
Linear Algebra & Geometry 
why is linear algebra useful in computer vision?

Some of the slides in this lecture are courtesy 
to Prof. Octavia I. Camps, Penn State University

References:
-Any book on linear algebra!
-[HZ] – chapters 2, 4



Why is linear algebra useful in 
computer vision?

• Representation
– 3D points in the scene
– 2D points in the image

• Coordinates will be used to
– Perform geometrical transformations
– Associate  3D with 2D points

• Images are matrices of numbers
– Find properties of these numbers



Agenda

1. Basics definitions and properties
2. Geometrical transformations
3. SVD and its applications



P = [x,y,z]

Vectors (i.e., 2D or 3D vectors)

Image

3D world
p = [x,y]



Vectors (i.e., 2D vectors)
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Magnitude:

Orientation:

Is a unit vector

If , Is a UNIT vector



Vector Addition
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Vector Subtraction
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Scalar Product
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Inner (dot) Product
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The inner product is a SCALAR!



Orthonormal Basis
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Magnitude:kuk = kv ⇥ wk = kvkkwk sin↵

Vector (cross) Product

The cross product is a VECTOR!
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Orientation:



i = j⇥ k

j = k⇥ i

k = i⇥ j

Vector Product Computation
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Matrices

Sum:

Example:

A and B must have the same dimensions!

Pixel’s intensity value

An⇥m =

2

6664

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm

3

7775



Matrices

Product:

A and B must have 
compatible dimensions!

An⇥m =

2

6664

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm

3

7775



Matrices
Transpose:

If A is symmetric

Examples:
Symmetric?

Symmetric?

No!

Yes!



Matrices
Determinant:

Example:

A must be square



Matrices
Inverse: A must be square

Example:



2D Geometrical 
Transformations



2D Translation
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2D Translation Equation
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2D Translation using Matrices
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Homogeneous Coordinates

• Multiply the coordinates by a non-zero 
scalar and add an extra coordinate equal 
to that scalar.  For example,



Back to Cartesian Coordinates:

• Divide by the last coordinate and eliminate it. For 
example,

• NOTE: in our example the scalar was 1



2D Translation using 
Homogeneous Coordinates
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Scaling

P

P’



Scaling Equation

P
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P’
sy y



P

P’=S·P
P’’=T·P’

P’’=T · P’=T ·(S · P)=(T · S)·P = A · P

Scaling & Translating

P’’



Scaling & Translating

A



Translating & Scaling 
 = Scaling & Translating ?



Rotation

P

P’



Rotation Equations

Counter-clockwise rotation by an angle θ

P

x

y’
P’
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y



Degrees of Freedom

R is 2x2 4 elements

Note: R belongs to the category of normal matrices 
and satisfies many interesting properties:



Rotation+ Scaling 
+Translation
P’= (T R S) P

If sx=sy, this is a
similarity 
transformation!



Transformation in 2D

-Isometries

-Similarities

-Affinity

-Projective



Transformation in 2D

Isometries:

- Preserve distance (areas)
- 3 DOF
- Regulate motion 
  of rigid object

[Euclideans]



Transformation in 2D

Similarities:

- Preserve
- ratio of lengths
- angles

-4 DOF



Transformation in 2D

Affinities:



Transformation in 2D

Affinities:

-Preserve:
- Parallel lines
- Ratio of areas
- Ratio of lengths on 
 collinear lines
- others…

- 6 DOF



Transformation in 2D

Projective:

- 8 DOF
- Preserve:

- cross ratio of 4 collinear points
- collinearity 
- and a few others…



Eigenvalues and Eigenvectors



The eigenvalues of A are the roots of the 
characteristic equation

Eigenvectors of A are columns of S

diagonal form of matrix

Eigenvalues and Eigenvectors



     UΣVT = A
• Where U and V are orthogonal matrices, 

and Σ is a diagonal matrix. For example:

Singular Value Decomposition 



Singular Value decomposition

that





• Look at how the multiplication works 
out, left to right:

• Column 1 of U gets scaled by the first 
value from Σ.

• The resulting vector gets scaled by row 
1 of VT to produce a contribution to the 
columns of A

An Numerical Example



• Each product of (column i of U)·(value i 
from Σ)·(row i of VT) produces a 

+
=

An Numerical Example



We can look at Σ 
to see that the 
first column has 
a large effect

while the second 
column has a 
much smaller 
effect in this 
example

An Numerical Example



• For this image, using only the first 10 
of 300 singular values produces a 
recognizable reconstruction

• So, SVD can be used for image 
compression

SVD Applications



• Remember, columns of U are the Principal 
Components of the data: the major patterns that 
can be added to produce the columns of the 
original matrix

• One use of this is to construct a matrix where each 
column is a separate data sample

• Run SVD on that matrix, and look at the first few 
columns of U to see patterns that are common 
among the columns

• This is called Principal Component Analysis (or PCA) 
of the data samples

Principal Component Analysis



• Often, raw data samples have a lot of 
redundancy and patterns

• PCA can allow you to represent data samples 
as weights on the principal components, rather 
than using the original raw form of the data

• By representing each sample as just those 
weights, you can represent just the “meat” of 
what’s different between samples.

• This minimal representation makes machine 
learning and other algorithms much more 
efficient

Principal Component Analysis





HW 0.1:
Compute eigenvalues and eigenvectors of 

the following transformations


