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1 A 10-round related key attack
In order to provide the best related-key attack on a reduced-round version of Saturnin,
we will consider the iterative trail that we proposed in [CDL+20] in Section 5.2.4, with a
key-difference of 𝛿K :

𝛿K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑟 = 2𝑡 + 3 (master key K)

if 𝑟 = 2𝑡 + 1 (rotated key K′)

MC AK MR AK’

1.1 Instantiating the truncated trail with concrete differences
For a given 𝛿𝐾, we denote the active differences in the key as 𝑥, 𝑦, 𝑧, 𝑡. In order to satisfy
the differential trail, several state differences must be equal to key differences, as show
below:
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In particular, the active rows for MixRows in the second round have two input words with
a zero difference, one output word with a zero difference, and two output words with a
difference that is fixed from the key difference ((𝑧, 𝑡) or (𝑥, 𝑦) respectively). Therefore there
are only 216 choices of (𝑧, 𝑡) (respectively (𝑥, 𝑦)) out of 232 that are possible. Moreover for
each choice of (𝑥, 𝑦, 𝑧, 𝑡) we can compute all the differences before and after MR. Similarly,
the active column for MixColumns in the first round has two input words with a zero
difference, and two output words fixed a difference that is fixed from key conditions;
therefore there is a single possibility for the differences before and after MC.

In order to find the best instantiation of this truncated trail, we just have to iterate
over the 232 possible choices of (𝑥, 𝑦, 𝑧, 𝑡), deduce all the state differences, and multiply
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the probabilities of each differential transition. The best instantiation has a probability of
2−78.1 with

𝑥 = 0xe2e2, 𝑦 = 0xaaaa, 𝑧 = 0x3535, 𝑡 = 0x3f3f.

In [CDL+20] in Section 5.2.4 we gave a truncated differential with a reduced number
of active S-Boxes in the first and last round. However, it turns out that this path can not
be instantiated with concrete differences. Indeed, all the state differences can be computed
directly from 𝛿𝐾, and we can not have a cell that is active in the iterative rounds, and
inactive in the first or last round.

1.2 Using a 6 Super-round distinguisher
If we choose the optimal 𝛿K, the probability for a related-key differential distinguisher over
6 super-rounds, repeating 3 times the previous figure over two will be 2−78.1×3 = 2−234.3,
which can be detected with fewer pairs than the exhaustive search cost of 2256.

Our attack uses the 6-round related-key differential path, extended with 2 extra rounds
at the top and two at the bottom, as a truncated differential. For simplicity, we remove
the final MixRows and replace the final key 𝐾 ′ by an equivalent key 𝐾eq = MR−1(𝐾 ′).
We also integrate the MixRows of the second round inside the 6-round trail. We use
grey squares to denote a cell with a known difference, and black squares for cells with an
unknown difference.

2-round truncated differential (top):

AK’ SB MC AK SB

A random pair matching the input pattern follows the trail with probability 2−128.

6-round trail (distinguisher):

MR AK’
6 rounds

𝑝 = 2−234.3 AK’

2-round truncated differential (bottom):

SB MC AK SB AKeq

Key words: 𝐾 =

𝑘0 𝑘1 𝑘2 𝑘3

𝑘4 𝑘5 𝑘6 𝑘7

𝑘8 𝑘9 𝑘10 𝑘11

𝑘12 𝑘13 𝑘14 𝑘15

, 𝐾 ′ =

𝑘5 𝑘6 𝑘7 𝑘8

𝑘9 𝑘10 𝑘11 𝑘12

𝑘13 𝑘14 𝑘15 𝑘0

𝑘1 𝑘2 𝑘3 𝑘4

, 𝐾eq =

MR−1(𝑘5, 𝑘6, 𝑘7, 𝑘8)
MR−1(𝑘9, 𝑘10, 𝑘11, 𝑘12)
MR−1(𝑘13, 𝑘14, 𝑘15, 𝑘0)

MR−1(𝑘1, 𝑘2, 𝑘3, 𝑘4)

