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Now (and future)

Simple hardware and 
software architecture

Embracing future challenges

A few computing nodes
and control loops

Intensive I/O 
accesses

Complex (and usually parallelizable) application workloads 
running on heterogeneous multi- and many-core platforms

Use of hardware accelerators 
(GPUs, FPGA, DSP, co-processors, etc.) 

Computation offloading 
(to the cloud, edge, etc.)

Complex, less predictable, and harder-to-analyze 
computing models 

Simple, predictable, and easier-to-analyze
computing models 

Back then

Liu and Layland task model was a 
relevant thing for those systems
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A wish list

Bounded or unbounded
uncertainty

time

deadline

Arrival modelTask precedence

Machine 2
Machine 1

Network

Execution model

Parallel heterogeneous DAG 
tasks with conditional branches

resource 
affinity

• Each resource may have its own scheduling policy
• Schedulers may have different runtime overheads

bounded uncertainty

AND

OR

suspension

Obtain the worst-case and best-case response time

Occupation time 
of a resource
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State of the art

4

Closed-form analyses 
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend
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M. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quiñones, “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-
Based Global Fixed Priority Scheduling”, ISORC, 2017.

[Serrano’17]

[Nasri’19]

Experiment:
10 limited-preemptive parallel DAG tasks scheduled by global FP on 16 cores

Non-problem-window 
based solution

Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg, "Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks under Global 
Scheduling", the Euromicro Conference on Real-Time Systems (ECRTS), 2019, pp. 21:1-21:23.
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State of the art

Closed-form analyses 
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Exact tests in generic formal 
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend 

• Not scalable

The “tool” does all the labor 
(to find the worst case)

Generic verification tools are very slow and 
do not scale to reasonable problem sizes
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this paper

exact test (UPPAAL)

[Nasri’19]

Results from formal verification-based analyses
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Sequential non-preemptive periodic tasks (scheduled by global FP)
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State of the art

7

Closed-form analyses 
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Exact tests in generic formal 
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend 

• Not scalable

Our new line of work

Idea: efficiently explore 
the space of all possible 

schedules • Applicable to complex problems
• Easy to extend 
• Highly accurate
• Relatively fast

Response-time analysis using 
schedule abstraction
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this paper (m=4) Serrano (m=4)

10 parallel random DAG tasksSome results on parallel DAG tasks 

M. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quiñones, “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-
Based Global Fixed Priority Scheduling”, ISORC, 2017.
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Response-time analysis using 
schedule abstraction
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An example: the problem of global non-preemptive scheduling

Global job-level 
fixed-priority (JLFP)

Scheduler model

Multicore 
(identical cores)

Platform model

Obtain the worst-case and best-case response time

Workload model 

Non-preemptive 
job sets

Release jitter
Deadline

Job model
𝐽1

Deadline

𝐽2

…
The job set is provided for an observation window, e.g., a hyperperiod.

This job model supports bounded non-deterministic arrivals, but not sporadic tasks 
(un-bounded non-deterministic arrivals)

Execution time 
variation
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Solution highlights

Use job-ordering abstraction to analyze schedulability 
by building a graph that represents all possible schedules

Solution

There are fewer permissible 
job orderings than schedules

Observation

A sound analysis must consider 
all possible execution scenarios

(i.e., combination of release times and execution times)

Due to scheduling 
anomalies
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A path represents a set of 
similar schedules

Different paths have 
different job orders

Response-time analysis using schedule-abstraction graphs

start end

A path aggregates all schedules 
with the same job ordering
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Response-time analysis using schedule-abstraction graphs

Earliest and latest finish time of 𝐽1
when it is dispatched after state 𝑣

start end

A path aggregates all schedules 
with the same job ordering

A vertex abstracts a system state and 
an edge represents a dispatched job

𝑱𝟏:[4, 8]
𝑣
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Response-time analysis using schedule-abstraction graphs

Core 1:
Core 2:

10           30

15    20

A system state 

Interpretation of an 
uncertainty interval:

Possibly 
available 

Certainly 
not available

Certainly 
available

start end

A path aggregates all schedules 
with the same job ordering

A vertex abstracts a system state and 
an edge represents a dispatched job

A state is labeled with the 
finish-time interval of 

any path reaching the state

10                 30
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Earliest and latest completion times 
of the job in the path

Obtaining the response time: 

Response-time analysis using schedule-abstraction graphs

𝑱𝟏: [2, 5]

𝑱𝟏:[4, 8]
𝑱𝟏: [7, 15]

Best-case response time = min {completion times of the job} = 2
Worst-case response time = max {completion times of the job} = 15

