827948,−4.649535025,4.507174754,4.592908938,
6.218593708,6.317560304,8.566805064,9.256203129.

Fig.6 shows the singular pose corresponding to the root y2 = 9.256203129. The
three lines f1,g1,h1 covering three end links of the dyads intersect in one point E,
which is the instantaneous center of the redundant infinitesimal rotation in this
singular pose. The pose belongs to a working mode consisting of one red and two
blue dashed input dyads. Note that the moving platform is below the fixed platform
in the displayed pose!

Inverse singularities From kinematic point of view an inverse singularity occurs
when the manipulator allows an infinitesimal (local) mobility of an input chain
when the platform is not moving. Mathematically this corresponds to the condition
ẏ = [0,0,0,0]T and substitution of this condition into Eq.(26) yields

Jiṫ = 0. (28)
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It is quite obvious from Eq.(26) that this determinant factors into three parts:

h5 :
[
(B3x2

0 +B3x2
3−2a3x0x3−b3x2

0 +b3x2
3 +2x0y2 +2x3y1)w2+

(2A3x2
0 +2A3x2

3−2a3x2
0 +2a3x2

3 +4b3x0x3 +4x0y1−4x3y2)w

−2x0y2−2x3y1−B3x2
0−B3x2

3 +2a3x0x3 +b3x2
0−b3x2

3
]

l3·[
(−a2x0x3 + x0y2 + x3y1)v2 +(A2x2

0 +A2x2
3−a2x2

0 +a2x2
3)v+ (29)

a2x0x3 +2vx0y1−2vx3y2− x0y2− x3y1)l2] ·[
(u2x0y2 +u2x3y1 +2ux0y1−2ux3y2− x0y2− x3y1)l1

]
= 0.

Each factor can be treated separately to determine the input singularities for the
corresponding leg. For example when the third factor is used together with equa-
tion h1, the input parameter u can be eliminated to derive all poses of the moving
platform in which the first leg is singular. After elimination the following equation
is obtained:

(y2
1 + y2

2)(x
2
0 + x2

3)(k
2
1x2

0 + k2
1x2

3−2k1l1x2
0−2k1l1x2

3 + l2
1x2

0 + l2
1x2

3−4y2
1−4y2

2)·
(k2

1x2
0 + k2

1x2
3 +2k1l1x2

0 +2k1l1x2
3 + l2

1x2
0 + l2

1x2
3−4y2

1−4y2
2) = 0. (30)

The first two factors in this equation have only complex solutions and can be ne-
glected, the third and the fourth factor yield two surfaces in the kinematic image
space which turn out to be two hyperboloids (Fig.7). One of the hyperboloids rep-
resents all poses where the first leg is totally stretched and the other represents the
the poses where the first leg is folded. Additionally these hyperboloids represent
poses where the manipulator is on the boundary of its workspace.

Example 6 (Continuation of Example 3). Substituting the design parameters of
Example 3 into Eq.(30) yields the equations

(16y2
1

√
3+16y2

2

√
3+25x2

0 +25x2
3−28y2

1−28y2
2) = 0

(16y2
1

√
3+16y2

2

√
3−25x2

0−25x2
3 +28y2

1 +28y2
2) = 0. (31)

To derive a single inverse singular pose a point on one of the hyperboloids is
chosen by setting x0 = 1,y1 =−1,x3 =− 1

4 . This yields the equation

16
√

3+16y2
2

√
3− 23

16
−28y2

2 = 0.

One of the solutions of this equations is

y2 =
1
8

√(
7−4

√
3
)(

256
√

3−23
)

4
√

3−7
.
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Figure 7. Inverse singularity surfaces in kinematic image space

Substituting this value and the chosen parameters x0 = 1,y1 = −1,x3 = − 1
4 into

the matrix Eq.(16) one obtains the transformation matrix

A =


17
16 0 0

2− 1
16

√
(7−4

√
3)(256

√
3−23)

4
√

3−7
15
16

1
2

− 1
4

√
(7−4

√
3)(256

√
3−23)

4
√

3−7
− 1

2 − 1
2

15
16

 .

This transformation yields the singular pose of Fig.8.

In case of the inverse singularities we will also compute the singularity surface
in the joint space, to exemplify the statement made above about this surface. We
have to start with the system of equations S = {h1,h2,h3,h5} consisting of the
three constraint equations and the equation of the determinant of the Jacobian Ji.
Now the pose parameters x0,x3,y1,y2 have to be eliminated as to obtain a single
equation in the joint parameters u,v,w. To simplify the computation we use the
normalization condition x0 = 1 and compute y1 and y2 from the difference equa-
tions h12 = h1− h2 and h13 = h1− h3 and substitute the solutions for y1 and y2
into h1 and the third factor of h5. This yields two equations in u,v,w and x3 from
which x3 can be eliminated using resultant methods. The result is an equation of
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Figure 8. Inverse singularity of a 3-RRR parallel manipulator

degree 28 in the input parameters u,v,w representing the singularity surface F in
joint space, which is much to big to be displayed.

Example 7 (Continuation of Example 3). By substituting the design parameters
of Example 3 into the equation of F a picture of the singularity surface can be
shown (Fig.9).

Figure 9. Inverse singularity surface in joint space
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Now a single inverse singular pose is specified by setting v = 1,w = 1. Substi-
tuting these values into the equation of F yields a polynomial of degree 12:

−818544231103537077u12 +3944558869211116800u11−9479437871294979126u10+

15757734038472565344u9−19686222594094813627u8 +18937447175451975936u7−

14224778429264845268u6 +8254317529677310144u5−3535122247251754347u4+

1029296909802009856u3−175954826762074230u2 +12130149459227104u+

220928936206427 = 0,

which has six real roots for u

− .01476395296624513, .2723109282032673, .5270689907577652,
.6265818046074013, .6645283032344548, 1.402004907351409.

We take the root u = .5270689907577652 which determines together with v =
1,w = 1 a point on F . Now the input for the direct kinematics of this manipulator
is determined and we can apply the procedure developed above to compute the di-
rect kinematics. The computation yields six real poses, one of them is the singular
one! The mapping from joint space to the Cartesian space is 1 to 6! Figs.10-12
show all six solutions. In solution Nr. 2 the first leg is singular. It must be noted
that the whole computation was done only for the first leg, because the solutions
for y1 and y2 were substituted into h1. One also could have used h2 or h3 at this
step. A complete inverse singularity analysis in joint space yields three surfaces,
each of them corresponds to the singularities of one leg.

Figure 10. Solution 1 Solution 2
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Figure 11. Solution 3 Solution 4

Figure 12. Solution 5 Solution 3

3.2 Elimination Method
This method follows a simple recipe: Write the forward kinematics of the kine-

matic chain and than eliminate the motion parameters. When n is the degree of
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freedom of the kinematic chain then the number m of constraint equations (in gen-
eral ) to be expected is m = 6−n. Because of projection roots, that are introduced
in every single elimination step the degree of the resulting constraint equations is
generally very high. Because of this fact this method is recommended only for
simple chains. An example where this method immediately yields a result are the
constraint equations of a spatial 2-R chain. It was already shown in Selig (2005)
that a 2-R chain can be represented by four linear equations in Study coordinates.
We demonstrate this statement using Example 2.

Example 8. In Example 2 it was shown that a 2-R chain, having the x-axis and a
parallel line to the y-axis as rotation axes has the parametric representation

l = [1 : u : v : uv :−uav : av : ua :−a].

This homogeneous vector equation consists of eight component equations:

ρx0 = 1,ρx1 = u,ρx2 = v,ρx3 = uv,ρy0 =−auv,ρy1 = av,ρy2 = au,ρy3 =−a.

The first equation immediately yields ρ = 1 and the homogenizing equation x0 = 1.
The second and the third equation can be used to eliminate the motion parameters
u and v. This yields five equations which seem to be too much because we have to
expect four equations:

x3− x1x2 = 0, y0 +ax1x2 = 0, y1−ax2 = 0, y2−ax1 = 0, y3 +a = 0.

But it is allowed to manipulate the equations and one has to keep in mind that
the Study quadric equation has to be fulfilled! Substituting the first equation into
the second simplifies the second equation to y0 − ax3 = 0. Therefore we have
four linear equations and one quadratic equation. But the quadratic equation is
essentially the Study quadric, because substituting the four linear equations into
the Study quadric equation yields exactly this first equation. The 2-R chain is
therefore represented by the four linear equations

y0−ax3 = 0, y1−ax2 = 0, y2−ax1 = 0, y3 +a = 0.

In the kinematic image space these four equations determine a linear 3-space
and all poses the 2-R chain can attain are the points of the intersection of this
3-space with the Study quadric (see also Selig (2005) and Pfurner (2006) where
this method was used for deriving a fast algorithm for the inverse kinematics of
general 6-R chains).

3.3 Linear Implicitization
To derive the constraint equations of a kinematic chain using geometric prop-

erties or elimination has several disadvantages. The first method needs geometric
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insight into the motion of the chain and the second method introduces “spurious”
solutions that have to be identified and removed from the equations. The question
arises if there exists an algorithm that derives “automatically” from a parametric
representation of the (allowed) kinematic chain a minimal set of implicit equations
that completely describes this kinematic chain. Such an algorithm was developed
in Walter and Husty (2010) and called “Linear Implicitization Algorithm” (LIA). It
was shown that the parametric representation of any kinematic chain can be trans-
formed into a set of polynomials. The basic idea of this algorithm is that first of all
a kinematic chain built from only revolute and prismatic joints can be represented
by a set of polynomials. Secondly one can observe that the parametric expressions
have to fulfill the polynomial equations. But unfortunately the degree of the poly-
nomials is unknown from beginning. The algorithm will be explained in detail but
at first a simple example is shown to demonstrate the basic idea.

Example 9. In this example the implicit equation of a sphere is derived. The
sphere is given by its parametric expressions

X = cos(φ)cos(ψ)−3
Y = cos(φ)sin(ψ)−2 (32)
Z = sin(φ)−1.

Half tangent substitution yields

X =
(1−u2)(1− t2)

(u2 +1)(t2 +1)
−3

Y =
2(1−u2)t

(u2 +1)(t2 +1)
−2 (33)

Z =
2u

(u2 +1)
−1.

Actually one would have to check if a linear polynomial fulfills the parametric
equation. We skip this step because we know that the implicit equation needs a
quadratic polynomial. In a next step a quadratic ansatz polynomial is defined

Ap : ax2 +by2 + cz2 +dxy+ exz+ f yz+gx+hy+ iz+ j = 0. (34)

The ten unknown coefficients of Ap have to be determined such that a substitution
of the parametric expressions Eq.(33) fulfill the equation Eq.(34). Substitution of
the parametric expressions Eq.(33) into Eq.(34) yields, after computing a common
denominator and taking the numerator, a polynomial of degree 8 in u and t which
has to be identical zero for every u and t. This can be only the case when the coef-
ficients of every power-product in this equation vanish. Although this polynomial
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is quite large it is displayed

4d +2 f + c+2e+4a−2h−2g− i+4b+ j+

(4a+4b+ c+4d +2e+2 f −2g−2h− i+ j)t4u4+

(−4c−4e−4 f +2i)t4u3 +(16a+8b+6c+12d +6e+4 f −6g−4h−2i+2 j)t4u2+

(−4c−8e−4 f +2i)t4u+(8b+4d +2 f −2h)t3u4+

(16a+12b+2c+12d +6e+4 f −6g−4h−2i+2 j)t2u4 +(−8c−12e−8 f +4i)t2u3+

(40a+8b+12c+24d +12e+8 f −12g−8h−4i+4 j)t2u2 +(4i−8c−12e−8 f )t2u+

(8b+8d +2 f −2h)tu4 +(−8b−4d−2 f +2h)t+

(16a+4b+ c+8d +4e+2 f −4g−2h− i+ j)u4 +(−4c−8e−4 f +2i)u3+

(16a+8b+6c+12d +6e+4 f −6g−4h−2i+2 j)u2 +(−4c−4e−4 f +2i)u+

(16a+4b+ c+8d +4e+2 f −4g−2h− i+ j)t4 +(−8b−8d−2 f +2h)t3+

(16a+12b+2c+12d +6e+4 f −6g−4h−2i+2 j)t2−4 f t3u3 +4dt3u2+

4 f t3u−4 f tu3−4dtu2 +4 f tu = 0. (35)

One can observe that each coefficient of the power products yields linear equa-
tions in the ten unknowns a,b,c,d,e, f ,g,h, i, j. As there are 25 equations we have
a highly overconstrained system of linear equations. Nevertheless this system has
to have a unique solution which reads

a = 1,b = 1,c = 1,d = 0,e = 0, f = 0,g = 6,h = 4, i = 2, j = 13, (36)

and from this solution we obtain the implicit equation of the sphere

x2 + y2 + z2 +6x+4y+2z+13 = 0. (37)

An easy computation shows that the parametric expressions Eq.(32) and Eq.(33)
fulfill the implicit equation Eq.(37). This simple example already shows the disad-
vantage of this algorithm. The linear system will always be overconstrained and
can become very large even for relatively simple chains.

Remark 2. In case the linear system has no solution or only the trivial solution
one has to repeat the algorithm with an ansatz polynomial of higher degree.

We proceed now to explain the LIA for a general kinematic chain. In the
first step of the algorithm one has to compute the forward transformation of the
kinematic chain to obtain a parametric expression.

If the relative position of two rotation axes is described by the usual Denavit-
Hartenberg parameters (αi,ai,di) the coordinate transformation between the coor-
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Figure 13. Canonical 3R-chain

dinate systems attached to the rotation axes is given by

Gi =


1 0 0 0
ai 1 0 0
0 0 cos(αi) −sin(αi)
di 0 sin(αi) cos(αi)

 . (38)

Using this transformation we assume the axes of an nR-chain to be in a canonical
start position, where all the axes are parallel to a plane, the first rotation axis is
the z-axis of the base coordinate system and the x-axis is the common normal of
first and second revolute joint. A simple consideration shows that this is always
possible and no restriction of generality (Pfurner (2006), Husty et al. (2007b)). As
shown in Fig.13 the motion axes are always the z-axes of the coordinate systems,
they are either rotations or translations and can be written

Mi =


1 0 0 0
0 cos(ui) −sin(ui) 0
0 sin(ui) cos(ui) 0
0 0 0 1

 , Mi =


1 0 0 0
0 1 0 0
0 0 1 0
ti 0 0 1

 . (39)

Following this sequence of transformations the end-effector pose will have the
following description:

D = M1 ·G1 ·M2 ·G2 · · · · ·Mn, (40)

where n is the number of motion axes in the chain. From this parametric represen-
tation of the chain the parametric representation in the kinematic image space has
to be computed using Eqs.(7) and (8). Half tangent substitution transforms the ro-
tation angles ui into algebraic parameters ti and one ends up with eight parametric
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equations of the form:

x0 = f0(t1, . . . tn),

x1 = f1(t1, . . . tn),
... (41)
y3 = f8(t1, . . . tn).

