Secure Reflection

Camille Teruel
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Frameworks Metaprogramming

Generic programs
Language extensions
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Cannot keep things private

From a modularity POV : Potential ...







Cannot keep things private

From a security POV : Potential ...
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Too much bookkeeping...




No bookkeeping!

Should be transparent to developers
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Access control of reflective operations
-> Transparent to developers

-> Retain power of reflection

-> Reflection-proof



Conflation

The base-level and the meta-level are mixed

>> ¢ := OrderedCollection new.

an OrderedCollection ()

>> ¢ add: 10. c

an OrderedCollection(10)

>> ¢ instVarNamed: #array

#(10 nil nil nil nil nil nil nil nil nil)




Stratification

The base-level and the meta-level are separated

>> ¢ := OrderedCollection new.

an OrderedCollection ()

>> ¢ add: 10. c

an OrderedCollection(10)

>> c meta instVarNamed: #array

#(10 nil nil nil nil nil nil nil nil nil)




Metaobject Protocol

metaobject

receive
read
write

meta-level

> base-level

cavsal connection *

object



In a MOP:

Control access to reflective operations

Control access to metaobjects



ldea

Reflection can implement security mechanisms!



Metacircular Security

implements

' (1Y Security
//jJ/ mechanism(s)
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secures



Metacircular Security
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Proxies for
Access Control



Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
( , ) 4 _ )
recelve recelve
read read
write > write
\_ J \_ _J
| m | |
meta-level
base-level

Proxy farget
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Proxies

Fine-grained intercession
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Proxies

Fine-grained intercession

Proxy’s target’s
metaobject metaobject
) )
recelive recelive
read, receive> > read
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Proxies

Access Control Mechanism

Proxy’s target’s
metaobject metaobject
( , ) 4 _ )
recelve recelve
read read
write > write
\_ J \_ _J
| m | |
meta-level
base-level

target






Proxies

Reflection Proof?

) (" )
receive receive
read read
write >l write

\ )

meta-level

Proxy

target

base-level
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read
write
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Proxies

Reflection Proof?

receive
read
write
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Proxy

target

base-level



‘target’

receive
read
write

receive
read

Proxies

Reflection Proof?
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Metacircular Security

implements

MOP Yg ) y" )] Proxies
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secure



Metacircular Security

implements

MOP
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OrderedCollection Revisited
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OrderedCollection Revisited

Not the same kind

of relation ‘\
‘ 0/




Object Ownership:

Access Control Policy to Metaobject

An object owns its metaobject
The ownership relation Is transitive
A client object can access the metaobjects
of the objects it owns
Other objects have a limited access
—> Implemented by a proxy



Object Ownership:

Access Control Policy to Metaobject
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Object Ownership:

Access Control Policy to Metaobject

—J» owner Objects that coll can retlect upon




Object Ownership:

Access Control Policy to Metaobject

—p-owner|  ODbjects that client can reflect upon




Object Ownership:

Access Control Policy to Metaobject

receive

read
write meta-meta-level
receive
read meta-level
write
’¢v eee
returnS "¢' ooooooooooooooo I oooooooooooooooooooo
meta > base-level

owner object



Object Ownership:

Access Control Policy to Metaobject

receive
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Wwrite meta-meta-level

ooooooooooooooooooooooooooooooooooo

returns,f'
Rt receive
o ad
/ write meta-level
2e<° I
> base-level

owner object



Object Ownership:

Access Control

Policy to Metaobject

receive

client

object



Object Ownership:

Access Control

returns .-
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Proxies

Reflection Proof Now?

(receive A 4 . )
@ii‘ﬁe — > %Eézve meta-meta-level
s I ) k... I )
[receive A (receive A
V]/:sliige > X]/:viige meta-level
;T Yy, g Y,

000000000000000000000000000000000000000000000000000000000

returns

base-level

client Proxy target



Access control of reflective operations
-> Transparent to developers

-> Retain (most) power of reflection
-> Reflection-proof



Metacircular Security

implements

MOP Proxies

secure
with an ownership-based policy
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Conclusion

Problem

Tension between reflection and security

Solution

Reflection

A security mechanism
An access control policy
Metacircular Security

—>A MOP
—> Proxies
—> Object ownership



