
Secure Reflection

Camille Teruel

Reflection

Reflection
Reflection

Reflexion

Reflection

Allows programs to reason about and alter
their structure and interpretation

Reflection:
Dev tools

Debuggers

Inspectors

Browsers

Profilers
Dynamic analyses

Reflection:
Powerful creative mean

Language extensions
Generic programs

Frameworks Metaprogramming

Reflection:
Infrastructure

Remote-Debugging

Dynamic Software Updates

Self-Adaptive Programs

Encapsulation ?

Reflection:
Encapsulation’s enemy

Cannot keep things private

From a modularity POV : Potential …

… mess!!

Cannot keep things private

From a security POV : Potential …

… breaches!

Reflection Access Control

But not too much

Too much bookkeeping…

bug

bug

bug

bug

No bookkeeping!

Should be transparent to developers

bug

bug

bug

bug

Retain Reflection Power

Reflection breaks walls and rules

Reflection-Proof Access Control

Access control of reflective operations
-> Transparent to developers
-> Retain power of reflection
-> Reflection-proof

Conflation

The base-level and the meta-level are mixed

>> c := OrderedCollection new.
an OrderedCollection()
>> c add: 10. c
an OrderedCollection(10)
>> c instVarNamed: #array
#(10 nil nil nil nil nil nil nil nil nil)

Stratification

The base-level and the meta-level are separated

>> c := OrderedCollection new.
an OrderedCollection()
>> c add: 10. c
an OrderedCollection(10)
>> c meta instVarNamed: #array
#(10 nil nil nil nil nil nil nil nil nil)

Metaobject Protocol

object

metaobject

receive
read
write
…

meta-level
base-level

causal connection

Control access to reflective operations

Control access to metaobjects

In a MOP:

Idea

Reflection can implement security mechanisms!

Security
mechanism(s)Reflection

implements

secures

Metacircular Security

Security
mechanism(s)Reflection

implements

secures

Metacircular Security

Proxies for
 Access Control

Proxies
Fine-grained intercession

proxy target

proxy’s
metaobject

meta-level
base-level

target’s
metaobject

receive
read
write
…

receive
read
write
…

Proxies
Fine-grained intercession

proxy target

proxy’s
metaobject

meta-level
base-level

target’s
metaobject

receive
read
write
…

receive
read
write
…

msg

Proxies
Fine-grained intercession

proxy target

proxy’s
metaobject

meta-level
base-level

target’s
metaobject

receive
read
write
…

receive
read
write
…

msg

r
e
c
e
i
v
e

Proxies
Fine-grained intercession

proxy target

proxy’s
metaobject

meta-level
base-level

target’s
metaobject

receive
read
write
…

receive
read
write
…

msg

Proxies
Fine-grained intercession

proxy target

proxy’s
metaobject

meta-level
base-level

target’s
metaobject

receive
read
write
…

receive
read
write
…

msg

receive

msg

equivalent

Proxies
Access Control Mechanism

proxy target

proxy’s
metaobject

meta-level
base-level

target’s
metaobject

receive
read
write
…

receive
read
write
…

Reflection breaks walls and rules

Proxies
Reflection Proof?

Proxies
Reflection Proof?

proxy target

meta-level

base-level

receive
read
write
…

receive
read
write
…

meta1

returns

Proxies
Reflection Proof?

proxy target

meta-level

base-level

receive
read
write
…

receive
read
write
…

meta-meta-level
receive
read
write
…

meta2

returns

Proxies
Reflection Proof?

proxy target

meta-level

base-level

receive
read
write
…

receive
read
write
…

meta-meta-level
receive
read
write
…

read

‘target’

3 returns

ProxiesMOP

implements

secure

Metacircular Security
ok

ProxiesMOP

implements

secure

Metacircular Security
ok

What policy?

OrderedCollection Revisited

client coll
nil
nil

o1

o2

o3

OrderedCollection Revisited

client coll
nil
nil

o1

o2

o3

Not the same kind
of relation

Object Ownership:
Access Control Policy to Metaobject

• An object owns its metaobject
• The ownership relation is transitive
• A client object can access the metaobjects

of the objects it owns
• Other objects have a limited access
 —> implemented by a proxy

Object Ownership:
Access Control Policy to Metaobject

client coll
nil
nil

o1

o2

o3

owner

Object Ownership:
Access Control Policy to Metaobject

client coll
nil
nil

o1

o2

o3

owner Objects that coll can reflect upon

Object Ownership:
Access Control Policy to Metaobject

client coll
nil
nil

o1

o2

o3

owner Objects that client can reflect upon

object

receive
read
write
…

meta-level

base-level

Object Ownership:
Access Control Policy to Metaobject

receive
read
write
…

owner

meta

returns

meta-meta-level

object

receive
read
write
…

meta-level

base-level

Object Ownership:
Access Control Policy to Metaobject

receive
read
write
…

owner

returns

met
a

meta-meta-level

object

receive
read
write
…

meta-level

base-level

Object Ownership:
Access Control Policy to Metaobject

client

object

receive
read
write
…

meta-level

base-level

Object Ownership:
Access Control Policy to Metaobject

receive
read
write
…

client

meta

returns

receive
read
write
…

meta-meta-level

Proxies
Reflection Proof Now?

Proxies
Reflection Proof Now?

proxy target

meta-level

base-level

receive
read
write
…

receive
read
write
…

meta

returns

receive
read
write
…

meta-meta-levelreceive
read
write
…

client

Access control of reflective operations
-> Transparent to developers
-> Retain (most) power of reflection
-> Reflection-proof

ProxiesMOP

implements

secure
with an ownership-based policy

Metacircular Security

Conclusion

Tension between reflection and security

+
+
=

 —>A MOP
—> Proxies

—> Object ownership

Reflection
A security mechanism
An access control policy
Metacircular Security

Solution

Problem