These equations will be rational having a denominator of the form (1+t2
1 )·. . .·(1+

t2
n ) which can be canceled because the Study parameters xi,yi are homogeneous.

The same can be done with a possibly appearing common factor of all parametric
expressions. After these allowed manipulations the simplest possible parametric
representation of the kinematic chain in the kinematic image space has been found.

It is well known that there exists a one-to-one correspondence from all spatial
transformations to the Study quadric which lives in P7. Particularly this means
that a tuple of Study parameters describing a transformation is a projective point
and consequently always only unique up to scalar multiples. If we have a transfor-
mation parameterized by n parameters t1, . . . , tn we obtain by kinematic mapping a
set of corresponding points in P7 and we ask now for the smallest variety V ∈ P7

(with respect to inclusion) which contains all these points. What do we know about
this variety? What can be said definitely is that its describing set of polynomials
consists of homogeneous polynomials and contains x0y0 + x1y1 + x2y2 + x3y3, i.e.
the equation for the Study quadric S2

6. In the following it is shown how additional
equations can be computed which are necessary to describe V . It should be noted
that the minimum number of polynomials necessary to describe V corresponds to
the number of parameters, which in turn correspond to the degrees of freedom (dof)
of the kinematic chain. If the number of generic parameters is n then m = 6− n
polynomials are necessary to describe V . This is of course a rough statement, be-
cause different numbers can appear when special situations (e.g. redundant dofs,
special design parameters) are in place.

Now we are searching for homogeneous polynomials which vanish on all points
that can be obtained from the parameterization of the kinematic chain, i.e. polyno-
mials in x0,x1,x2,x3,y0,y1,y2,y3 which vanish when the expressions of the param-
eterization are substituted. One possibility to find such polynomials is the follow-
ing: A general ansatz of a homogeneous polynomial in x0,x1,x2,x3,y0,y1,y2,y3
with given degree n is made and then the Study parameters of the parametric rep-
resentation are substituted. The resulting expression f is treated as a polynomial
f (t1, . . . tn). Due to the fact that f has to vanish for all values of the ti, it has to
be the zero polynomial. As it already was demonstrated in Example 9 all coeffi-
cients of f have to vanish. This means that, after extraction of these coefficients,
one obtains a system of linear equations where the unknowns are the

(n+7
n

)
co-

efficients from the general ansatz. This system can be solved (assuming that the
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design parameters ai,di and αi are generic) and the solution can be substituted into
the ansatz. The result is an expression r describing all homogeneous polynomials
of degree n which vanish on the points of V . An important point is that if the so-
lution of the linear system is positive dimensional, the corresponding parameters
also appear in the final expression, i.e. the expression r itself is parameterized.

In the following this important part of the algorithm is explained in more detail:
The simplest homogeneous ansatz polynomial would be a linear one. Therefore at
first a general linear polynomial is generated:

ansatz : C1y3 +C2x3 +C3y2 +C4x2 +C5y1 +C6x1 +C7y0 +C8x0, (42)

with unknown coefficients Ci. The question is now if there exist values for these
unknowns such that Eq.(42) vanishes identically for points fulfilling the parametric
representation of the given kinematic chain. To test this the parametric expressions
Eq.(41) are substituted into Eq.(42) which yields a polynomial in ti with coeffi-
cients in Ci and the Denavit-Hartenberg parameters ai,di and αi. We collect with
respect to the powerproducts of the ti and extract their coefficients. This yields a
set of linear equations in Ci,ai,di and αi. The number of equations depends on the
particular design of the chain. In general the system will consist of more equations
than unknowns because in general there are more powerproducts than unknowns
Ci. This does not mean that there is no solution, because the equations can be de-
pendent. Already in the Example 9 we have seen that they have to be dependent, at
least if the degree of the ansatz polynomial is high enough, because the constraint
variety will have some algebraic degree.

In the next step the system of linear equations is solved. If this system has
a solution, then there exists a linear constraint polynomial which is an element
of the set of polynomials describing V . If this system has no solution, which
means only the null vector solves it, one has to proceed to degree two. A general
ansatz polynomial of degree two is created and then one has to follow the same
steps as above. Note that a general quadratic polynomial in Study coordinates
has 36 coefficients. Depending on the design of the chain one obtains a system
of linear equations in 36 unknowns. For many kinematic chains the second step
already yields solutions. For example a chain consisting of a universal joint and
a spherical joint (as it is the case for one leg of a Stewart-Gough platform, when
the actuated P-joint is locked) the second step comes immediately up with the
quadratic constraint equation for this leg. This case will be shown in the next
example explicitly.

Note that as many polynomials have to be obtained as the chain has con-
straints c. From this follows that the algorithm has to be continued increasing
the degree of the ansatz polynomial until the number of necessary equations is
obtained.
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In the following several examples will be presented. We follow the general
outline of the algorithm and we will only show how the constraint equations of
canonical chains are found.

Example 10 (Canonical leg of a Stewart-Gough platform (UPS-chain)). It is well
known that the Stewart-Gough parallel manipulator (SGP) consists of a base and
a platform connected by six identical legs (Husty (1996)). Each of these legs is a
serial chain that can be modeled as a UPS serial linkage. To compute the direct
kinematics the actuated prismatic joint is considered to be locked. The resulting
canonical linkage therefore consists of five revolute joints and the forward kine-
matics of this chain is described by the coordinate transformations:

D = M1 ·G1 ·M2 ·G2 ·M3 ·G3 ·M4 ·G4 ·M5. (43)

The necessary entries of the coordinate transformation matrices are displayed in
Table 10. By computing the forward kinematics Eq.(43) and then transforming to

αi ai di

G1
π

2 0 0

G2 0 L 0

G3
π

2 0 0

G4
π

2 0 0

Table 1. Denavit-Hartenberg parameters of the UPS-chain

Study parameters using Eqs.(7) and (8) and performing half tangent substitution
one will arrive at the parametric representation of the variety representing this
linkage in P7:

x0 = −1+ t5t1− t5t2− t5t1t2t3 + t2t5t1t4− t1t4− t5t4− t5t3 + t4t1t2t3 + t4t2t3t5− t1t2−
t4t3− t4t2 + t4t1t3t5− t1t3 + t2t3

x1 = − t4t1t2t3− t5t1t2t3− t2t5t1t4− t1t2− t4t1t3t5− t1t3 + t1t4 + t5t1 + t4t2t3t5− t2t3
− t4t2 + t5t2− t4t3 +1+ t5t3− t5t4

x2 = t1 + t2− t1t2t3− t4t1t2 + t1t4t2t3t5− t4 + t5t1t2 + t3 + t2t5t4 + t4t2t3 + t5t2t3− t4t1t3
− t5 + t5t1t3− t5t1t4 + t4t3t5

x3 = − t1 + t2 + t1t2t3− t5t1t3− t4t1t2 + t1t4t2t3t5 + t4− t5t1t2 + t3− t5t1t4− t4t2t3−
t4t1t3− t5 + t5t2t3− t2t5t4− t4t3t5
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y0 = −
1
2

L(−1+ t1t4− t4t1t3t5 + t4t1t2t3 + t1t2 + t5t1 + t4t3 + t5t1t2t3− t4t2 + t2t5t1t4−

t1t3− t2t3 + t5t2 + t4t2t3t5− t5t3 + t5t4)

y1 = −
1
2

L(−1+ t1t4− t4t1t3t5− t5t3 + t4t1t2t3− t1t2− t4t3− t5t1t2t3 + t4t2 + t1t3−

t2t3− t4t2t3t5− t5t1 + t5t2− t5t4 + t2t5t1t4)

y2 =
1
2

L(t1− t2 + t1t2t3 + t5t1t3− t4t1t2 + t1t4t2t3t5 + t4− t5t1t2 + t3 + t5t1t4+

t4t2t3 + t4t1t3− t5− t5t2t3 + t2t5t4− t4t3t5)

y3 = −
1
2

L(−t1− t2− t1t2t3− t5t1t3− t4t1t2 + t1t4t2t3t5− t4 + t5t1t2 + t3 + t5t1t4−

t4t2t3 + t4t1t3− t5− t5t2t3− t2t5t4 + t4t3t5). (44)

As this chain has five parameters we can expect one equation that will describe the
constraint variety V together with the equation for S2

6. One may see immediately
that an elimination process will be very tedious, maybe hopeless. Definitely the
elimination will blow up the degree of the resulting equations. We will show that
the proposed algorithm yields a result after two steps: In the first step the para-
metric equations Eq.(44) are substituted into the linear ansatz equation Eq.(42).
The resulting equation is collected with respect to the monomials in ti. We obtain
an expression with 32 terms. Only the beginning and the end of this expression is
displayed:

(C3L+C1L+2C4−2C2)t1 +(−C7L+2C6 +C5L+2C8)t4t2t3t5 (45)
+(C7L+C5L+2C8−2C6)t4t1t3t5 + . . .+(C3L+C1L+2C4−2C2)t4t2t3 = 0.

It turns out that this system of 32 linear equations in 8 unknowns has no solution.
Therefore no linear equation describing the constraint variety exists. In the next
step we build a general second order equation and proceed as before. Now we
obtain a linear system with 234 equations in 32 unknowns. This system is solved
and it yields a two dimensional solution vector, which is back substituted into the
quadratic ansatz equation:

(y2
0 +y2

1 +y2
2 +y2

3−
1
4

L2(x2
0 +x2

1 +x2
2 +x2

3))λ +(x0y0 +x1y1 +x2y2 +x3y3)µ = 0.
(46)

This surprisingly simple result shows that the constraint variety of the canonical
leg of the Stewart-Gough platform is described by the Study quadric equation and
the second quadratic equation in Eq.(46) and linear combinations of these two
equations.

One question remains to be solved: how do we obtain the constraint equations
of a chain in general position from the constraint equations of a kinematic chain in
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canonical position? The answer to this question was given in Pfurner (2006) and
will be recalled briefly here. Suppose that α : x 7→ y = Ax+a is a Euclidean dis-
placement. The vectors x and y are elements of R3 but in kinematics it is advanta-
geous to consider them as elements of two distinct copies of R3, called the moving
space and the fixed space. The description of α in Study parameters depends on
the choice of coordinate frames – moving frame and fixed or base frame – in both
spaces. In kinematics, the moving frame is the space attached to a mechanism’s
output link, and the fixed space is the space where the mechanism itself is posi-
tioned. Both types of transformations induce transformations of the Study quadric
and thus impose a geometric structure on P7. Kinematic mapping is constructed
such that these transformations act linearly on the Study parameters (that is, they
are projective transformations in P7). We are going to compute their coordinate
representations.

Consider a Euclidean displacement described by a four by four transformation
matrix X, as in Eq.(3). It maps a point (1,a)T to (1,a′)T = X · (1,a)T . Now we
change coordinate frames in fixed and moving space and compute the matrix Y
such that (1,b′)T = Y · (1,b)T is the representation of the displacement in the new
fixed coordinate frame and the old moving coordinate frame. This is slightly dif-
ferent from the typical change of coordinates known from linear algebra where
one describes the new transformation in terms of new coordinates in both spaces
but more suitable for application in kinematics, in particular for describing the po-
sition of the end effector tool or for concatenation of different joint displacements
in kinematic chains. When the changes of coordinates in fixed and moving frame
are described by

(1,a)T = M · (1,b)T , (1,b′)T = F · (1,a′)T , (47)

we have Y= F ·X ·M. Denote now by y, x, f= [ f0, . . . , f7]
T and m= [m0, . . . ,m7]

T

the corresponding Study vectors. Straightforward computation (see Pfurner (2006))
yields

y = T f Tmx, Tm =

[
A O
B A

]
, T f =

[
C O
D C

]
, (48)

where

A =


m0 −m1 −m2 −m3
m1 m0 m3 −m2
m2 −m3 m0 m1
m3 m2 −m1 m0

 , B =


m4 −m5 −m6 −m7
m5 m4 m7 −m6
m6 −m7 m4 m5
m7 m6 −m5 m4

 , (49)

C =


f0 − f1 − f2 − f3
f1 f0 − f3 f2
f2 f3 f0 − f1
f3 − f2 f1 f0

 , D =


f4 − f5 − f6 − f7
f5 f4 − f7 f6
f6 f7 f4 − f5
f7 − f6 f5 f4

 , (50)
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and O is the four by four zero matrix.

Example 11 (Continuation of Example 10). The computation of the constraint
equations of a kinematic chain in general position from the canonical equations
will be demonstrated for the SGP manipulator. To move the canonical leg from the
best adapted position, which has the origin of the fixed frame in the intersection
point of axes of the U-joint and the origin of the moving frame in the center of the
spherical joint, into a general position, two translations, one in the fixed and one
in the moving frame, are needed. Both transformation matrices of Eq.(47) become

F =


1 0 0 0

A1 1 0 0

B1 0 1 0

C1 0 0 1

 , M =


1 0 0 0

−a1 1 0 0

−b1 0 1 0

−c1 0 0 1

 . (51)

Transforming into Study coordinates and constructing the Matrices T f and Tm
yields

TmT f =



4 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 4 0 0 0 0

0 −2a1+2A1 −2b1 +2B1 −2c1 +2C1 4 0 0 0

2a1−2A1 0 2c1 +2C1 −2b1−2B1 0 4 0 0

2b1−2B1 −2c1−2C1 0 2a1 +2A1 0 0 4 0

2c1−2C1 2b1 +2B1 −2a1−2A1 0 0 0 0 4



.

(52)
We denote both Study vectors in Eq.(48) by x = (x0,x1,x2,x3,y0,y1,y2,y3)

T and
y = (x′0,x

′
1,x
′
2,x
′
3,y
′
0,y
′
1,y
′
2,y
′
3)

T and realize that we have to use the inverse of the
transformation Eq.(52) to obtain expressions in the coordinates of x

x = (TmT f )
−1y

so that these expressions can be substituted into the canonical constraint equation
of the leg in optimal position with respect to both coordinate systems. One arrives
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at the equation(
(a1−A1)x′1 +(b1−B1)x′2 +(c1−C1)x′3 +2y′0

)2
+(

(−a1 +A1)x′0 +(−c1−C1)x′2 +(b1 +B1)x′3 +2y′1
)2
+(

(−b1 +B1)x′0 +(c1 +C1)x′1 +(−a1−A1)x′3 +2y′2
)2
+(

(−c1 +C1)x′0 +(−b1−B1)x′1 +(a1 +A1)x′2 +2y′3
)2−

1
4

L2
(

4x′0
2
+4x′1

2
+4x′2

2
+4x′3

2
)
= 0. (53)

Eq.(53) is the constraint equation of kinematic chain corresponding to leg of the
SGP in general position. It is obvious that the equation is still quadratic and
additionally it can be seen that all y′2i are free of design parameters. An analogous
fact to the planar case in Example 3.

