
Gustavo SANTOS 

Systematic Source Code 
Transformations 



2

Presentation

▪ Bachelor in Computer Science 
!

▪ Master in Computer Science 
!

▪ Short visit to RMoD team 
!

▪ Funded by CAPES (Brazil) 
▪ Science Without Borders program



3

Areas of Interest

▪ Change Impact Analysis 
▪ Modularization 
▪ Information Retrieval 
▪ Quality Metrics 
▪ … 
▪ Software Evolution



Introduction 
!
Identifying Systematic Code Transformations 
Replaying Systematic Code Transformations 



5

Software Evolution

▪ Software is in constant evolution to remain useful [Leh1980] 
!

▪ Evolution is composed of changes 
▪ Performed in distinct moments in time  
▪ By many developers 

!
▪ Developers need to reason about code changes [Hat2011]

[Leh1980] On Understanding Laws, Evolution, and Conservation in the Large-Program Life Cycle. JSS 
[Hat2011] Software Evolution Comprehension: Replay to the Rescue. ICPC



6

Refactoring

▪ Change made to the internal structure to make it […] 
cheaper to modify […] without changing its observable 
behavior [Fow1999] 
!

▪ Regular and applied to few entities [Avg2013]

[Fow1999] Refactoring: Improving the Design of Existing Code 
[Avg2013] Architecture sustainability. IEEE Software 



7

Rearchitecting

▪ Rearchitecting (large refactoring) [Avg2013] 
▪ Update APIs 
▪ Improve the organization 

!
▪ Less frequent but involves the entire system 

!
▪ Rearchitecting dataset as product of my Master [San2014]

[Avg2013] Architecture sustainability. IEEE Software  
[San2014] Remodularization Analysis using Semantic Clustering. CSMR-WCRE 



8

Software Evolution

▪ Systematic Code Changes 
!

▪ In Eclipse 2.1 → 3.0, for example:

  move class C to a package ‘ui.ide’ 
  in the initializer of C, add invocation to method ‘setActionId’ 
!

Applied 22 times



9

Transformation Pattern

▪ Sequences of transformations that are applied to similar 
code entities  
!
!
!
!
!
!
!

▪ Operators can be atomic or aggregated

organizeActionInheritance(class C)   
 moveClass(C, getPackage(‘ui.ide’)) 
 addInvocation(C(), getMethod(‘setActionId’)) 

transformation pattern

transformation operator



10

Conclusions

▪ Transformation patterns can be: 
▪ Complex 
▪ Tedious 
▪ Error-prone 
!

▪ Automation is needed



Introduction 
!
Identifying Systematic Code Transformations 
!
Replaying Systematic Code Transformations 



12

Related Work

▪ We found work concerning such activity

Application Destination of 
changes

[Pan2009] Bug Fixes inside methods only

[And2008] API evolution inside methods only

[Kim2013] General files only

[Mil2014] General inside methods only

[Jia2015] General inside classes only



13

Related Work

▪ No existing work in rearchitecting 
!

▪ Destination of the changes 
▪ More complex operators 
!

▪ Properties of the entities involved 
▪ More system specific patterns



14

Investigative Study

▪ Identify similar changes semi-automatically 
!

▪ Rearchitecting dataset 
▪ Performed manually by the developers 
▪ Systems before and after rearchitecting



15

Methodology

▪ Identify similar changes semi-automatically 
▪ Extract the diff between versions 
▪ Filter groups of similar changes 
▪ Manually identify similar properties

  move class C to a package ‘ui.ide’ 
  in the initializer of C, add invocation to method ‘setActionId’ 
!
  C extends eclipse.Action



16

Transformation Patterns

▪ Total of eleven patterns in real software systems

Transformation Patterns are frequent



17

Transformation Patterns

▪ In JHotDraw, some operators were not applied 
!

▪ In other systems, the pattern was not applied at once

Transformation Patterns are complex



18

Conclusions

▪ Automation is needed 
▪ Perform the transformations correctly 
▪ Find transformation opportunities 
!

▪ Generate custom transformations 
▪ Abstract 
▪ Replicable 
▪ System specific 

!
▪ Submitted paper to ICSME (under review)



Introduction 
Identifying Systematic Code Transformations 

Replaying Systematic Code Transformations 



20

Problem

▪ Transformation patterns exist 
!

▪ Generate custom, abstract transformations 
▪ Replay in different code locations



21

Related Work

▪ Automated Code Transformation

Application Destination of 
 Changes

Sydit [Men2011] Bug fixes methods only

Lase [Men2013] Bug fixes methods only

Critics [Zha2015] Bug fixes customizable



22

Solution

!
!
!
!

▪ What if the developer could… 
▪ Perform the changes manually once 
▪ Generalize the performed changes 
▪ Replay the changes in other locations

  move class StoreAction to a package ‘ui.ide’ 
  in StoreAction(), add invocation to ‘setActionId’

  execute it for all class C that extends eclipse.Action 



23

Approach

▪ MacroRecorder 
▪ For each recorded event in the development tool, 

generate an equivalent transformation

Development Tool Transformation Tool

Macro Recorder

e.g., Pharo, Eclipse e.g., Refactoring, Eclipse



24

Illustrating Example

!
!
!
!
!

▪ Enable recording 
!

▪ Then perform the change manually 
!

▪ Stop recording

  remove method blockNode in class Parser 
  remove class BlockNode



25

Illustrating Example - Record

performed changes

changed code

changed entities



26

Illustrating Example - Generalize

add a new value

add a new name, then save



27

Illustrating Example - Replay

In the development tool, 
apply it to a new method

with my custom name



28

Illustrating Example - Replay

with the selected method

Replay

Inspect the changes before 
applying, then execute



29

Future Work

▪ Use MacroRecorder on the patterns we found before 
!

▪ Check if the examples are correct




