Secure Reflection

Camille Teruel

- -\M.. |
e |
TS -

pn

&flect

éﬂect}pn

Reftlection:
Powerful creative mean }
-)

.
TN

\\

Frameworks Metaprogramming

Generic programs
Language extensions

i ¥ PR B
T P AP r o B 4 i M e ny
R PR RN ' . L b - g
<‘.\ A S
| |
[]

Infrastructure
: N ‘

Dynamic Software Updét:eis - -

Self-Adaptive Programs Remote-DaDIINING

Cannot keep things private

From a modularity POV : Potential ...

Cannot keep things private

From a security POV : Potential ...

... breaches

AR W 1In.r
S But not too much

g .
o, ‘..
5 Vo
; & .'" g /
.‘.c\{‘ .

v

/ '

.l/; B/

Too much bookkeeping...

No bookkeeping!

Should be transparent to developers

,-
-
- :
LY N
s Y
-
e

.
- —
- -

2 Y

—

o
- - _' .
eehal 0 YO

e

L _—

)i . i
SR S

YA

ﬂ

P
x

{

"

“

;-\\
\
\

- \}
= ——".‘\"j‘""y":«-,\ P S o

-~

\

\Y

Access control of reflective operations
-> Transparent to developers

-> Retain power of reflection

-> Reflection-proof

Conflation

The base-level and the meta-level are mixed

>> ¢ := OrderedCollection new.

an OrderedCollection ()

>> ¢ add: 10. c

an OrderedCollection(10)

>> ¢ instVarNamed: #array

#(10 nil nil nil nil nil nil nil nil nil)

Stratification

The base-level and the meta-level are separated

>> ¢ := OrderedCollection new.

an OrderedCollection ()

>> ¢ add: 10. c

an OrderedCollection(10)

>> c meta instVarNamed: #array

#(10 nil nil nil nil nil nil nil nil nil)

Metaobject Protocol

metaobject

receive
read
write

meta-level

> base-level

cavsal connection *

object

In a MOP:

Control access to reflective operations

Control access to metaobjects

ldea

Reflection can implement security mechanisms!

Metacircular Security

implements

' (1Y Security
//jJ/ mechanism(s)
. A

Retlection \ '

secures

Metacircular Security

implements

Reflection \ Iz A |

| Security |
imechanism(s)|

secures

Proxies for
Access Control

Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
(,) 4 _)
recelve recelve
read read
write > write
_ J _ _J
| m | |
meta-level
base-level

Proxy farget

Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
(,) 4 _)
recelve recelve
read read
write > write
_ J _ _J
| m | |
meta-level
base-level

msg

Proxy farget

Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
4) 4)
recelve recelve
read read
write > write
_ J _),
i n
Q) \
> meta-level
§ base-level
Y

msg

Proxy farget

Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
4) 4)
recelve recelve
read read
write > write
_ Y, _ Y,
| m | |
meta-level
base-level

Proxy farget

Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
))
recelive recelive
read, receive> > read
- y, - Y,
] m
msg
meta-level
base-level
Proxy farget

Proxies

Access Control Mechanism

Proxy’s target’s
metaobject metaobject
(,) 4 _)
recelve recelve
read read
write > write
_ J _ _J
| m | |
meta-level
base-level

target

Proxies

Reflection Proof?

) (")
receive receive
read read
write >l write

\)

meta-level

Proxy

target

base-level

receive
read
write

receive
read

(")

write

Proxies

Reflection Proof?

receive
read
write

_

meta-meta-level

meta-level

Proxy

target

base-level

‘target’

receive
read
write

receive
read

Proxies

Reflection Proof?

- -~
-* “~
- -

s
S e
~

~
~

receive
read

write

> write

_

meta-meta-level

meta-level

Proxy

target

base-level

Metacircular Security

implements

MOP Yg) y")] Proxies
- il iS5

secure

Metacircular Security

implements

MOP

. 4
)]" /‘ g Proxies

secure

N
@t policy?

OrderedCollection Revisited

;}/\
Oég

OrderedCollection Revisited

Not the same kind

of relation ‘\
‘ 0/

Object Ownership:

Access Control Policy to Metaobject

An object owns its metaobject
The ownership relation Is transitive
A client object can access the metaobjects
of the objects it owns
Other objects have a limited access
—> Implemented by a proxy

Object Ownership:

Access Control Policy to Metaobject

client > coll >
ni
ni

7//\
et

owner

Object Ownership:

Access Control Policy to Metaobject

—J» owner Objects that coll can retlect upon

Object Ownership:

Access Control Policy to Metaobject

—p-owner| ODbjects that client can reflect upon

Object Ownership:

Access Control Policy to Metaobject

receive

read
write meta-meta-level
receive
read meta-level
write
’¢v eee
returnS "¢' ooooooooooooooo I oooooooooooooooooooo
meta > base-level

owner object

Object Ownership:

Access Control Policy to Metaobject

receive
rea
Wwrite meta-meta-level

ooooooooooooooooooooooooooooooooooo

returns,f'
Rt receive
o ad
/ write meta-level
2e<° I
> base-level

owner object

Object Ownership:

Access Control

Policy to Metaobject

receive

client

object

Object Ownership:

Access Control

returns .-

-

receive
re@d
write

\

-

_

receive
read
write

\

J

receive
read
write

Policy to Metaobject

meta-meta-level

meta-level

............... I

_'\
— meta >
Q

client

»Q base-level

object

SN \ 1

g 9%
T2

el

\
- —"":‘\“‘1'"{"-‘«-? w meme |08

eshal L YOI ﬁ'ff
e s L
Sy
-

o

A=~

Proxies

Reflection Proof Now?

(receive A 4 .)
@ii‘ﬁe — > %Eézve meta-meta-level
s I) k... I)
[receive A (receive A
V]/:sliige > X]/:viige meta-level
;T Yy, g Y,

000

returns

base-level

client Proxy target

Access control of reflective operations
-> Transparent to developers

-> Retain (most) power of reflection
-> Reflection-proof

Metacircular Security

implements

MOP Proxies

secure
with an ownership-based policy

I+ -+

Conclusion

Problem

Tension between reflection and security

Solution

Reflection

A security mechanism
An access control policy
Metacircular Security

—>A MOP
—> Proxies
—> Object ownership