Example 12 (3-R chain). In this example the constraint variety of a 3-R chain is
discussed. This variety is interesting because it has been used in a semi parametric
form in Husty et al. (2007a), Husty et al. (2007b), Pfurner (2006) to efficiently
compute the inverse kinematics of general 6-R serial manipulators. In this case we
have to expect three constraint equations because the dimension of the constraint
variety must be three.

As in the two previous cases the linear ansatz does not give a constraint equa-
tion. On the other hand the quadratic ansatz yields nine quadratic equations. All
nine equations fulfill the parametric equations of this chain. Any three of these
nine equations plus the equation for S2

6 (which is contained in the set) can be taken
for further computations. It is guaranteed that the variety generated by them will
contain all points that correspond to poses of the endeffector of the 3-R chain. But
it might be that the variety is bigger than necessary. This means that the other six
quadratic equations can (or better should) be taken for solution verification.

More details on LIA can be found in Walter and Husty (2010), where especially
some remarks are made to special situations that can occur during the algorithm.

3.4 Singularities in serial chains
Algebraic methods are of course not restricted to the analysis of parallel manip-

ulators. As the basic element of this methods are kinematic chains, serial manipu-
lators can be analyzed with the same tool. But one has to be aware that serial and
parallel manipulators in some sense behave dual to the basic kinematic tasks. As
we have seen in the last subsection the forward kinematics of a kinematic chain is
straight forward (Eq.(40)). The inverse kinematics of serial manipulators is more
complicated, but using the algebraic methods this task even for the most general
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6-R robot can be solved very efficiently (Pfurner (2006)). The algorithm is so ef-
ficient, that a C++ implementation solves almost all cases in real time (Angerer
(2016)). The application of the algebraic methods for serial manipulators is show
in the computation of all singularities of an industrial robot.

Example 13 (Singularities of a 6-R robot). The geometry of the robot under in-
vestigation is given by the following list of DH-parameters.

a1 = 0,a2 = 85/2,a3 = 39,a4 = 0,a5 = 0,a6 = 0,α1 = 1,α2 = 0,α3 = 0,
α4 =−1,α5 = 1,α6 = 0,d1 = 9,d2 = 0,d3 = 0,d4 = 10,d5 = 9,d6 = 8. (54)

Note that the angles are given by their algebraic values.The most efficient way to
compute the Jacobian of a serial manipulator is given by the fact that its columns
contain the Plücker coordinates of the instantaneous position of its axes. To per-
form this operations one needs the transformation matrix that transforms lines in a
Euclidean transformation. Let p = (p1, p2, p3, p4, p5, p6)

T and q = (q1,q2,q3,q4,
q5,q6)

T be the Plücker coordinates of two lines, then the transformation of p with
a transformation as in Eq.(2) is given by

q =

[
MR 0

a×MR MR

]
p, (55)

where a× is the skew symmetric operator belonging to the vector a = (a1,a2,a3)
T :

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .

Performing this operation for every axis of the manipulator yields the columns
Yi of the Jacobian matrix J. The singularities of the manipulator are the given
by detJ = 0. Computing this determinant for the manipulator given by the DH-
parameters Eq.(54) yields

(t2
1 +1)5(t2

2 +1)3(t2
4 +1)(t2

3 +1)t3t5(7t2
2 t2

3 t2
4 +36t2

2 t2
3 t4 +36t2

2 t3t2
4+

36t2t2
3 t2

4 +7t2
2 t2

3 +163t2
2 t2

4 +312t2t3t2
4 −7t2

3 t2
4 −36t2

2 t3−36t2
2 t4−

36t2t2
3 −144t2t3t4−36t2t2

4 −36t2
3 t4−36t3t2

4 +163t2
2 +312t2t3−7t2

3−
163t2

4 +36t2 +36t3 +36t4−163) = 0. (56)

The ti in this equation are the algebraic values of the joint parameters in the
six axes. The first four factors in the equation can be canceled because they can
never become real. Then one can observe that first and sixth rotation angle do not
contribute to the singularities. This well know fact applies to all 6-R robots. t3 = 0
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means that the second, third and fourth axes are parallel, t5 = 0 means that the
fourth and fifth axes are parallel. In both cases the manipulator is in a singular
pose. The remaining equation is of degree 6 in t2, t3 and t4 describes all remaining
singular poses of the manipulator. As it contains only three input variables it even
can be visualized (Fig.14).

Figure 14. Singularity surface of a 6-R robot with DH parameters Eq.(54)

4 Algebraic Basics

In this introduction only the most important definitions and theorems from alge-
braic geometry are recalled. It should serve the interested reader as a first intro-
duction to this topic. The main emphasis is put on those issues of algebraic geom-
etry that have turned out to be of a certain relevance to the kinematic analysis of
mechanisms and robots. This section is based on the book “Ideals, Varieties, and
Algorithms” by Cox et al. (2007), which is an excellent introduction to algebraic
geometry. More detailed descriptions and also the proofs for the theorems can be
found there.

Examples were computed in Maple 16 mostly using the packages Groebner
and PolynomialIdeals. The first package contains the low-level commands,
the second package is newer and contains the more sophisticated ones. There
are of course also other software packages like e.g. Mathematica, Singular or
Macaulay 2 that could be used for such computations. In most of the examples the
Maple output is not shown, the reader is advised to test the Maple commands by
typing the displayed commands into the system.
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In the following all algebraic equations are polynomials in the ring K[x] =
K[x1, . . . ,xn] where K is a field like Q (the rational numbers) or C (the complex
numbers).

4.1 Ideals and Affine Varieties
At first polynomial ideals are defined which are the basic objects for everything

else.

Definition 1. A set I ⊆ K[x] is called an ideal if the following conditions are
fulfilled:

• ∀ f ,g ∈ I : f +g ∈ I,
• ∀ f ∈ I and ∀h ∈K[x] : h f ∈ I.

It follows that almost all ideals are infinite sets of polynomials and cannot be writ-
ten down as a whole. The sole exception is the ideal {0} which is also a proper
subset resp. subideal of all other ideals because 0 is contained in every ideal.
There is also an ideal which is a proper superset resp. superideal of them, namely
the ideal which contains the constant polynomial 1 and with it all polynomials of
K[x].
Using Definition 1 it is possible to define the ideal generated by a set of given
polynomials f1, . . . , fs.

Definition 2. Let f1, . . . , fs be polynomials in K[x]. Then the set

〈 f1, . . . , fs〉= {g ∈K[x] : g =
s

∑
i=1

hi fi and h1, . . . ,hs ∈K[x]}

is the ideal generated by f1, . . . , fs.

The ideal generated be the given polynomials is the set of all combinations of
these polynomials using coefficients from K[x]. The polynomials f1, . . . , fs form a
so called basis of the ideal. Due to the fact that the same ideal can be generated
by another set of polynomials, such a basis is not unique. Furthermore the ideal
is obviously finitely generated and it can be shown that every ideal of K[x] can
be generated by a finite set of polynomials (Hilbert Basis Theorem). So the two
special ideals mentioned above can be written as 〈0〉 and 〈1〉.

Example 14. A circle shall be intersected with an ellipse where the corresponding
algebraic equations are f1 = (x1−1)2+(x2−2)2−4 = 0 and f2 = x2

1+3x2
2−5 =

0. To formulate this problem using Maple one has to type in the following to define
the corresponding ideal:

with(PolynomialIdeals);
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I1:=<(x[1]-1)^2+(x[2]-2)^2-4,x[1]^2+3*x[2]^2-5>;

All commands in the package Groebner allow to use the notation [. . . ] instead of
< · · ·>.

Remark 3. In this newly introduce language the three constraint equations h1,h2,
h3 of Example 3 (Eq.(21)) constitute an ideal. Definition 1 guarantees that the
operations that were used to derive the univariate polynomial (e.g. taking the
differences of two of the given equations ) result in polynomials that are contained
in the ideal.

As it was mentioned above such a basis is not unique. For example the ideals
〈 f1, f2〉 and 〈 f1− f2, f2〉 are completely the same. But how can this be found out
for two given ideals, if the are equal or not?

Two ideals I and J are equal if each element of I is contained in J and vice
versa. It is sufficient to test if the basis of one ideal is contained in the other, and
vice versa. To find out if a given polynomial is a member of an ideal it is necessary
to test if the polynomial can be written as a combination of the ideal’s basis. How
this can be done in a systematic way will be explained later.
Before that affine varieties are introduced.

Definition 3. For a given ideal I = 〈 f1, . . . , fs〉 ⊆K[x] the set

V(I) = {(a1, . . . ,an) ∈Kn : fi(a1, . . . ,an) = 0 f or all 1≤ i≤ s} ⊆Kn

is called the affine variety of the ideal I.

For each ideal I = 〈 f1, . . . , fs〉 there exists a unique variety V(I) which is the
set of all solutions of the polynomials equations f1 = 0, . . . , fs = 0, the so called
vanishing set. It follows immediately that all bases of the ideal describe the same
variety. In general the variety of an ideal is the more interesting thing, not the
ideal itself, because the variety is exactly the set of solutions of the input equations
f1, . . . , fs. It has to be mentioned explicitly that the variety does not contain infor-
mation about the multiplicity of solutions. It is just a set of points in K[x], nothing
more.

Two special varieties are /0 and Kn which are the vanishing sets of the ideals
〈1〉 and 〈0〉 which appeared earlier.

Example 15. A circle with center (0,0) and a line are given by x2
1+x2

2−1= 0 and
x1 + x2− 1 = 0. Then the ideal generated by these two equations is given by I =
〈x2

1+x2
2−1,x1+x2−1〉= 〈 f1, f2〉 and the corresponding variety is {(1,0),(0,1)}.

The affine variety belonging to the first equation is the set of points that are
on the circle and those of the second equation is the set of points that are on the
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line. The affine variety belonging to the generated ideal I is the set of points that
belong to both varieties, i.e. the set of intersection points (Fig.15). A third poly-
nomial of the ideal is constructed f3 = 3 f1−10 f 3

2 = −10x3
1−30x2

1x2−30x1x2
2−

10x3
2+33x2

1+60x1x2+33x2
2−30x1−30x2+7. In Fig.17 one can see that all three

polynomials have the same solution set, i.e. they constitute the same affine variety.

Figure 15. Affine varieties
belonging to f1, f2

Figure 16. Affine vari-
ety belonging to f3

Figure 17. Affine varieties
belonging to f1, f2, f3

It is also possible that different ideals describe the same variety. This is related
to the fact that solutions can appear with higher multiplicities.

Example 16. The following polynomial ideals I and I′ are given, each by two
possible bases.

I = 〈x2
1 + x2

2−1,x1 + x2−1〉= 〈x2
2− x2,x1 + x2−1〉,

I′ = 〈(x2
1 + x2

2−1)2,x1 + x2−1〉= 〈x4
2−2x3

2 + x2
2,x1 + x2−1〉.

It can easily be seen that V(I) = V(I′) = {(1,0),(0,1)} but the ideals are not the
same because x2

2− x2 cannot be written as a combination of x4
2− 2x3

2 + x2
2 and

x1 + x2−1.

To test if two ideals describe the same variety radicals are introduced.

Definition 4. Let I ⊆K[x] be an ideal. The set
√

I := { f ∈K[x] : ∃ m ∈ N,m≥ 1 with f m ∈ I}

is called the radical of I.

The computation of the radical of an ideal I can be seen as reducing I down to
the most important things, relevant for its vanishing set by taking out multiplicities.
In the example above the radical is the same:

√
I =
√

I′ = I.
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Example 17. An ideal I = 〈(2x1 − x2 − 2)x1,(2x1 − x2 − 2)x2
2〉 is defined. Its

vanishing set V(I) is the line described by 2x1 − x2 − 2 and the isolated point
(0,0). To be exact, there are two copies of the point (0,0) when multiplicities are
taken into account.
Computation of the radical using Maple leads to the slightly simpler ideal

√
I =

〈−(2x1 +x2)(2x1−x2−2),−(2x1−x2−2)x1〉 which has the same vanishing set,
but now the point (0,0) does not appear with higher multiplicity. The code for
Maple is the following:

with(PolynomialIdeals);

I1:=<(2*x[1]-x[2]-2)*x[1], (2*x[1]-x[2]-2)*x[2]^2>;

rad:=Radical(I1);

Next some operations are given which can be applied to varieties.

Definition 5. Let I = 〈 f1, . . . , fs〉 and J = 〈g1, . . . ,gt〉 be ideals with corresponding
varieties V = V(I) and W = V(J). Then the union and intersection of V and W
can be described as follows:

V ∩W = V(〈 f1, . . . , fs,g1, . . . ,gt〉),
V ∪W = V(〈 fig j : 1≤ i≤ s,1≤ j ≤ t〉).

The first equality is quite clear, if one is searching for the solutions two systems
have in common, the equations are combined and the resulting system is examined.
The second equality can be used to construct varieties which are a composition of
simpler varieties.

Example 18. Two very simple varieties are given to show what happens, when
varieties are intersected or joined.

V1 = V(〈x1〉), V2 = V(〈x2〉),

V1∩V2 = V(〈x1,x2〉) = {(0,0)},
V1∪V2 = V(〈x1x2〉).

What happens when two varieties are joined where one is a subset of the other
variety?

V1∪V(〈x1,x2〉) = V(〈x2
1,x1x2〉).

It can easily be seen that the vanishing set is the same, but when multiplicities are
taken into account the point (0,0) appears twice.
The code for Maple and the corresponding commands reads:
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with(PolynomialIdeals);

J1:=<x[1]>; J2:=<x[2]>;

J_union:=Add(J1,J2);

J_inters:=Multiply(J1,J2);

Multiply(J1,J_union);

Now we go back to the different ways to generate an ideal. As already men-
tioned there are lots of different bases which describe the same ideal, e.g. the
ideals

I = 〈 f1, f2, f3〉 ⊆K[x1,x2,x3,x4],

I′ = 〈 f1,x2
2 f1− f2,2 f3 +(x3 +5) f2− f1〉.