1.3 Attack procedure
We use structures of 2128 plaintexts encrypted under key 𝐾 and 𝐾 ⊕ 𝛿𝐾. Each structure is
defined by a fixed value 𝑢; we encrypt all 2128 plaintexts with value 𝑢 in the two rightmost
columns under key 𝐾, and all 2128 plaintexts with value 𝑢 ⊕ 𝛿𝑃 in the two rightmost
columns under key 𝐾 ′ ⊕𝛿𝐾 ′, where 𝛿𝑃 refers to the key difference in the rightmost column
of 𝐾 ′. A pair of structures defines 2256 pairs that match the input pattern.
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We initially encrypt 𝑁 = 2107 structures, so that we expect 𝑁 × 2256 × 2−128 ×
2−234.3 = 20.7 pairs that follow the full trail; with high probability there is one right
pair. For each structure we sort the ciphertexts according to the value in the 10 output
cells with a known difference, and locate collisions. After this filtering we are left with
𝑁 × 2256 × 2−160 = 𝑁 × 296 pairs that match the input and output pattern. We explain
below how to recover 224 bits of key from each candidate pair, for a cost of 𝑁 × 2128.

This suggest 𝑁 ×296 candidates for 224 bits of the key. We can verify each candidate by
exhaustive search of the missing 32 bits, for a total cost of 𝑁 × 2128. With high probability
there is a pair following the path in the initial data, and the attack is successful. The total
complexity will be about 2 × 𝑁 × 2128 = 2236.

For each of the 𝑁 × 296 pair candidates, we perform the following steps:

Step 1. We first guess 𝑘10 and 𝑘2, corresponding to positions 5 and 13 of 𝐾 ′, with a cost
of 232. Therefore we can compute SuperBoxes 5 and 13 in round 0. Since two differences
are fixed after MixColumns, we can recover the difference in cells 1 and 9 after the first
SuperBoxes. Since the input difference of those SuperBoxes is known from the plaintext
pair, we recover the values and finally 𝑘6 and 𝑘14. After this step we have 𝑁 × 2128

candidates, and the following steps are therefore repeated 𝑁 × 2128 times.

Step 2. The second column of 𝐾 ′ is known, therefore we can compute the second column
of the state through AK’, SB, and MC. In particular, we obtain the difference at the input
of SuperBoxes 5 and 13 of round 1. Since the output differences are fixed by the differential
path, we recover the values and finally 𝑘5 and 𝑘13.

Step 3. Similarly to step 1, but without needing to guess any key bits now, we can
compute SuperBoxes 0 and 8 in round 0 using 𝑘5 and 𝑘13, previously recovered. Since two
differences are fixed after MixColumns, we can recover the difference in cells 4 and 12 after
the first SuperBoxes, hence the values and finally 𝑘9 and 𝑘1.

Step 4. Similarly to step 2, the first column of 𝐾 ′ is now known, therefore we obtain the
differences at the input of SuperBoxes 4 and 12 of round 1. Since the output differences
are fixed by the differential path, we recover the values and finally 𝑘4 and 𝑘12. Up to now,
we have determined a candidate value for 10 key words, that is of 160 bits.

Step 5. We now focus on the last round. We know the output differences of SuperBoxes
4 and 12 from the ciphertext pairs, and the input differences are fixed by the differential
trail. Therefore we can recover the values, and we deduce cells 4 and 12 of the equivalent
key 𝐾eq = MR−1(𝐾 ′). Since three cells are already known in the second and fourth rows
of 𝐾 ′, we deduce both full rows, in particular cells 11 and 3 (we also have the second and
fourth rows of 𝐾eq). The total number of determined keybits rises to 192.

Step 6. We can now compute the values and differences through the inverse SuperBoxes
5 and 13 of the last round. Since two differences are fixed to zero before MixColumns
in round 8, we can recover the differences of the full column. In particular, we obtain
the input differences of SuperBoxes 1 and 9 in the last round. The corresponding output
differences are given by the ciphertext, therefore we recover cells 1 and 9 of 𝐾eq, with a
total of 224 key bits of information determined.

Step 7. Finally, we have the full second column of 𝐾eq. We can decrypt the second
column of the state through SB, AK (because the second column is also known), MC and
the SuperBox of round 8. We can verify that the difference in cell 5 and 13 matches the
difference fixed by the differential trail, which is satisfied by a fraction 2−32 of the pairs.
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To conclude, we obtain 𝑁 × 296 candidate pairs, each with a determined valued for 224
bits of keys on average. We can test the remaining 32 bits of the key for each candidate,
and keep only the one that follows the full path. The complexity of this step is 𝑁 × 2128

encryptions.

1.4 Quantized version of this attack
A quantized version of this attack is expected to reach less rounds, as the generation of the
pairs with structures may reach less than a quadratic speedup in the quantum setting (thus
going below than exhaustive search of the key). We leave the best quantum related-key
attack as an open problem.
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