A path aggregates all schedules 
with the same job ordering

A vertex abstracts a system state and 
an edge represents a dispatched job

A state represents the 
finish-time interval of 

any path reaching that state
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Initial 
state

merged

merged

merged

merged

Building the schedule-abstraction graph

Building the graph 
(a breadth-first method)

Repeat until every path includes all jobs
1. Find the shortest path 
2. For each not-yet-dispatched job that can be dispatched after the path:

2.1.  Expand (add a new vertex)

2.2.  Merge (if possible, merge the new vertex with an existing vertex)

System is idle and 

no job has been scheduled



17

Building the schedule-abstraction graph

Expansion rules imply the 
scheduling policy

Core 1:
Core 2:

10           30

15    20

State 𝒗𝒊
Next states

J1

J2

8                     25
J2 Medium priority

17          30
J1 High priorityAvailable jobs

(at the state)

35    40
J3 Low priority

Expanding a vertex: 
(reasoning on uncertainty intervals)

𝑣𝑖
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Define the state 
abstraction

Define the 
expansion rules

Define merging 
rules

How to use schedule-abstraction graphs to solve a new problem? 

What is encoded by an edge?
What is encoded by a state?

How to create 
new states?

How to identify 
similar states?

And then, prove soundness
“the expansion rules must cover all possible schedules of the job set”
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Challenges

https://www.globallanguageservices.co.uk/30-days-of-language-challenges/
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Challenge: handling release jitter

0                 
J2 Medium priority  𝐶2 ∈ 15, 20

0           
J1 High priority  𝐶1 ∈ 10, 15

0      
J3 Low priority 𝐶3 ∈ 12, 16

54

60

60

1
𝑱𝟏: 𝟏𝟎, 𝟏𝟓

10, 15 𝑱𝟐: 25, 35 25, 35

2
𝑱𝟑: 37, 51 37, 51

3

00, 0

No jitter uniprocessor
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Challenge: handling release jitter

𝑱𝟏: 25, 39

𝑱𝟐: 37, 55

1
𝑱𝟏: 𝟏𝟎, 𝟏𝟗 10, 19

𝑱𝟐: 𝟏𝟓, 𝟐𝟒

15, 24
2

𝑱𝟑: 𝟏𝟐, 𝟐𝟎

12, 20
3

𝑱𝟏: 22, 35

22, 35
5

𝑱𝟐: 25, 39 25, 39

4
𝑱𝟑: 37, 55 37, 55

6

0                 8
J2 Medium priority  𝐶2 ∈ 15, 20

0           5
J1 High priority  𝐶1 ∈ 10, 15

0      4
J3 Low priority 𝐶3 ∈ 12, 16

54

60

60

00, 0

Small jitter uniprocessor
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Challenge: handling release jitter

𝑱𝟏

1
𝑱𝟏

𝑱𝟐

2
𝑱𝟑

3

𝑱𝟏

𝑱𝟐
4

𝑱𝟑
7

0                        30
J2 Medium priority  𝐶2 ∈ 15, 20

0                                  35
J1 High priority  𝐶1 ∈ 10, 15

0                                      40
J3 Low priority 𝐶3 ∈ 12, 16

54

60

60
0

𝑱𝟑
5

Larger jitter

6
𝑱𝟑

𝑱𝟐

𝑱𝟐

𝑱𝟏

The maximum number of 
branches follows the 
binomial co-efficient

uniprocessor

Large release jitter (or sporadic release) may result in a combinatorial state space
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Challenge: handling release jitter

Partial-order reduction

Potential solutions

Avoid exploring paths that do not 
contribute to the worst-case scenario.

Use approximation to derive the 
worst-case completion time of the 

remaining jobs in that path

Large release jitter (or sporadic release) may result in a combinatorial state space
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Challenges: handling release jitter
Large release jitter may result in a combinatorial state space

Partial-order reduction

Potential solutions

Derive expansion rules for a set of jobs

Batch processing 
(rather than processing a single job at a time)

1
𝑱𝟏, 𝑱𝟐

𝑱𝟐, 𝑱𝟑
2

3

4

0
𝑱𝟏, 𝑱𝟐, 𝑱𝟑

𝑱𝟑

𝑱𝟏

{ }

J2 Medium

J1 High

J3 Low

J4 Highest

priority 𝑱𝟒 𝑱𝟑
1

𝑱𝟏, 𝑱𝟐

𝑱𝟐, 𝑱𝟑

2

3

4

0

𝑱𝟏, 𝑱𝟐, 𝑱𝟑

𝑱𝟒

{𝑱𝟒}

7

5

6

𝑱𝟏

{ }



25

Challenges: handling release jitter
Large release jitter may result in a combinatorial state space

Partial-order reduction

Potential solutions

Batch processing
Using memorization 

(to avoid exploring previously seen patterns)

What else?

Thank you.