It can easily be verified that each combination of the generators of I′ can be written
as a combination of generators of I and vice versa. But what to do when the
ideals are more complex? It is necessary to have a systematic way for testing if
a polynomial is a combination of some other polynomials. Therefore the concept
of multivariate division with remainder is introduced, which is similar to the well
known univariate division with remainder which will be discussed first.

Theorem 1. Let f ,g ∈ K[x1] be univariate polynomials with g 6= 0. Then there
exist unique polynomials q and r such that

f = qg+ r

with either r = 0 or deg(r)< deg(g).

In the corresponding division algorithm an appropriate multiple of g is sub-
tracted from f such that the monomial with highest degree is cancelled from f.
This procedure is repeated until the remainder is either 0 or has degree less than
deg(g).

Example 19. The division algorithm is demonstrated using the two polynomials
f = 2x2−3x−7 and g = x+5:

f −2 xg = 2x2−3x−7−2x(x+5) =−13x−7,
(−13x−7)− (-13)g = −13x−7+13x+65 = 58.

It follows that q = 2x− 13 and r = 58. To get these results with Maple the com-
mands would be

quo(f,g,x); rem(f,g,x);
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The process stops when the highest monomial of the remainder is not divisible
by the highest monomial of g. So in the univariate case the degree of monomials
can be seen as a natural order on the set of monomials, which guides the user
trough the algorithm.

In the following different termorders are introduced which allow ordering of
the monomials of a multivariate polynomial. With these termorders an analog
algorithm to the univariate case can be defined for multivariate polynomials.

Definition 6. Let xα = xα1
1 . . . xαn

n and xβ = xβ1
1 . . . xβn

n be monomials in K[x] =
K[x1, . . . ,xn]. To order these monomials a monomial ordering or termorder >x on
the set of monomials in K[x] is defined by an ordering > on the n-tuples α,β ∈Zn

≥0
which has to fulfill the following conditions:

• > is a total ordering on Zn
≥0,

• if α > β and γ ∈ Zn
≥0, then α + γ > β + γ ,

• every nonempty subset of Zn
≥0 has a smallest element under >.

If such an ordering > on Z≥0 is given the monomials are ordered using the follow-
ing equivalence:

xα >x xβ ⇐⇒ α > β .

So monomials are ordered by comparing the ordered n-tuples constructed from
the powers of each variable. Next the most important termorderings are given.

Definition 7. (Lexicographic Order) Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn)
be elements of Zn

≥0. We define α >lex β if the leftmost nonzero entry of the vector-
difference α−β ∈ Zn is positive.

The Maple keyword for this ordering is plex, e.g. a possible lexicographic ter-
morder for polynomials containing the unknowns {x1,x2,x3} could be plex(x[3],
x[1],x[2]).

Example 20. How this ordering looks like for monomials in K[x1,x2] can be seen
in the following. It is a sketch how the set of all monomials is ordered, first the
2-tuples are given, then the corresponding monomials starting with the smallest.

(0,0)<lex (0,1)<lex (0,2) . . . <lex (1,0)<lex (1,1)<lex (1,2) . . .

1 <lex x2 <lex x2
2 . . . <lex x1 <lex x1x2 <lex x1x2

2 . . .

Maple has the command TestOrder to test if a monomial is smaller than another
one.

with(Groebner);

TestOrder(x[1]*x[2],x[2]^5,plex(x[1],x[2]));
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TestOrder(x[2]^4,x[1]^2*x[2],plex(x[1],x[2]));

The result of the first test will be false, the second result will be true.

For the next termorderings the total degree of monomials is needed. For a
monomial xα the total degree is denoted by |α| where |α|= α1 + · · ·+αn.

Definition 8. (Graded Lex Order) Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) be
elements of Zn

≥0. We say α >grlex β if |α|> |β | or, in case of |α|= |β |, if α >lex β .

In this termorder monomials are first ordered by the total degree and then ties
are broken using >lex. The keyword for Maple is grlex and a possible termorder
could be grlex(x[2],x[1],x[3]).

Example 21. Here is a sketch how the monomials in K[x1,x2] are ordered in
graded lex order.

(0,0)<grlex (0,1)<grlex (1,0)<grlex (0,2)<grlex (1,1)<grlex (2,0) . . .

1 <grlex x2 <grlex x1 <grlex x2
2 <grlex x1x2 <grlex x2

1 . . .

The corresponding Maple command is the same as in in Example 20, only plex
has to be replaced with grlex.

Next the most commonly used termorder is discussed. Computations using this
order tend to be faster than computations wrt. other orders.

Definition 9. (Graded Reverse Lex Order) Let α = (α1, . . . ,αn) and β = (β1, . . . ,
βn) be elements of Zn

≥0. We define α >grevlex β if |α|> |β | or, in case of |α|= |β |,
if the rightmost nonzero entry of α−β ∈ Zn is negative.

Again monomials are first ordered by the total degree. But ties are now broken
using a different condition. In Maple this termorder is used with the keyword
tdeg.

Example 22. Here is a sketch how the monomials in K[x1,x2] are ordered when
<grevlex is used.

(0,0)<grevlex (0,1)<grevlex (1,0)<grevlex (0,2)<grevlex (1,1)<grevlex (2,0) . . .

1 <grevlex x2 <grevlex x1 <grevlex x2
2 <grevlex x1x2 <grevlex x2

1 . . .

As it can easily be seen monomials in this example are sorted the same way as with
the graded lex order. This is a special property of >grevlex, namely if there are only
two variables it leads to the same ordering as >grlex. For three or more variables
the ordering is really different, e.g.

x2
1x2

3 >grlex x1x2
2x3 but x2

1x2
3 <grevlex x1x2

2x3.
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All these orderings can also be combined which leads to the so called Product
Orders. An example for a product order on K[x1,x2,x3,x4] in Maple would be
prod(plex(x[1],x[2]),tdeg(x[3],x[4])). This means that monomials are
first compared using the plex order, ties are broken using the tdeg order. Even
more than two partial orders are allowed.
It has to be noted explicitly that also the ordering of the variables can be varied,
not only the type. All in all there are lots of different ways to define an order for
ordering monomials.
With these preparations it is possible to order the monomials of a polynomial.
Before the multivariate polynomial division can be defined another definition is
necessary.

Definition 10. Let f ∈ K[x] be a polynomial with f = ∑α aα xα and let >x be a
monomial ordering on K[x]. We define the leading monomial LM( f ) as the highest
monomial of f with respect to >x, the leading coefficient LC( f ) as the coefficient
of the highest monomial, and the leading term as LT ( f ) = LC( f ) ·LM( f ).

The most important issue in this definition is the leading monomial. It will
appear quite often in the following definitions and theorems.

Example 23. Let f = x2
1x3

2−5x1x2x3+4x3
1x2

3 be a polynomial where the termorder
>grlex on K[x] is used:

deg( f ) = 5, LM( f ) = x3
1x2

3, LC( f ) = 4, LT ( f ) = 4x3
1x2

3.

To obtain these results with Maple the following commands can be used:

with(Groebner);

f:=x[1]^2*x[2]^3-5*x[1]*x[2]*x[3]+4*x[1]^3*x[3]^2;

degree(f,[x[1],x[2],x[3]]);

LeadingMonomial(f,grlex(x[1],x[2],x[3]));

LeadingCoefficient(f,grlex(x[1],x[2],x[3]));

LeadingTerm(f,grlex(x[1],x[2],x[3]));

For the leading term Maple does not return the product, but the pair LC( f ),LM( f ).
If the termorder plex(x[2],x[3],x[1]) is used instead the results are as fol-
lows:

deg( f ) = 5, LM( f ) = x2
1x3

2, LC( f ) = 1, LT ( f ) = x2
1x3

2.
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Now all the ingredients are defined and it is possible to introduce the multivari-
ate division.

Definition 11. Let F = [ f1, . . . , fs] be an ordered list of polynomials in K[x] and
>x a monomial order. Then every polynomial f ∈K[x] can be written in the form

f = a1 f1 + · · ·+as fs + r

where all ai and r are elements of K[x] and r is either 0 or a polynomial where no
monomial is divisible by any of LM( f1), . . . ,LM( fs). r is called a remainder of f
on division by F.

The algorithm which produces the ai and the remainder r acts in the following
way: It is tested if LM( f ) is divisible by LM( f1), then by LM( f2) and so on. If the
result of such a test is true for a leading monomial LM( fi), testing is stopped and
an appropriate multiple of fi is subtracted from f such that LT ( f ) is cancelled. The
result is again named f and the testing starts again. In the other case that LM( f ) is
not divisible by LM( f1), . . . ,LM( fs), the term LT ( f ) is added to the remainder. It
follows that in each step LT ( f ) is removed, either by cancellation or by moving it
to the remainder. The process is finished when f is 0.

Example 24. As an example the polynomial f = x2
1x2+x1x2

2 +x2
2 is divided by the

polynomials f1 = x1x2− 1 and f2 = x2
2− 1, where the termorder >lex is used in

K[x1,x2].

f = x2
1x2 + x1x2

2 + x2
2, r = 0, a1 = 0, a2 = 0,

f ← x1x2
2 + x1 + x2

2, r = 0, a1 = x1, a2 = 0,
f ← x1 + x2

2 + x2, r = 0, a1 = x1 + x2, a2 = 0,
f ← x2

2 + x2, r = x1, a1 = x1 + x2, a2 = 0,
f ← x2 +1, r = x1, a1 = x1 + x2, a2 = 1,
f ← 1, r = x1 + x2, a1 = x1 + x2, a2 = 1,
f ← 0, r = x1 + x2 +1, a1 = x1 + x2, a2 = 1.

It follows that f can be written as

f = a1 f1 +a2 f2 + r = (x1 + x2)(x1x2−1)+(1)(x2
2−1)+(x1 + x2 +1),

where no monomial in the remainder x1+x2+1 is divisible by LM( f1) or LM( f2).

It has to be said clearly that the result r is a remainder of f on division by the
ordered list F . If f1 is exchanged with f2 the following result is obtained:

f = a′1 f1 +a′2 f2 + r′ = (x1 +1)(x2
2−1)+(x1)(x1x2−1)+(2x1 +1).
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So the remainder r depends on the order of the polynomials in the list F and of
course, on the monomial order which has to be chosen first of all.

Using the multivariate division the notion of reduction can be defined.

Definition 12. Let F = [ f1, . . . , fs] be an ordered list of polynomials in K[x], f ∈
K[x] and >x a monomial order. Then we call the process of dividing f by F
reduction and denote the remainder with f F . The choice of a monomial order is
required to be able to compute the remainder.

This reduction will be used quite often in the following definitions and theo-
rems. But before that the corresponding Maple command is given.

Example 25. The polynomial f = x2
1x2 +x1x2

2 +x2
2 is to be divided by the polyno-

mials f1 = x1x2−1 and f2 = x2
2−1, where the termorder >lex is used in K[x1,x2].

with(Groebner);

f:=x[1]^2*x[2]+x[1]*x[2]^2+x[2]^2;

f1:=x[1]*x[2]-1;

f2:=x[2]^2-1;

r:=Reduce(f,[f1,f2],plex(x[1],x[2]),’s’,’a’);

s; a;

The result is a remainder r, a list of quotients a and a number s such that

f =
2

∑
i=1

ai fi +
r
s
.

The result for this example is:

r = x1 + x2 +1, a = [x1 + x2,1, ] s = 1.

The necessity of a monomial order will not be mentioned explicitly from now
on. Next we define interreduction.

Definition 13. Let F = [ f1, . . . , fs] be an ordered list of polynomials in K[x]. The
process of replacing each polynomial fi by fi

F\{ fi} is called interreduction of the
list F.
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This means that every polynomial in F is reduced with respect to all other
elements of the list. An important property of an interreduction is that the original
set of polynomials and the result of the interreduction generate the same ideal.
Interreduction can sometimes be used to simplify generating sets (bases) of an
ideal, to obtain shorter polynomials. The right choice of the monomial order is
important.

Example 26. The ideal I = 〈(x1− 1)2 +(x2 + 5)2− 6,2x2
1 + 2x2

2− 4〉 is interre-
duced. The appropriate commands are the following:

with(Groebner);

I1:=[(x[1]-1)^2+(x[2]+5)^2-6,2*x[1]^2+2*x[2]^2-5];

ir:=InterReduce(I1,plex(x[1],x[2]));

And the result is

ir = [416x2
2 +1800x2 +1985,4x1−20x2−45].

Example 27. Interreduction is very efficient for the constraint polynomials h1,h2,h3
of Example3:

Groebner[InterReduce]([h_1,h_2,h_3],tdeg(y_1,y_2,x_3));

yields the three simplified polynomials

g1 : (−5239
√

3−1876)x2
3 +(624

√
3y2 +4550

√
3+174y2 +11684)x3 +104

√
3y1

−1755
√

3+218y1−720y2−774 = 0,

g2 : 547x2
3 +(18y1−48y2−476)x3−8y1 +18y2 +99 = 0,

g3 : −8527x2
3 +(552y2 +7616)x3 +36y2

1 +36y2
2 +344y1−1359 = 0,

which have the property that y1 and y2 appear linear.

Now back to ideals generated by a set of polynomials. There was already
the question how one could decide if a given polynomial f is an element of I =
〈 f1, . . . , fs〉. The concept of reduction would be a good method to answer that
question. First a result is given which is not the perfect solution.

Theorem 2. Let I = 〈 f1, . . . , fs〉 ⊆ K[x] be an ideal and f ∈ K[x]. If f F
= 0 then

f is an element of I.
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The disadvantage of this result is that if f F 6= 0 the question is open as before.
The crucial point is that the leading terms LT ( f1), . . . ,LT ( fs) which are used in
the division algorithm are in general “bad” representatives for the set of all leading
terms which are possible in the ideal I.

Example 28. Let F = [ f1, f2] = [x1x2 +1,x2
2−1] be an ordered list of polynomi-

als in K[x] and p1 = x1 f1 + x2 f2 and p2 = x2 f1 + x1 f2 be combinations of these
polynomials. It is clear that p1, p2 ∈ 〈 f1, f2〉. But if the reductions are computed
wrt. plex(x[1],x[2]), the following results are obtained:

p1
F = 0, p2

F =−x1− x2.

In the first case Theorem 2 works quite fine, it does not in the second.

Now standard bases are defined which are “much better” representatives (gen-
erators) for an ideal. They are still dependent from a chosen monomial order but
nevertheless very useful to deduce information about the ideal and the correspond-
ing variety.

4.2 Standard Bases
Definition 14. For a fixed monomial order and an ideal I ∈ K[x] a finite subset
G = {g1, . . . ,gt} of I is called a Groebner basis or standard basis if

〈LM(g1), . . . ,LM(gt)〉= 〈LM(I)〉,

where LM(I) is the ideal generated by all the leading terms of the elements of I.

