
Towards an Efficient and Accurate Schedulability
Analysis for Real-Time Cyber-Physical Systems

Mitra Nasri

Assistant professor
Delft University of Technology

2

Now (and future)

Simple hardware and
software architecture

Embracing future challenges

A few computing nodes
and control loops

Intensive I/O
accesses

Complex (and usually parallelizable) application workloads
running on heterogeneous multi- and many-core platforms

Use of hardware accelerators
(GPUs, FPGA, DSP, co-processors, etc.)

Computation offloading
(to the cloud, edge, etc.)

Complex, less predictable, and harder-to-analyze
computing models

Simple, predictable, and easier-to-analyze
computing models

Back then

Liu and Layland task model was a
relevant thing for those systems

3

A wish list

Bounded or unbounded
uncertainty

time

deadline

Arrival modelTask precedence

Machine 2
Machine 1

Network

Execution model

Parallel heterogeneous DAG
tasks with conditional branches

resource
affinity

• Each resource may have its own scheduling policy
• Schedulers may have different runtime overheads

bounded uncertainty

AND

OR

suspension

Obtain the worst-case and best-case response time

Occupation time
of a resource

4

State of the art

4

Closed-form analyses
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

M. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quiñones, “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-
Based Global Fixed Priority Scheduling”, ISORC, 2017.

[Serrano’17]

[Nasri’19]

Experiment:
10 limited-preemptive parallel DAG tasks scheduled by global FP on 16 cores

Non-problem-window
based solution

Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg, "Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks under Global
Scheduling", the Euromicro Conference on Real-Time Systems (ECRTS), 2019, pp. 21:1-21:23.

5

State of the art

Closed-form analyses
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Exact tests in generic formal
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend

• Not scalable

The “tool” does all the labor
(to find the worst case)

Generic verification tools are very slow and
do not scale to reasonable problem sizes

6

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 18 21 24 27

sc
h

ed
u

la
b

ili
ty

 r
at

io

number of tasks

4 cores, 30% utilization

exact test (timeout)

this paper

exact test (UPPAAL)

[Nasri’19]

Results from formal verification-based analyses

0

500

1,000

1,500

2,000

2,500

3,000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

ru
n

ti
m

e
(s

ec
)

number of tasks

8 cores

4 cores

2 cores

1 core
[Nasri’19]
(8 cores)

Sequential non-preemptive periodic tasks (scheduled by global FP)

7

State of the art

7

Closed-form analyses
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Exact tests in generic formal
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend

• Not scalable

Our new line of work

Idea: efficiently explore
the space of all possible

schedules • Applicable to complex problems
• Easy to extend
• Highly accurate
• Relatively fast

Response-time analysis using
schedule abstraction

8

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=4) Serrano (m=4)

10 parallel random DAG tasksSome results on parallel DAG tasks

M. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quiñones, “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-
Based Global Fixed Priority Scheduling”, ISORC, 2017.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=8) Serrano (m=8)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=16) Serrano (m=16)

39

294

41
8

0

100

200

300

m=4 m=8 m=16

ru
n

ti
m

e
 (

s)

average
0.90 percentile
0.95 percentile
0.98 percentile

[ECRTS’19] (m=4) [ECRTS’19] (m=8)

[ECRTS’19] (m=16)

9
9

Response-time analysis using
schedule abstraction

10

An example: the problem of global non-preemptive scheduling

Global job-level
fixed-priority (JLFP)

Scheduler model

Multicore
(identical cores)

Platform model

Obtain the worst-case and best-case response time

Workload model

Non-preemptive
job sets

Release jitter
Deadline

Job model
𝐽1

Deadline

𝐽2

…
The job set is provided for an observation window, e.g., a hyperperiod.

This job model supports bounded non-deterministic arrivals, but not sporadic tasks
(un-bounded non-deterministic arrivals)

Execution time
variation

11

Solution highlights

Use job-ordering abstraction to analyze schedulability
by building a graph that represents all possible schedules

Solution

There are fewer permissible
job orderings than schedules

Observation

A sound analysis must consider
all possible execution scenarios

(i.e., combination of release times and execution times)

Due to scheduling
anomalies

12

A path represents a set of
similar schedules

Different paths have
different job orders

Response-time analysis using schedule-abstraction graphs

start end

A path aggregates all schedules
with the same job ordering

13

Response-time analysis using schedule-abstraction graphs

Earliest and latest finish time of 𝐽1
when it is dispatched after state 𝑣

start end

A path aggregates all schedules
with the same job ordering

A vertex abstracts a system state and
an edge represents a dispatched job

𝑱𝟏:[4, 8]
𝑣

14

Response-time analysis using schedule-abstraction graphs

Core 1:
Core 2:

10 30

15 20

A system state

Interpretation of an
uncertainty interval:

Possibly
available

Certainly
not available

Certainly
available

start end

A path aggregates all schedules
with the same job ordering

A vertex abstracts a system state and
an edge represents a dispatched job

A state is labeled with the
finish-time interval of

any path reaching the state

10 30

15

Earliest and latest completion times
of the job in the path

Obtaining the response time:

Response-time analysis using schedule-abstraction graphs

𝑱𝟏: [2, 5]

𝑱𝟏:[4, 8]
𝑱𝟏: [7, 15]

Best-case response time = min {completion times of the job} = 2
Worst-case response time = max {completion times of the job} = 15

A path aggregates all schedules
with the same job ordering

A vertex abstracts a system state and
an edge represents a dispatched job

A state represents the
finish-time interval of

any path reaching that state

16

Initial
state

merged

merged

merged

merged

Building the schedule-abstraction graph

Building the graph
(a breadth-first method)

Repeat until every path includes all jobs
1. Find the shortest path
2. For each not-yet-dispatched job that can be dispatched after the path:

2.1. Expand (add a new vertex)

2.2. Merge (if possible, merge the new vertex with an existing vertex)

System is idle and

no job has been scheduled

17

Building the schedule-abstraction graph

Expansion rules imply the
scheduling policy

Core 1:
Core 2:

10 30

15 20

State 𝒗𝒊
Next states

J1

J2

8 25
J2 Medium priority

17 30
J1 High priorityAvailable jobs

(at the state)

35 40
J3 Low priority

Expanding a vertex:
(reasoning on uncertainty intervals)

𝑣𝑖

18

Define the state
abstraction

Define the
expansion rules

Define merging
rules

How to use schedule-abstraction graphs to solve a new problem?

What is encoded by an edge?
What is encoded by a state?

How to create
new states?

How to identify
similar states?

And then, prove soundness
“the expansion rules must cover all possible schedules of the job set”

19

Challenges

https://www.globallanguageservices.co.uk/30-days-of-language-challenges/

20

Challenge: handling release jitter

0
J2 Medium priority 𝐶2 ∈ 15, 20

0
J1 High priority 𝐶1 ∈ 10, 15

0
J3 Low priority 𝐶3 ∈ 12, 16

54

60

60

1
𝑱𝟏: 𝟏𝟎, 𝟏𝟓

10, 15 𝑱𝟐: 25, 35 25, 35

2
𝑱𝟑: 37, 51 37, 51

3

00, 0

No jitter uniprocessor

21

Challenge: handling release jitter

𝑱𝟏: 25, 39

𝑱𝟐: 37, 55

1
𝑱𝟏: 𝟏𝟎, 𝟏𝟗 10, 19

𝑱𝟐: 𝟏𝟓, 𝟐𝟒

15, 24
2

𝑱𝟑: 𝟏𝟐, 𝟐𝟎

12, 20
3

𝑱𝟏: 22, 35

22, 35
5

𝑱𝟐: 25, 39 25, 39

4
𝑱𝟑: 37, 55 37, 55

6

0 8
J2 Medium priority 𝐶2 ∈ 15, 20

0 5
J1 High priority 𝐶1 ∈ 10, 15

0 4
J3 Low priority 𝐶3 ∈ 12, 16

54

60

60

00, 0

Small jitter uniprocessor

22

Challenge: handling release jitter

𝑱𝟏

1
𝑱𝟏

𝑱𝟐

2
𝑱𝟑

3

𝑱𝟏

𝑱𝟐
4

𝑱𝟑
7

0 30
J2 Medium priority 𝐶2 ∈ 15, 20

0 35
J1 High priority 𝐶1 ∈ 10, 15

0 40
J3 Low priority 𝐶3 ∈ 12, 16

54

60

60
0

𝑱𝟑
5

Larger jitter

6
𝑱𝟑

𝑱𝟐

𝑱𝟐

𝑱𝟏

The maximum number of
branches follows the
binomial co-efficient

uniprocessor

Large release jitter (or sporadic release) may result in a combinatorial state space

23

Challenge: handling release jitter

Partial-order reduction

Potential solutions

Avoid exploring paths that do not
contribute to the worst-case scenario.

Use approximation to derive the
worst-case completion time of the

remaining jobs in that path

Large release jitter (or sporadic release) may result in a combinatorial state space

24

Challenges: handling release jitter
Large release jitter may result in a combinatorial state space

Partial-order reduction

Potential solutions

Derive expansion rules for a set of jobs

Batch processing
(rather than processing a single job at a time)

1
𝑱𝟏, 𝑱𝟐

𝑱𝟐, 𝑱𝟑
2

3

4

0
𝑱𝟏, 𝑱𝟐, 𝑱𝟑

𝑱𝟑

𝑱𝟏

{ }

J2 Medium

J1 High

J3 Low

J4 Highest

priority 𝑱𝟒 𝑱𝟑
1

𝑱𝟏, 𝑱𝟐

𝑱𝟐, 𝑱𝟑

2

3

4

0

𝑱𝟏, 𝑱𝟐, 𝑱𝟑

𝑱𝟒

{𝑱𝟒}

7

5

6

𝑱𝟏

{ }

25

Challenges: handling release jitter
Large release jitter may result in a combinatorial state space

Partial-order reduction

Potential solutions

Batch processing
Using memorization

(to avoid exploring previously seen patterns)

What else?

Thank you.

