
Formalisation of security mechanisms for the
RISC-V processor architecture

Matthieu BATY



About

I PhD student at CIDRE (Inria/CentraleSupélec) since january
I Director: Ludovic MÉ
I Advisors:

I CIDRE: Guillaume HIET, Pierre WILKE
I ANSSI: Arnaud FONTAINE, Alix TRIEU

“Formalisation of security mechanisms for the RISC-V processor
architecture”:
I Formal methods
I Hardware security

1 / 22



Motivation

The security of a system depends on the security of all the layers it
is built upon.

Why processors?
I Ubiquitous
I Vulnerable (Spectre, Meltdown, SPOILER, Foreshadow,

TLBleed, Pentium FDIV, . . . )
I Not a toy example

Why formal methods?
I Show the absence of bugs while keeping complexity under

control
I Trust

2 / 22



Some basic notions — 1/3

“Formalisation of security mechanisms for the RISC-V processor
architecture”

:
I Instruction set architecture (ISA)
I Open standard
I Emerging technology
I Many open source implementations

3 / 22



Some basic notions — 2/3

“Formalisation of security mechanisms for the RISC-V processor
architecture”

Security mechanisms:
I Enforce security properties
I Example: shadow stack — return address integrity
I Part of the implementation, not of the specification

4 / 22



Some basic notions — 3/3

“Formalisation of security mechanisms for the RISC-V processor
architecture”

Formal methods:
I Workflow overview:

I Build a model
I Define properties about it
I Prove them

I Exhaustive, unlike most test suites
I Successful in the software world (CompCert, seL4, . . . )

5 / 22



Prior works

I Sail (Cambridge): ISA description language
I Thomas Letan’s PhD (CIDRE): x86’s System Management

Mode, not about microarchitecture
I Kami and Kôika (MIT), Cava (Google): ≈ formal Verilog
I “Integration Verification across Software and Hardware for a

Simple Embedded System”, PLDI 2021, A. Erbsen et al.

6 / 22



Hardware development — 1/3

Specification

I Set of requirements for implementations
I Plain English

7 / 22



Hardware development — 2/3

Specification RTL model

I Register Transfer Level
I Verilog, VHDL, Chisel, BlueSpec, . . .
I Architectural decisions

I L1 cache size?
I Pipelining?
I Security mechanisms?
I . . .

8 / 22



Hardware development — 3/3

Specification RTL model

Synthesis

Simulation

I Simulation: fast and cheap
I Synthesis:

I FPGA bitstream, photomasks, . . .
I Physical placement of components/routing

9 / 22



Certified hardware development

Not too common in the industry, generally limited to:
I Model checking
I Proofs about small mechanisms

Many interesting problems:
I Formal specifications
I Proof of an RTL model’s adherence to a specification
I Proof of security properties of an RTL model
I Preservation of semantics between an RTL description and a

physical implementation

10 / 22



Kôika — Overview

I https://github.com/mit-plv/koika
I “The Essence of BlueSpec”, PLDI 2020, Thomas Bourgeat et

al. (MIT PLV)
I Formal RTL HDL embedded in Coq
I Inspired by BlueSpec
I In active development
I Includes a basic RISC-V model

11 / 22



Kôika — Workflow

Kôika model
(e.g RISC-V)

Evaluation

Coq circuit OCaml circuit Verilog

Simulation

Synthesis

* *

12 / 22



Kôika — Basics — 1/4

Made with pipelined systems in mind: one rule per stage. Just like
BlueSpec!

IF ID EX MEM WB

Cycles and rules:
I During a given cycle each rule might run or not
I Conflicts, scheduling

13 / 22



Kôika — Basics — 2/4

If two rules are in conflict, which one should be prioritized?
I Explicit schedule
I Deterministic semantics

How can two rules communicate?
I Read at the beginning of the cycle, write at the end: not

enough for some forms of operand forwarding
I Notion of ports (0 and 1)

14 / 22



Kôika — Basics — 3/4

Example: Collatz sequence
rule divide =

let v = r.rd0 in
if iseven(v) then

r.wr0(v >> 1)

rule multiply =
let v = r.rd1 in
if isodd(v) then

r.wr1(3*v + 1)

schedule s = [divide; multiply]

From “The Essence of BlueSpec”, PLDI 2020, Thomas Bourgeat et al.

15 / 22



Kôika — Basics — 4/4

Interacting with the external world: external calls (e.g. for the
memory)
I A pure model of each external call is required to evaluate a

cycle
I For now, Kôika treats external calls as pure:

I Not realistic
I Abusive optimizations

16 / 22



Past work — RISC-V model extension

The RISC-V specification doesn’t just describe a fixed ISA:
I base: 32 or 64 bits
I extensions: integer multiplication and division, floating point

numbers, atomic instructions, . . .

It can be convenient to model a family of processors based on the
same architecture.
I Select which base and extensions to use
I Kôika model written indirectly through Coq functions

17 / 22



Past work — Shadow stack

Definition of a simple shadow stack mechanism:
I Added to Kôika’s RISC-V model
I Fixed stack size
I Turns processor off in case of misbehavior
I Push when procedure called, pop when procedure returns

Some interesting properties:
I Return address overwritten =⇒ processor halts
I Overflows or underflows =⇒ processor halts
I In all other situations, the processor behaves just as it used to

before the shadow stack was added

18 / 22



Past work — Proving and semantics

Kôika defines its semantics through a set of interpretation functions,
and dependent types appear in them. This lead to several issues:
I Performance problems
I Unfolding of the interpretation function hard to control

Alternative untyped inductive semantics:
I Inductively defined predicate: proof constructors improve

control control over the computation
I Solves part of the performance problem
I Proof of equivalence

19 / 22



Ongoing work — Normal form

The models are in a form that is easy to write but hard to reason
about. They can be simplified:
I Single rule instead of schedule
I Only write actions guarded by a single condition each
I A bit like an optimization pass in a certified compiler
I Prove equivalence (same state at the end of a cycle)

20 / 22



Future work

Short term:
I Finish the proof

I Build proof infrastructure
I Apply to Shadow Stack

I Publish

And then?
I Stick to Kôika? More complex mechanisms?
I Try Cava?
I Yet another formal HDL?

21 / 22



Thank you

22 / 22