With other words a basis is also a Groebner basis if the leading monomials of
the generators generate the same ideal as the leading monomials of all ideal ele-
ments.
A Groebner basis is a very special generating set of the ideal I with some nice prop-
erties. Such a basis is not unique due to the fact that adding another polynomial to
the generators does not change this property. Another reason for non-uniqueness
is the fact that a monomial order has to be chosen first.
In this introduction it will not be explained in detail how such a Groebner basis
is computed explicitly, starting with a set of generators and a term order. Just a
short appetizer: For all possible pairs of generators the so called S-polynomials are
computed and reduced with the list of generators. All remainders which are not 0
are added to the list and the procedure starts again. Such rounds are repeated until
all remainders of the S-polynomials are all 0 after reduction. See the book “Ideals,
Varieties, and Algorithms” by Cox, Little and O’Shea for a detailed description of
the algorithm and enhancements of it.
With a Groebner basis we get a better result for the ideal-membership-question.
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Theorem 3. Let G = {g1, . . . ,gt} ⊆ K[x] be a Groebner basis of an ideal I and
f ∈K[x]. The polynomial f is an element of I if and only if f G

= 0.

All in all the procedure for the ideal-membership-question is the following:
first a termorder is fixed, then a Groebner basis of the ideal is computed and after
that the polynomial f is reduced with respect to this basis. f is only then an
element of I if the result of the reduction is 0.
It has to be mentioned that the result of a reduction with respect to a Groebner
basis is independent of the order of the basis elements. This was not the case when
the reduction was done with respect to a normal basis.

Example 29. As an example we take the polynomials from Example 28. Let
I = 〈 f1, f2〉 = 〈x1x2 + 1,x2

2 − 1〉 be an ideal in K[x] and p1 = x1 f1 + x2 f2 and
p2 = x2 f1 + x1 f2 polynomials which are definitely elements of I.
Now a Groebner basis is computed wrt. plex(x[1],x[2]) and p1, p2 are re-
duced with that basis.

with(Groebner);

with(PolynomialIdeals):

f1:=x[1]*x[2]+1; f2:=x[2]^2-1;

G:=Basis(<f1,f2>,plex(x[1],x[2]));

p1:=x[1]*f1+x[2]*f2;

p2:=x[2]*f1+x[1]*f2;

Reduce(p1,G,plex(x[1],x[2]));

Reduce(p2,G,plex(x[1],x[2]));

The Groebner basis is
G = 〈x2

2−1,x1 + x2〉

and now the expected results are obtained:

p1
F = 0, p2

F = 0.

The package PolynomialIdeals contains also two commands for testing if a
polynomial or an ideal is contained in another ideal. They are used as follows:
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IdealMembership(p1,G);

IdealContainment(<p1,p2>,G);

The result of both commands will be true for this example.

As mentioned above adding another polynomial of the ideal to the generators
does not change the property of being a Groebner basis. To get a unique version
of such a basis the so called reduced Groebner bases are defined.

Definition 15. Let G = {g1, . . . ,gt} ⊆K[x] be a Groebner basis of a given ideal I.
The generators G are a reduced Groebner basis if G is interreduced and all lead-
ing coefficients are 1.

Fortunately all bases returned by Maple are interreduced. So at least the more
important condition is fulfilled and the bases are quasi unique. This is not the
case when Singular is used. But there exists a command to switch on basis-
interreduction.
Now some remarks about Groebner bases:

• The number of polynomials in a Groebner basis can be very large, it depends
on the complexity of the ideal and, of course, on the chosen monomial order.
It is quite possible that only a part of the Groebner basis would be enough to
generate the ideal I, but then the relevant condition 〈LM(g1), . . . ,LM(gt)〉=
〈LM(I)〉 is no more fulfilled.

• There are different methods to compute Groebner bases. The sketch of the
algorithm above describes only the main concept. Lots of improvements
were made to accelerate basis computations. Depending on the termorder
the computations can be very expensive with respect to time and memory.
Sometimes it is better to compute the basis for an “easy” termorder and then
to convert it to the desired termorder using one of the conversion-algorithms.

• The monomial order >lex (in Maple plex) tends to be expensive in general,
whereas the order >grevlex (in Maple tdeg) tends to be “relatively” cheap. If
the type of order is chosen the computational costs can again be influenced
by the order of unknowns.

• The typical way to order the polynomials in a basis is by sorting them wrt.
the leading monomials, starting with the smallest one.

Example 30. Now as an example reduced Groebner bases are computed for the
ideal

I = 〈x2
1x2 + x1x2

2 + x2
2x3,x1x2− x3,x2

2−1〉

using different termorders:
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>lex in K[x1,x2,x3] :

G = {x3
3 +2x2

3,x2x3 + x2
3 + x3,x2

2−1,x1 + x2
3 + x3}

>lex in K[x3,x1,x2] :

G = {x2
2−1,x2

1 + x1x2 + x1,x3− x1x2}

>grlex in K[x1,x2,x3] :

G = {x2
3 + x1 + x3,x2x3− x1,x2

2−1,x1x3 + x1 + x3,x1x2− x3,x2
1 + x1 + x3}

The code for Maple looks as follows:

with(Groebner);

with(PolynomialIdeals):

f1:=x[1]^2*x[2]+x[1]*x[2]^2+x[2]^2*x[3];

f2:=x[1]*x[2]-x[3]; f3:=x[2]^2-1;

Basis(<f1,f2,f3>,plex(x[1],x[2],x[3]));

Basis(<f1,f2,f3>,plex(x[3],x[1],x[2]));

Basis(<f1,f2,f3>,grlex(x[1],x[2],x[3]));

It is no coincidence that in all the bases wrt. to >lex the first polynomial is univari-
ate. This is because the lex-orders have the so called elimination property.

Example 31. Taking the three polynomial equations g1,g2,g3 from Example 27
and computing a Groebner basis using the command

Groebner[Basis]([g_1,g_2,g_3],plex(y1,y2,x3));

yields immediately a univariate polynomial of degree six in x3 and two more poly-
nomials in which y1 and y2 appear linearly.

What is elimination resp. an elimination ideal?

50



4.3 Elimination
First of all the so called elimination ideals are defined.

Definition 16. Let I be an ideal in K[x] = K[x1, . . . ,xn] and 1 ≤ l < n. Then the
ideal Il = I∩K[xl+1, . . . ,xn] is called the l-th elimination ideal of I. Il contains all
elements of I which do not contain the variables x1, . . . ,xl .

If a termorder has the elimination property, then a basis wrt. this order can be
used to extract bases for the elimination ideals.

Theorem 4. Let G = {g1, . . . ,gt} ⊆K[x1, . . . ,xn] be a Groebner basis of an ideal I
with respect to >lex. Furthermore let H = {h1, . . . ,hk} be the first k polynomials
of G which do not contain the unknowns x1, . . . ,xl . Then H is a Groebner basis of
the l-th elimination ideal Il .

It follows an example where it can be seen more clearly what this means.

Example 32. The ideal I = 〈x2
1x2+x1x2

2 +x2
2x3,x1x2−x3,x2

2−1〉 is given with the
Groebner basis wrt. plex(x[1],x[2],x[3])

G = 〈x3
3 +2x2

3,x2x3 + x2
3 + x3,x2

2−1,x1 + x2
3 + x3〉.

Then the following generators are all Groebner bases of the corresponding elimi-
nation ideal:

I2 = 〈x3
3 +2x2

3〉,
I1 = 〈x3

3 +2x2
3,x2x3 + x2

3 + x3,x2
2−1〉.

There is also another command to do the elimination directly. It is contained in
the package PolynomialIdeals and to compute I1 directly from the input poly-
nomials it is used as follows:

EliminationIdeal(<f1,f2,f3>,{x[2],x[3]});

The second argument gives the unknowns which shall not be eliminated. Further-
more no termorder has to be chosen, this is done by Maple internally. Unfortu-
nately this choice is session-dependent.

It can easily be seen that with these elimination ideals it is quite easy to solve
a system of equations with only finitely many solutions.

Example 33. Here once again the Groebner basis G from above including I2
and I1.

I2 = 〈x3
3 +2x2

3〉,
I1 = 〈x3

3 +2x2
3,x2x3 + x2

3 + x3,x2
2−1〉,

G = 〈x3
3 +2x2

3,x2x3 + x2
3 + x3,x2

2−1,x1 + x2
3 + x3〉.
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Now the system can be solved step by step by solving the partial systems and
extending the solutions.

with(Groebner);

with(PolynomialIdeals):

f1:=x[1]^2*x[2]+x[1]*x[2]^2+x[2]^2*x[3];

f2:=x[1]*x[2]-x[3]; f3:=x[2]^2-1;

I0:=<f1,f2,f3>;

G:=<op(Basis(I0,plex(x[1],x[2],x[3])))>;

NumberOfSolutions(I0);

I2:=EliminationIdeal(<f1,f2,f3>,{x[3]});

I1:=EliminationIdeal(<f1,f2,f3>,{x[2],x[3]});

L1:={solve(Generators(I2),{x[3]})};

L2:=map(y->op(map(z->z union y,{solve(eval(Generators(I1),y),
{x[2]})})),L1);

L3:=map(y->op(map(z->z union y,{solve(eval(Generators(G),y),
{x[1]})})),L2);

The result for the vanishing set is V(I) = {(−2,1,−2),(0,−1,0),(0,1,0)}, where
the second solution has multiplicity 2.

How does the variety of the l-th elimination ideal V(Il) correspond to the orig-
inal variety V(I)?

Theorem 5. The variety V(Il)∈Kn−l is the smallest variety (wrt. inclusion) which
contains π(V(I)), where π(V(I)) is the orthonormal projection of V(I) onto the
subspace generated by equations x1 = · · ·= xl = 0.
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An important fact is that the equality V(Il) = π(V(I)) only holds when I is a
projective variety and Il a projective elimination ideal. This means that here it can
happen that a solution of Il can not be extended to a solution of Il−1.

Another application of elimination is implicitization. The following example shows
how a variety can be deduced from a parametrisation.

Example 34. A parametrisation of an ellipse is given.

x[1] =
5(1− t2)

1+ t2 x[2] =
3(2 t)
1+ t2

For all values of t ∈ R a point of the ellipse is obtained. The only point which
cannot be reached is the left apex (−5,0). To compute the smallest variety which
contains all these points (should be the ellipse), the following code could be used:

with(Groebner);

with(PolynomialIdeals):

par1:=x[1]-(5*(1-t^2))/(1+t^2);

par2:=x[2]-(3*(2*t))/(1+t^2);

J:=<numer(par1),numer(par2)>;

G:=Basis(J,plex(t,x[1],x[2]));

J1:=<G[1]>;

The first elimination ideal J1 = 〈9x2
1 +25x2

2−225〉 has exactly the ellipse as van-
ishing set.

In the last subsection two very important concepts are discussed that play major
roles in the analysis of more complicated kinematic structures. The first one has
to do with the degree of freedom of a mechanism and the second one can help to
find different operation modes of a kinematic structure.
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4.4 Dimension, Primary Decomposition
It happens quite often that one is first of all interested in the dimension of a vari-

ety. Here is an example where the variety contains parts with different dimensions
and it is shown how the dimension is computed.

Example 35. The ideal I = 〈(2x1−x2−2)x1,(2x1−x2−2)x2
2〉 is given. V(I) con-

sists of a line and an isolated point. Using the Hilbert polynomial the dimension
is computed (which should be 1).

with(PolynomialIdeals):

I1:=<(2*x[1]-x[2]-2)*x[1], (2*x[1]-x[2]-2)*x[2]^2>;

HilbertDimension(I1,{x[1],x[2]});

If a variety contains parts with different dimensions, then the dimension of the
whole variety is defined to be the largest of these numbers.

In kinematics the dimension of the ideal generated by the constraint equations
yields the degrees of freedom of the mechanical structure. But one has to be very
careful with the obtained number. As mentioned above the Hilbert Dimension
yields the largest dimension. At special points of the corresponding variety this
number can be larger or smaller.

Example 36. Taking the three constraint equations h1,h2,h3 of Example 3 and
computing the Hilbert dimension of the generated ideal one can use the Maple
command

Groebner[HilbertDimension]([h1,h2,h3],tdeg(x3,y1,y2));

The answer will be 0 and this means that the solution of the corresponding system
of equations is a set of points. The command

Groebner[Basis]([h1,h2,h3],plex(y1,y2,x3));

yields immediately, without further manipulations, a univariate polynomial of de-
gree 6 in x3 and two more polynomials which are linear in y1 and y2.

Substituting on the other hand the following set of design and input parameters

A2 = 16,A3 = 9,B3 = 6,a2 = 16,a3 = 9,b3 = 6, l1 = 10, l2 = 10, l3 = 10,
k1 = 5,k2 = 5,k3 = 5,u = 1,v = 1,w = 1,
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into the general system of constraint equations Eq.(20) one obtains a new system
of constraint equation which reads:

g1 : 75x2
3 +40x3y1 +4y2

1 +4y2
2 +40y2 +75 = 0,

g2 : 1099x2
3 +40x3y1−128x3y2 +4y2

1 +4y2
2−640x3 +40y2 +75 = 0,

g3 : 783x2
3 +88x3y1−72x3y2 +4y2

1 +4y2
2−360x3 +40y2 +75 = 0.

Invoking again the Maple command

Groebner[HilbertDimension]([g1,g2,g3],tdeg(x3,y1,y2));

yields now the answer 1 for the Hilbert dimension. This means that the manipula-
tor allows a one dof motion with all inputs locked. In this case the inputs were all
set to 1, which corresponds to 90◦. The Groebner base for this set of equations is:

Groebner[Basis]([h1,h2,h3],plex(y1,y2,x3));
[x3*(201*x3^2-20), -x3*(8*x3-y2-5), x3*(11*x3+4*y1),
-35*x3^2+4*y1^2+4*y2^2+40*y2+75].

The base consists of four equations and the first equation is x3(201x2
3− 20) = 0.

One can see immediately that the solution x3 = 0 causes the second and the third
equation to vanish. Only the fourth equation remains. x3 = 0 and 4y2

1 + 4y2
2 +

40y2 + 75 = 0 determine the self motion, which is the well known parallel bar
motion. But when x3 6= 0 then the four equations have two distinct solutions, one
of them reads

x3 =
2

201

√
1005, y1 =−

11
402

√
1005, y2 =

16
201

√
1005−5.

The two solutions yield two distinct assemblies of the manipulators. From point
of view of algebraic geometry the ideal has two components which have different
dimensions. The corresponding affine varieties consist of a curve (Fig.18, left)
and two points (Fig.18, right). In this example it is not possible to to move directly
from one component to the other. One has to disassemble the mechanism and to
reassemble to obtain a solution of the other component. Each component corre-
sponds to an operation mode of the mechanism or robot. As it will be shown in the
next section it can happen that different components can have intersections and
this would mean that a mechanism is able to to move at certain poses from one
operation mode into an other operation mode.

As already mentioned it is possible that an ideal describes a variety which is
made up of some simpler varieties, e.g. the variety from the Examples 35 and 36.
The question is how such a decomposition can be found, if there is one.
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Figure 18. Different Hilbert dimensions of the constraint equations g1,g2,g3 left:
self motion, right: rigid assembly

Definition 17. A primary decomposition of a given ideal I is an expression of I
as an intersection of primary ideals, namely I =

⋂r
i=1 Qi. Such a decomposition is

called minimal if the radicals
√

Qi are all different and Qi +
⋂

i 6= j Q j. Furthermore
if no radical

√
Qi is strictly contained in another radical

√
Q j, then the primary

components Qi are uniquely determined.
The radicals

√
Qi =: Pi are the corresponding prime ideals.

It follows an example where the variety can be decomposed into three different
parts.

Example 37. A rather large ideal J is given.

J = 〈4x3
2x1

3 +4x3
2x1x2

2 +4x3
4x1−16x1x3

2 +5x3
2x2x1

2 +5x3
2x2

3 +

+5x3
4x2−20x2x3

2−6x3
2x1

2−6x3
2x2

2−6x3
4 +24x3

2,

4x1
4 +4x1

2x2
2 +4x3

2x1
2 +2x1

2 +5x1
3x2 +5x1x2

3 +5x1x2x3
2−

−20x1x2−18x1
3−18x1x2

2−18x1x3
2 +72x1−15x2x1

2−15x2
3−

−15x2x3
2 +60x2 +18x2

2 +18x3
2−72〉

Using the command

PrimaryDecomposition(J);

the primary decomposition is computed and the result is

Q1 = 〈4x1 +5x2−6〉, Q2 = 〈x1
2 + x2

2 + x3
2−4〉, Q3 = 〈x3

2,x1−3〉,

which means that V(I) can be decomposed into a line, a sphere and an isolated
point which appears with multiplicity 2.
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Such decompositions are quite convenient if the variety has to be intersected
with other varieties, because then each of the components can be treated separately.
The worst case is that one has to deal with an ideal which is primary or even prime.
In this case one has to take the ideal as a whole.

Examples of the application of primary decomposition in the analysis of paral-
lel manipulators are given in Section 5.

As a final comment is has to be mentioned that it is possible to extend the
concept of ideals and varieties to projective spaces. Due to the fact that lots of sub-
tleties appear there, the reader is once more referred to the book “Ideals, Varieties,
and Algorithms” by David Cox, John Little and Donal O’Shea.

5 Complete kinematic analysis of the TSAI parallel
manipulator

Within this section the algebraic methods derived in the previous sections are ap-
plied to the complete kinematic analysis of a parallel manipulator introduced by
L.W. Tsai in 1996. It will be shown how the direct kinematics can be solved.
Moreover this manipulator exhibits different interesting operation modes, which
can be detected using primary decomposition. The analysis continues with a sin-
gularity analysis of each operation mode and the discussion of all poses in which
the manipulator can change from one operation mode into another.

5.1 Introduction
In 1996 L.W. Tsai (Tsai (1996)) designed 3-DOF parallel manipulators with

the aim to generate pure translational motion. As a result he presented 3-UPU
parallel manipulators where the axes of the U-joints have to fulfill some special
conditions in order to allow the mechanism a translational motion. A generaliza-
tion followed in 1998 by Di Gregorio and Parenti-Castelli by decomposing the
U-joints into two simple R-joints without any condition of intersection or perpen-
dicularity. There exist many publications about singularities of these mechanisms,
especially because the SNU 3-UPU, which was built in about 2001 at the Seoul
National University, showed unexpected motion in its home position, leading to
many different attempts to explain this behaviour, see e.g. Bonev and Zlatanov
(2001), Wolf et al. (2002), Han et al. (2002). A complete analysis using algebraic
methods can be found in Walter et al. (2009), where also the strange behaviour of
the mechanism at the home pose is explained. The crucial point in the design of the
SNU 3-UPU is the fact that all axes in the base (resp. platform) intersect in a single
point. The type of manipulator which will be discussed in detail in this section is
the classic 3-UPU mechanism, where the axes of the U-joints are in a more general
position. An analysis of the manipulator’s translational kinematics was published
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by Di Gregorio and Parenti-Castelli (1999) where also singular configurations are
discussed. Concerning such configurations there is also an interesting thesis by
Chebbi (2011), where 3-UPU mechanisms are discussed in detail regarding singu-
larities and strategies for selecting appropriate architectures (see also Chebbi and
Parenti-Castelli (2010)). The topic of workspace optimization is covered by sev-
eral publications, e.g. Parenti-Castelli et al. (2000), Badescu et al. (2002), Tsai
and Joshi (2000), and also Dwarakanath and Bhutani (2012) where the capabilities
of the translational 3-UPU manipulator are tested with a high precision prototype
model. Another part of publications about 3-UPU mechanisms discusses general-
izations and slightly exotic varieties of the manipulator, e.g. Ji and Wu (2003) and
Varedi et al. (2009) where the U-joints are decomposed into R-joints with offets,
and Hu and Lu (2011) where the first axes of the lower U-joints are perpendicular
to the base.

The topic of this section is the classical fully symmetric TSAI 3-UPU mecha-
nism, where the anchor points in the base (resp. platform) constitute an equilateral
triangle, and the axes embedded in base and platform are tangent to the circum-
circle of the corresponding triangle. Goal of this section is to analyze the motion
capabilities of this manipulator by a purely algebraic approach, which was devel-
oped in the previous sections of this chapter in terms of a description by algebraic
constraint equations. Due to the fact that the manipulator’s translational motion
was the main issue in most publications, the question about other types of motion
that are allowed by this design, arises immediately. The present description via
algebraic equations gives a complete anlysis about absolutely all poses the mech-
anism can attain and allows therefore a more general view. Some results of other
authors appear again naturally as a part of this analysis, e.g. the singular poses of
the translational operation mode.

5.2 Manipulator design
First of all an exact description of the manipulator’s design is necessary. Fig-

ure 19 depicts a sketch of the manipulator including all necessary notations. Due
to the fact that the TSAI 3-UPU can be obtained from the SNU 3-UPU by simply
rotating each limb by 90 degrees about the axis of the prismatic joint, the follow-
ing is almost identical to the description of the SNU 3-UPU in Walter et al. (2009).
In the base there are three points A1, A2, and A3 forming an equilateral triangle
with circumradius h1. The frame Σ0 is fixed in the base such that its origin lies in
the circumcenter of the triangle, its yz-plane coincides with the plane containing
the triangle and its z-axis passes through A3. The same situation is established
in the platform. There we have an equilateral triangle with vertices B1, B2, B3,
circumradius h2, and the platform frame is denoted by Σ1. The parameters h1 and
h2 are the first two design parameters, which are always different, if not mentioned
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Figure 19. TSAI 3-UPU manipulator

explicitly. Each pair of corresponding points Ai, Bi is connected by a limb Li with
U-joints at each end. The length of each limb is denoted by ri and adjusted by a
prismatic joint. The first and the fourth axis are embedded in the base resp. plat-
form such that each of them is tangent to the corresponding circumcircle. Second
and third axis of this link-combination are parallel to each other and perpendicular
to the axis of the limb and its first and fourth axis. With this setup the conditions
for translational motion as stated in Di Gregorio and Parenti-Castelli (1998) are
fulfilled. All together there are five parameters to describe the TSAI 3-UPU mech-
anism: r1, r2, r3, h1, and h2, where the first three of these are used to actuate the
manipulator, the latter are fixed design parameters.

5.3 Deduction of constraint equations
In the following algebraic equations are derived whose solutions describe the

pose of Σ1 with respect to Σ0, and with it the pose of the platform with respect
to the fixed base. For each limb Li the kinematic chain can be described by a
sequence of transformations which was already explained in Eq.(40) on page 26.
The pose of frame Σ1 with respect to Σ0 via limb Li can be described by the matrix
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product
Ti = Fi1Mi1Gi1Mi2Gi2Mi3Gi3Mi4Fi2. (57)

The matrices Fi j at the beginning and at the end are fixed transformations, only
depending on the design parameters h1 and h2 and the location of the anchor points:

F11 =


1 0 0 0
0 1 0 0√
3

2 h1 0
√

3
2

1
2

− 1
2 h1 0 − 1

2

√
3

2

 , F12 =


1 0 0 0
0 1 0 0
−h2 0

√
3

2 − 1
2

0 0 1
2

√
3

2

 ,

F21 =


1 0 0 0
0 1 0 0

−
√

3
2 h1 0

√
3

2 − 1
2

− 1
2 h1 0 1

2

√
3

2

 , F22 =


1 0 0 0
0 1 0 0
h2 0

√
3

2
1
2

0 0 − 1
2

√
3

2

 ,

F31 =


1 0 0 0
0 1 0 0
0 0 0 −1
h1 0 1 0

 , F32 =


1 0 0 0
0 1 0 0
−h2 0 0 1

0 0 −1 0

 .

Matrices Mi j are responsible for the passive rotations about the axes of the U-joints
depending on rotation angles ui j, and the matrices Gij manage the transformations
from one rotational axis to the next one:

Mi j =


1 0 0 0
0 cos(ui j) −sin(ui j) 0
0 sin(ui j) cos(ui j) 0
0 0 0 1

 , Gi j =


1 0 0 0
a j 1 0 0
0 0 cos(α j) −sin(α j)
d j 0 sin(α j) cos(α j)

 .

The corresponding Denavit-Hartenberg parameters are given in Table 3.

Table 2. Denavit-Hartenberg parameters for limb Li

j a j d j α j

1 0 0 π/2
2 ri 0 0
3 0 0 −π/2

Due to the special arrangement of the axes in each limb no separate transfor-
mation matrix was introduced for the active prismatic joints, their parameter ri ap-
pears in the matrix Gi2. A clear and brief introduction of the Denavit-Hartenberg
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convention and the systematic deduction of the forward transformation matrices
Ti can be found e.g. in Tsai (1999), Husty et al. (1997), and Pfurner (2006).

In a next step half-tangent substitutions for all ui j are performed to get rid of
the trigonometric functions:

cos(ui j) =
1− t2

i j

1+ t2
i j
, sin(ui j) =

2ti j

1+ t2
i j

(58)

This results in displacement matrices Ti containing new parameters ti j for the ro-
tation angles of the passive joints. Then from each matrix Ti the Study parameters
are computed using Eq.(7) and (8), leading to expressions

x0 = fi1(ti1, ti2, ti3, ti4)
... (59)

y3 = f8i(ti1, ti2, ti3, ti4) i = 1, . . . ,3.

From each matrix Ti we obtain a parametrization of a subset of S2
6 depending

on four parameters. This subset essentially describes the motion capability of one
limb with fixed active prismatic joint. The final step is then to eliminate from
each parametrization the corresponding four joint parameters ti1, ti2, ti3, ti4 to obtain
algebraic equations which contain only the Study parameters and, of course, the
design parameters h1 and h2 and the active motion parameters r1, r2, r3. This can
be achieved easily by using the Linear Implicitization Algorithm (LIA).

To check the result another method was used to deduce these equations. In
contrast to the systematic way from before, this method is based on geometric
insight and for more complex link combinations it is quite likely that it doesn’t
work. Aside from Eq. (5) two other equations have to be deduced for each leg.
As it can be seen in Fig. 19 the distance of point Ai and Bi always remains con-
stant ri. By describing both points with respect to Σ0 using matrices Eq.(38) and
Eq.(39) and transformations Fi j the Euclidean distance |AiBi|2 can be computed
and equated with r2

i . After removal of denominators an equation of degree four in
x0,x1,x2,x3,y0,y1,y2,y3 remains. After applying a trick which was used by Husty
(1996) the degree can be lowered to two. The trick is to add a multiple of the square
of Eq. (5) to obtain an expression with the factor Eq.(6), which can immediately be
removed because it will never vanish. All equations generated this way appear also
in the result of the previous method. Note that these equations was also derived in
Example 11 Eq.(53) on page 33. The other condition is that the first and last axis
in each leg are constrained to stay coplanar. By using points Ai and Bi from above
and another two points lying on the axes a 4×4 matrix and its determinant can be
computed. This determinant is the condition for coplanarity and has again degree
four. It is possible to lower the degree to two by subtracting a proper multiple
of Eq. (5) and removing the emerging factor Eq.(6). The resulting equations are
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again identical to those derived by the LIA. After some simplifications of all seven
equations to remove

√
3 from at least some equations the following equations are

obtained:

g1 : x0 y0 + x1 y1 + x2 y2 + x3 y3 = 0

g2 : (h1−h2)x0 x2 +(h1 +h2)x1 x3− x2 y3− x3 y2 = 0

g3 : (h1−h2)x0 x3− (h1 +h2)x1 x2−4x1 y1−3x2 y2− x3 y3 = 0

g4 : (h1−h2)x0 x3− (h1 +h2)x1 x2 +2x1 y1 +2x3 y3 = 0

g5 : (h2
1−2h1 h2 +h2

2− r2
1)x2

0 +2
√

3(h1−h2)x0 y2−2(h1−h2)x0 y3+

(h2
1 +2h1 h2 +h2

2− r2
1)x2

1−2(h1 +h2)x1 y2−2
√

3(h1 +h2)x1 y3+

(h2
1−h1 h2 +h2

2− r2
1)x2

2 +2
√

3h1 h2 x2 x3−2
√

3(h1−h2)x2 y0+

2(h1 +h2)x2 y1 +(h2
1 +h1 h2 +h2

2− r2
1)x2

3 +2(h1−h2)x3 y0+ (60)

2
√

3(h1 +h2)x3 y1 +4(y2
0 + y2

1 + y2
2 + y2

3) = 0

g6 : (h2
1−2h1 h2 +h2

2− r2
2)x2

0−2
√

3(h1−h2)x0 y2−2(h1−h2)x0 y3+

(h2
1 +2h1 h2 +h2

2− r2
2)x2

1−2(h1 +h2)x1 y2 +2
√

3(h1 +h2)x1 y3+

(h2
1−h1 h2 +h2

2− r2
2)x2

2−2
√

3h1 h2 x2 x3 +2
√

3(h1−h2)x2 y0+

2(h1 +h2)x2 y1 +(h2
1 +h1 h2 +h2

2− r2
2)x2

3 +2(h1−h2)x3 y0−

2
√

3(h1 +h2)x3 y1 +4(y2
0 + y2

1 + y2
2 + y2

3) = 0

g7 : (h2
1−2h1 h2 +h2

2− r2
3)x2

0 +4(h1−h2)x0 y3 +(h2
1 +2h1 h2 +h2

2− r2
3)x2

1+

4(h1 +h2)x1 y2 +(h2
1 +2h1 h2 +h2

2− r2
3)x2

2−4(h1 +h2)x2 y1+

(h2
1−2h1 h2 +h2

2− r2
3)x2

3−4(h1−h2)x3 y0 +4(y2
0 + y2

1 + y2
2 + y2

3) = 0

This system of algebraic equations describes the mechanism. Fixing the motion
parameters ri one can ask for all projective points in P7 which fulfill all these seven
equations, under the condition that x2

0 + x2
1 + x2

2 + x2
3 6= 0. These points represent

then all possible poses of the platform (assemblies of the manipulator) which are
the solution of the direct kinematics of the TSAI 3-UPU manipulator for given
fixed inputs. Because it is more convenient to do all computations in affine space,
without loss of generality, the following normalization equation is added:

g8 : x2
0 + x2

1 + x2
2 + x2

3−1 = 0 (61)

Now it is guaranteed that no solution of this final system lies in the forbidden
variety described by x2

0 + x2
1 + x2

2 + x2
3 = 0 (see Eq. (6)). The downside of the

normalization is that for each projective solution point two affine representatives
as solutions for Eqs. (60)-(61) are obtained. This has to be taken in account when
different solutions are counted.
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5.4 Solving the system
In the previous subsection a set of eight algebraic equations was deduced whose

solutions describe all poses of the TSAI 3-UPU mechanism, depending on fixed
parameters h1 and h2 and of course the active joint parameters r1,r2, and r3. In the
following this system of equations is always written as a polynomial ideal in the
variables x0,x1,x2,x3,y0,y1,y2,y3 over the coefficient ring C[h1,h2,r1,r2,r3]. The
ideal that has to be dealt with is

I = 〈g1,g2,g3,g4,g5,g6,g7,g8〉,

where each gi here denotes the polynomial on the left hand side of the correspond-
ing constraint equation. To begin with the following ideal J is inspected, which
is obviously independent of the joint parameters r1, r2, and r3

J = 〈g1,g2,g3,g4〉.

Allthough that ideal is not that complicated, it is checked if it is possible to split
J into smaller ideals such that J can be written as

J =
⋂

i

Ji.

The benefit of such a decomposition would be that the vanishing set V (J) of J
would be the union of the vanishing sets (i.e. varieties) of the ideals Ji. As a
simple example one could imagine a polynomial equation which can be written
as product of several factors, i.e. the variety of the equation is a union of simpler
varieties. This concept can be extended to arbitrary ideals and is called primary
(prime) decomposition, where the difference between prime and primary lies only
in the way how the resulting ideals are returned. Prime decomposition is the more
strict version and returns all ideals reduced down to the bare essentials (the results
are radicals). Relating to the example mentioned above primary decomposition
would return the factors with possible powers, whereas prime decomposition only
the factors with multiplicity one (see Section 4).

The computation of the prime decomposition of J shows that it can indeed
be written in a very simple way:

J =
6⋂

i=1

Ji

with
J1 = 〈y0,x1,x2,x3〉, J2 = 〈x0,y1,x2,x3〉,

J3 = 〈y0,y1,x2,x3〉, J4 = 〈x0,x1,y2,y3〉,
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J5 = 〈(h1−h2)x0 x2 +(h1 +h2)x1 x3− x2 y3− x3 y2,(h1−h2)x0 x3−
(h1 +h2)x1 x2− x2 y2 + x3 y3,2x1 y1 + x2 y2 + x3 y3,x0 y0− x1 y1,

(h1−h2)
2 x2

0 +(h1 +h2)
2 x2

1− y2
2− y2

3,(h1 +h2)x3
2 y0−3(h1−h2)x2

2 x3 y1−
2x2

2 y0 y1−3(h1−h2)x2 x2
3 y0 +(h1−h2)x3

3 y1−2x2
3 y0 y1〉

J6 = 〈x0,x1,x2,x3〉.
This primary decomposition was computed over the ring Q[x0,x1,x2,x3,y0,y1,y2,
y3,h1,h2] to find possible other decompositions or changes of dimension, which
could occur for special values of h1 and h2. Fortunately over this ring ideal J5
does not split and has always the same dimension, i.e. dimension 3. Although
ideal J6 is a valid component of J it can be removed, because in connection
with Eq. (6) it leads to an inconsistent system. For the zero set or vanishing set
V (J) of J it follows that

V (J) =
5⋃

i=1

V (Ji).

Now the remaining equations are added and by generating the sub-systems

Ki := Ji∪〈g5,g6,g7,g8〉

the vanishing set of the whole system I can be written as

V (I) =
5⋃

i=1

V (Ki).

So, instead of studying the system as a whole, each of the smaller sub-systems Ki
can be inspected separately. Then the solution of system I is the union of the
solutions of the sub-systems.
Furthermore, it has to be noted that for each assembly mode described by a so-
lution of direct kinematics, there exists another solution where the manipulator is
assembled mirrored with respect to the base.

Solutions for arbitrary design parameters In the following subsection all com-
putations for direct kinematics are performed under the assumption that the five
parameters are arbitrary i.e. generic. To find out the Hilbert dimension of each
ideal Ki the necessary Groebner bases are computed for general parameters, ex-
cept the basis for K5, where for reasons of simplification randomly chosen param-
eters h1,h2 are substituted before the computation of the basis. So, for arbitrary
design parameters the result is that

dim(Ki) = 0, i = 1, . . . ,5
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which means that all sub-systems have finitely many solutions. Reusing the com-
puted bases from above the number of solutions can be determined easily for each
system Ki. Due to the fact that always two solutions of a system describe the
same position of the platform, each of these numbers has to be halved (see para-
graph below Eq. (61)). In the following only these essentially different solutions
are considered. The number of solutions for each system Ki in the generic case is

Table 3. Essentially different solutions for each ideal K1, . . . ,K5

K1 K2 K3 K4 K5 total

2 2 4 6 64 78

So all together there are 78 essentially different solutions for given generic pa-
rameters h1, h2 and joint parameters r1, r2, and r3, i.e. 78 possible poses of the
platform, theoretically. It is clear that for arbitrarily chosen parameters all these
solutions will be complex. Mechanically this means that the manipulator cannot be
assembled because of e.g. too different limb lengths. But of course, when design
and joint parameters are chosen thoughtfully, many of the solution poses also can
be real. And, as already mentioned, if there are real solutions at all, they appear in
pairs where one pose can be assembled “upwards”, the other one downwards. In
Section 5.5 design parameters will be given for almost all Ki such that all solutions
of the corresponding system are real. Due to the fact that systems K1,K2,K3 al-
low a closed form solution it can be shown that it is not possible that all systems
can reach their maximum of real solutions simultaneously. To get an idea what the
total number of real solutions for the manipulator can be some attempts were made
using reasonably chosen parameters. Surprisingly this number never exceeded 28
in our computations. According to private correspondence with Damien Chablat
he found a set of parameters where the number of essentially different solutions is
32. But it is absolutely not clear if this is the upper bound for the number of real
solutions.

Solutions for equal limb lengths Here it is assumed that all limbs are of equal
length. Because of the structure of the equations this is a non-generic case and has
to be treated separately.

r1 := r r2 := r r3 := r.

Now the same computations can be performed which were done in the previous
subsection to obtain the Hilbert dimension of each ideal. Due to the fact that there
are less parameters all Groebner bases can be computed without specifying any

65



parameters. For the dimension the result is the same as in the previous case.

dim(Ki) = 0, i = 1, . . . ,5.

When the number of solutions is computed for each system and halved afterwards
the following results are obtained.

Table 4. Essentially different solutions, limb lengths are equal

K1 K2 K3 K4 K5 total

2 2 2 6 60 72

Here there exist theoretically 72 solutions for the platform’s position, six less than
before. Concerning the question where they could have gone, one should not forget
that there is this forbidden subvariety on the Study-quadric. It is possible that
for special design parameters a solution lies on this subvariety. In the previous
paragraph it was mentioned that for special design parameters 28 real solutions
can be obtained. Actually it was a set of parameters with equal limb lengths. The
exact values for the parameters were

h1 = 12, h2 = 7, r1 = r2 = r3 =
181
13
≈ 13.923.

A very important difference to the SNU 3-UPU manipulator which was discussed
in Walter et al. (2009) is the fact that here in general all 72 solutions have multi-
plicity 1, i.e. particularly the solution which corresponds to the so called “home
position” has multiplicity 1, and not 4, which is the case for the SNU 3-UPU.
One could conclude that the TSAI 3-UPU should show a better behavior in the
home position, not being that shaky as the SNU 3-UPU. According to the results
from Dwarakanath and Bhutani (2012) this is absolutely the case, provided that
the mechanism is built with minimal clearences in all joints. The home pose can
be seen in Fig. 19 and is described by the following values

x0 = 1, x1 = 0, x2 = 0, x3 = 0,

y0 = 0, y1 =
√

r2− (h1−h2)2/2, y2 = 0, y3 = 0.

5.5 The manipulator’s operation modes
Until now r1, r2, and r3 were treated as fixed design parameters for the direct

kinematics. In this section they will be treated as parameters which are allowed
to change, i.e. the behavior of this mechanism will be studied, when the prismatic
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joints are actuated. Computation of the Hilbert dimension of each ideal Ki with
r1,r2,r3 used as unknowns shows that

dim(Ki) = 3, i = 1, . . . ,5

where dim denotes the dimension over C[h1,h2], in contrast to dim which denotes
the dimension over C[h1,h2,r1,r2,r3] as in the previous sections. It follows that
for generic design parameters the 3-UPU manipulator has 3 DOFs.
As it was shown in Walter et al. (2009) for the SNU 3-UPU manipulator each sub-
system Ki of a mechanism’s set of equations corresponds to a specific operation
mode of the manipulator. In the following each system Ki will be discussed sepa-
rately. Possible singularities which can emerge either as singular poses of a mode
itself, or as poses where a change of modes is feasible, will be discussed in the
next sections.
The following algorithm is applied in the next paragraphs: Each system Ji is
solved and the solution is substituted into the transformation matrix M Eq.(3).
From the obtained results properties of the solutions of the sub-systems Ki can
be deduced and from these follow properties of the motion of the platform. It is
absolutely not necessary to use equations g5−g7 from Eq.(60) for this inspection,
because they describe only the limb lengths which are now free parameters. Equa-
tion (61) is used to simplify the matrix entries, if possible, i.e. if three unknowns
of Eq.(61) are 0, the remaining unknown is set to 1. Furthermore the position of
the platform is described by a series of simpler transformations, starting from the
“planar home position”.

System K1: Translational Mode

{y0 = 0, x1 = 0, x2 = 0, x3 = 0}

M =


1 0 0 0
−2y1 1 0 0
−2y2 0 1 0
−2y3 0 0 1

 .

This is the simple translational operation mode which was discussed in many pa-
pers about this manipulator. The transformation matrix was simplified by substi-
tuting x0 = 1. From the matrix it can easily be seen that the translational motion
can be parameterized using y1,y2,y3. If r1,r2,r3 are given this mode leads to two
assembly modes (see Tab. 3) and both are real e.g. for the parameters

h1 = 12, h2 = 7, r1 =
670
21

, r2 =
243

7
, r3 =

611
21

.
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System K2: Twisted translational Mode

{x0 = 0, y1 = 0, x2 = 0, x3 = 0}

M =


1 0 0 0

2y0 1 0 0
2y3 0 −1 0
−2y2 0 0 −1

 .

This is a mode which was already mentioned in Chebbi and Parenti-Castelli (2010),
where singularities of different geometries of the 3-UPU translational manipulator
are investigated. The twisted translational mode appears in this paper as geometry
B.1. Here x1 = 1 was used to simplify the result. Each solution of system K2
corresponds to a rotation of the platform about its normal axis N by 180 degrees
and a subsequent translation. It follows that the described operation mode is ba-
sically a pure translation. To parameterize this motion one could use y0,y2,y3 as
parameters. All solutions for direct kinematics are real for e.g. the parameters

h1 = 12, h2 = 7, r1 =
121
3

, r2 =
965
21

, r3 =
62
3
.

System K3: Planar Mode

{y0 = 0, y1 = 0, x2 = 0, x3 = 0}

M =


1 0 0 0
0 1 0 0

2(−x0 y2 + x1 y3) 0 x2
0− x2

1 −2x0 x1
2(−x0 y3− x1 y2) 0 2x0 x1 x2

0− x2
1

 .

Solutions of K3 correspond to poses of the platform where it is coplanar to the
base. To parameterize this planar operation mode one could use x1,y2,y3 in con-
nection with x2

0 + x2
1 = 1, where x1 is responsible for the rotation of the platform

about its normal axis N and y2,y3 for the translation in the base-plane, i.e free
planar motion is available in this mode. Concerning assembly modes belonging to
this mode all four solutions of direct kinematics are real for e.g. the parameters

h1 = 12, h2 = 7, r1 =
125

7
, r2 =

493
21

, r3 =
66
7
.

System K4: Upside-down planar mode

{x0 = 0, x1 = 0, y2 = 0, y3 = 0}
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M =


1 0 0 0
0 −1 0 0

2(x2 y0− x3 y1) 0 x2
2− x2

3 2x2 x3
2(x2 y1 + x3 y0) 0 2x2 x3 −x2

2 + x2
3

 .

Solutions of K4 correspond to positions of the platform where it is turned upside
down and coplanar to the base. This can be achieved by starting in the planar
home position with disconnected legs, turning the platform about its y-axis by 180
degrees, and attaching the legs again. To parameterize the upside-down planar
operation mode one could use x3,y0,y1 in connection with x2

2 +x2
3 = 1, where x3 is

responsible for the rotation of the platform about its normal axis N and y0,y1 for
the translation in the base-plane. It was possible to find parameters where all six
solutions of direct kinematics are real, which are e.g.

h1 = 12, h2 = 7, r1 =
125
7

, r2 =
493
21

, r3 =
66
7
.

System K5: General Mode

This mode is the most difficult one, because of the complexity of the equations in
ideal J5. What definitely can be said is that it has in general for given limb length
64 solutions and that the system has 28 real solutions if the parameters are

h1 = 12, h2 = 7, r1 = r2 = r3 =
181
13

.

Although the equations of J5 can be solved linearly for x0, x1,y2, and y3, due to
the complexity of the equations there is no possibility to find a neat description of
this mode, neither the condition for singularities nor a description of them.
Summing up there are five essentially different operation modes of the TSAI 3-
UPU manipulator. It is quite obvious that this mechanism is more complex than
the SNU 3-UPU whose essentially seven operation modes were quite simple.

5.6 Conditions for singular poses
In this section singular poses of the TSAI 3-UPU manipulator are discussed.

A singular pose is a pose where the Jacobian matrix of Eqns. (60)-(61) with re-
spect to the unknowns x0,x1,x2,x3,y0,y1,y2,y3 has vanishing determinant. If this
determinant is computed a complete description of all possible forward singular
poses is available. Because the manipulator is actuated via prismatic joints there
are no input singularities in the kinematic chains of the legs. Due to the fact that
the manipulator has more than one operation mode, singular poses can be divided
into two different kinds. Either such a pose belongs to a single operation mode,
or it is a pose which becomes singular because it lies in more than one operation
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mode. The latter is then a pose where the manipulator can change its operation
mode. Seen from the point of ideals the ideal I describes a three dimensional
variety in C[h1,h2][x0,x1,x2,x3,y0,y1,y2,y3,r1,r2,r3], which is composed of five
simpler varieties. Singular poses lie now either on one of these components or in
an intersection, which can be at most two dimensional.
In this subsection necessary conditions on the lengths r1,r2,r2 are deduced for ob-
taining singular poses of the first kind. Because these poses always correspond to
a single operation mode it is possible to use ideals Ki instead of I . For almost all
ideals the procedure is the same:
The 8× 8 Jacobian matrix and its determinant are computed. This equation is
added to the ideal Ki and from the resulting ideal all variables x0,x1,x2,x3,y0,y1,
y2,y3 are eliminated. The result is an equation in Q[h1,h2][r1,r2,r3] which is the
necessary condition that the direct kinematics of the manipulator leads to a singu-
lar pose in this mode. The ideal for the General Mode needs a special treatment
because it is too complex for the standard elimination methods.
Due to the fact that leg lengths r1,r2,r2 appear squared in the equations the re-
sult of the elimination describes a hypersurface in the space of these parameters,
which has full octahedral symmetry. The surface looks the same in all octants and
therefore only the first octant is shown in the following figures.

Singular poses: Translational Mode The condition is an equation of degree 4
in r1,r2,r3 and looks as follows:

r4
1 + r4

2 + r4
3− r2

1 r2
2− r2

1 r2
3− r2

2 r2
3−3(h1−h2)

2 (r2
1 + r2

2 + r2
3)+9(h1−h2)

4 = 0.
(62)

Further inspection shows that for given values for h1 and h2 Eq.(62) describes a
Kummer surface in the joint parameter space r1,r2,r3. The Kummer surface is a
very famous algebraic degree four surface, possessing the maximum number of 16
double points (see e.g. Hudson (1905)). If the joint parameters r1,r2,r3 are chosen
inside resp. outside the “pipe“ (Fig. 20), both solutions of the direct kinematics
are real resp. complex. On the other hand, if the parameters of the limbs are
chosen such that the condition Eq.(62) is fulfilled, it is not difficult to show that
both solutions coincide and the corresponding positions are described by

M =


1 0 0 0
0 1 0 0
p2 0 1 0
p3 0 0 1

 ,

i.e. the singular positions of the translational mode are those, where base and
platform lie in the same plane.
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Figure 20. The singularity surface of the translational mode.

Figure 21. Kummer singularity surface in all eight octants

Singular poses: Twisted translational Mode The necessary condition for sin-
gular positions:

r4
1 + r4

2 + r4
3− r2

1 r2
2− r2

1 r2
3− r2

2 r2
3−3(h1 +h2)

2 (r2
1 + r2

2 + r2
3)+9(h1 +h2)

4 = 0
(63)

It is again a Kummer surface with the difference that the ”pipe“ (Fig. 22) has a
larger diameter. Again, if the limb parameters are chosen inside resp. outside the
“pipe“, both solutions of the direct kinematics are real resp. complex. If the con-
dition Eq.(63) is fulfilled, both solutions coincide and the corresponding positions
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Figure 22. The singularity surface of the twisted translational mode.

are described by

M =


1 0 0 0
0 1 0 0
p2 0 −1 0
p3 0 0 −1

 ,

i.e. the singular positions of the twisted translational mode are those, where base
and platform lie in the same plane and the platform is rotated by 180 degrees in
this plane.

Singular poses: Planar Mode The condition is an equation of degree 12 which
can be factorized into

F1 F2 (r1 + r2− r3)(r1 + r3− r2)(r2 + r3− r1)F3 = 0 (64)

where F1 and F2 are exactly the singularity conditions from the previous modes
and F3 is the factor r1 + r2 + r3 which does never vanish. The union of the cor-
responding varieties of these five factors separates the joint parameter space into
several zones where zero, two, or four real solutions are obtained. Due to the fact
that the condition is a product of essentially five factors there are more than one
representatives for a singular position. First of all both matrices from the previous
modes, describing their singular positions. Furthermore from the small factors one
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Figure 23. The singularity surface of the planar mode. It contains the surfaces
from Fig. 20 and Fig. 22.

obtains

M =


1 0 0 0
0 1 0 0
p2 0 v33 v32
p3 0 −v32 v33


with

v2
32 + v2

33 = 1, p2
2 + p2

3 = h2
1 +h2

2−2h1 h2 v33,

i.e. amongst others a singular position is obtained when the origin of the platform
frame lies on a circle in the base plane whose radius is determined by the rotation
of the frame about its x-axis.

Singular poses: Upside-down planar mode Computation of the singularity
condition was rather hard in this case. The result is a very lengthy equation of
degree 24 which cannot be factorized over Q. Due to space limitations it is not
displayed here. Several plots of it were made for given h1,h2. The variety is again
tube-like but it has also self-intersections which again separate the parameter space
in different zones. It is not clear how the singular poses arising from this condition
can be described in a short and concise way.
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Figure 24. The singularity surface of
the upside-down planar mode.

Figure 25. Intersection curve of the
”pipe“ of Fig. 24.

Singular poses: General Mode Although the equations of J5 can be solved
linearly for x0, x1,y2, and y3, due to the complexity of the equations there is no
possibility to find a neat description of this mode. Surprisingly the condition for
singularities could be computed for given values of h1 and h2, but in a very differ-
ent way. First of all the two design parameters are set to

h1 = 12, h2 = 7.

The ideal describing all singular poses of this mode is computed in an indirect
way. The reason for this is the fact that the number of describing equations is not
eight as in the previous cases. To begin with, the Jacobian determinant is derived
from Eqns. (60)-(61) and it is added to the ideal I . This ideal has dimension 2
and describes on one hand all singular poses of all modes and on the other hand
all singular poses arising of intersections of components. But especially it is again
a composition of various varieties. All components of this variety which are not
of interest are described by ideals which contain an ideal Ji with i = 1, . . . ,4. To
obtain the desired component all superfluous components have to be removed. Es-
sentially this can be achieved by the technique of saturation with respect to each
of the polynomials x0,x1,x2,x3,y0 and y1, which are the generating elements of
ideals J1, . . . ,J4. By inspection of the intersection of the variety with each of
these hyperplanes it is checked that the only two dimensional components where
one of these variables is zero, are the superfluous ones. Saturation of an ideal with
respect to a polynomial (which can be seen as a principal ideal) is nothing else
then the computation of their quotient for multiple times until the result does not
change anymore. A possible analogy would be the removal of a power of a prime
number from a composite number by repeated division. The result is an ideal L
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which describes all singular poses of the general mode.
The tricky part is the elimination of the Study parameters. Due to the fact that all
present methods and algorithms fail for reasons of memory and time, another way
has to be found. First of all randomly chosen parameters are substituted for r1 and
r2. Then the elimination can be done and the result is a univariate polynomial in
r3 of degree 208 (only even powers). From this it is concluded that the equation
wanted has in general degree 208 in each unknown. For the total degree one has
to guess and the following computations show that a guess of also 208 is correct.
Then a general ansatz for a polynomial in r1,r2,r3 of degree 208 is made, intro-
ducing 34497 unknown coefficients C1, . . . ,C34497 which have to be determined.
Now the following steps are repeated for several pairs of values for r1 and r2 (for
1413 pairs to be exact): At first the values of the pair are substituted into ideal L
and the univariate polynomial in r3 is obtained. Then the substitution is made in
the general ansatz, leading to a polynomial in r3 where the coefficients are linear
expressions in the coefficients Ci. After multiplication of the univariate with an
unknown scaling factor comparison of coefficients leads to a system of 105 linear
equations.
For each pair 105 such equations are obtained which means that in the end there
are 148365 equations in 35910 unknowns. As a precaution and for reasons of
linear dependencies the number of pairs of values is set so high. In the end all
coefficients C1, . . . ,C34497 can be computed up to a scaling factor and after substi-
tution into the general ansatz the condition for singular poses of the general mode
is available. Due to the extreme size of this equation a 3D plot is not possible, but
in a roundabout way a plot of a planar intersection of the surface in the first octant
can be generated, like for the surface in Fig. 24 resp. Fig. 25. See Figure 26 for an
impression of the complexity of this surface. Due to the fact that the surface has
several connections to the parts in neighboring octants, there is no ”pipe“ shape
any more.

5.7 Changing operation modes
As already mentioned there exist poses where the mechanism can change from

one mode into another mode. One of them is e.g. the “planar home position” where
the mechanism can bifurcate into the planar mode or into the translational mode. In
the following an overview is given of those poses where a mode-change is possible.
This is done by inspecting each pair of ideals {Ki,K j} with respect to common
solutions. For each pair the dimension of the intersection of the corresponding
varieties is computed and the following results are obtained.
The numbers in Table 5 correspond to the dimension of the intersection variety.
As it can easily be seen there are four possible combinations of operation modes
which have no pose in common, to change from one to the other a detour has to
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Figure 26. Intersection curve of the surface from the general mode, first octant,
cut out by a plane orthogonal to (1,1,1)T .

Table 5. All values of dim(Ki∪K j).

K1 K2 K3 K4 K5

K1 . . . -1 2 -1 2
K2 -1 . . . 2 -1 2
K3 2 2 . . . -1 2
K4 -1 -1 -1 . . . 2
K5 2 2 2 2 . . .

be made, which is always possible via the general mode, corresponding to K5.
Once more it has to be noted that mode changing poses of the manipulator are also
singular poses, because each of them lies in the intersection of two varieties. In the
following all possible changes are discussed with respect to necessary conditions
and a description of related poses.

Translational mode (K1)←→ planar mode (K3) The condition for this change
is exactly the singularity condition from the translational mode, i.e. all singularities
of this mode coincide with the intersection singularities with the planar mode.
Hence the possible mode change poses have already been given in Subsection 5.6
and the corresponding singularity surface can be seen in Fig. 20.
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Figure 27. Surface describing the condition for changes from translational to gen-
eral mode.

Translational mode (K1)←→ general mode (K5) For this change a new con-
dition appears, that is

r4
1 + r4

2 + r4
3− r2

1 r2
2− r2

1 r2
3− r2

2 r2
3−36(h1−h2)

4 = 0 (65)

and for the corresponding positions of the platform the following description can
be deduced:

M =


1 0 0 0
p1 1 0 0
p2 0 1 0
p3 0 0 1


with

p2
2 + p2

3 = 4(h1−h2)
2,

i.e. platform and base have the same orientation and the origin of the platform’s
frame has to lie on a cylinder with radius 2(h1−h2). This is a result which verifies
statements about singularity loci from Chebbi and Parenti-Castelli (2010).

Twisted translational mode (K2) ←→ planar mode (K3) The condition for
this change is exactly the singularity condition of the twisted translational mode,
i.e. all singularities of this mode coincide with the intersection singularities with
the planar mode. Hence the possible mode change poses have already been men-
tioned and the corresponding singularity surface can be seen in Fig. 22.
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Twisted translational mode (K2) ←→ general mode (K5) The condition for
this mode change is as follows:

r4
1 + r4

2 + r4
3− r2

1 r2
2− r2

1 r2
3− r2

2 r2
3−36(h1 +h2)

4 = 0. (66)

For the corresponding poses of the platform the following description can be de-
duced:

M =


1 0 0 0
p1 1 0 0
p2 0 −1 0
p3 0 0 −1


with

p2
2 + p2

3 = 4(h1 +h2)
2,

i.e. once more platform and base have the same orientation and the origin of the
platform’s frame has to lie on a cylinder, but this time with radius 2(h1 +h2). The
same result can again be found in Chebbi and Parenti-Castelli (2010), p. 598.

Figure 28. Surface describing the condition for changes from twisted translational
mode to general mode.

Planar mode (K3) ←→ general mode (K5) The condition which has to be
fulfilled for this case reads

7(r4
1 + r4

2 + r4
3)−11(r2

1 r2
2− r2

1 r2
3− r2

2 r2
3) = 0. (67)
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Figure 29. Surface describing the condition for changes from planar mode to gen-
eral mode.

The corresponding poses of the platform are given by

M =


1 0 0 0
0 1 0 0
p2 0 v33 v32
p3 0 −v32 v33


with

v2
32 + v2

33 = 1, p2
2 + p2

3 = 4(h2
1 +h2

2−2h1 h2 v33).

It is noticeable that these positions are very similar to the singular poses of the
planar mode itself.

Upside-down planar mode (K4) ←→ general mode (K5) The condition for
this case can be computed but it is rather complicated. It is an equation of degree
24 and it is not equal to the singularity condition of the upside-down planar mode
itself. As a result of the complexity up to now also no description of the platform’s
poses could be found.

All the other combinations which are {K1,K2}, {K1,K4}, {K2,K4}, and
{K3,K4} do not allow any operation mode change.
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Figure 30. Surface describing the condi-
tion for changes from upside-down planar
mode to general mode.

Figure 31. Intersection curve of the
”pipe“ of Fig. 30.

5.8 Conclusion
In this chapter an algebraic approach to the analysis of mechanisms was pre-

sented. To establish this methodology the Study representation of spatial displace-
ments was introduced. Starting from the kinematic chain as basic element, differ-
ent methods to derive the algebraic constraint equations for kinematic chains were
demonstrated. After that, in a primer on methods from algebraic geometry, the
most important and powerful algebraic tools for the analysis and solution of these
equations were introduced. In the last section the application of all these meth-
ods was demonstrated in the complete global analysis of the 3-UPU TSAI parallel
manipulator.
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