Extending Dynamic Software Product Lines with Temporal Constraints

Gustavo Sousa

Walter Rudametkin

Laurence Duchien

firstname.lastname@inria.fr

SFAMS 2017

(12th Int. Symp. on Soft. Eng. for Adaptive and Self-Managing Systems)

de Lille

Adaptive Cloud Environments

• Cloud computing supports construction of customized adaptable environments

"Cloud computing is a model for enabling ubiquitous, convenient, ondemand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) **that can be rapidly provisioned and released with minimal management effort or service provider interaction**."^[1]

 A cloud environment is a set of cloud services provisioned for running an application

SPIRALS

CRIStAL

[1] P. Mell and T. Grance, "The NIST definition of cloud computing," Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology, Tech. Rep., 2011.

Université

de Lille

Cloud Providers Configuration Variability

- Wide range of configurable cloud services
- Complex configuration rules and constraints

SPIRALS

Université

de Lille

SPLs for Automated Cloud Configuration

Dynamic Software Product Lines

• High variability with adaptive capabilities

Dynamic Software Product Lines

High variability with adaptive capabilities

• DSPL vs SPL

- Features can be (re)bound at runtime
- Adaptive system vs systems family
- Variability model central to both

Dynamic Software Product Lines

High variability with adaptive capabilities

DSPL vs SPL

- Features can be (re)bound at runtime
- Adaptive system vs systems family
- Variability model central to both
- Adaptation in DSPLs

Université

- A context change is mapped to a request to include or exclude a set of features from the current configuration
- SPL analysis is used to derive valid configurations

SPIRALS

Cloud Computing Environment

- Reconfiguration mechanisms are provider-dependent and heterogeneous
 - May depend on initial or previous configurations
 - Alternative ways to reconfigure
- Compliance to variability model is not enough
 - Does not ensure valid and safe reconfigurations

9

SPIRALS

Université de Lille

SEAMS 2017 – Buenos Aires, May 23, 2017

https://devcenter.heroku.com/articles/upgrading-heroku-postgres-databases

SPIRALS

Université de Lille

TEURS DU MONDE NUMÉRIQU

Limitations in DSPLs

- Seminal works on DSPLs highlight the need for validating transitions between system configurations
 - systems should evolve through safe migration paths^[6]
 - dynamic constraints on allowed transitions must be considered^[7]
- Validation is mostly limited to compliance to a variability model

SPIRALS

[6] B. Morin, O. Barais, J. M. Jezequel, F. Fleurey, and A. Solberg, "Models@run.time to support dynamic adaptation," Computer, vol. 42, no. 10, pp. 44–51, Oct 2009.

[7] A. Hubaux and P. Heymans, "On the evaluation and improvement of feature-based configuration techniques in software product lines," in Proc. 31st Int. Conf. Software Engineering (ICSE'09), Vancouver, Canada, May 2009, pp. 367–370.

Université

de Lille

Problem statement

- How to model constraints over the adaptation behavior?
 - Temporal dependencies between features and reconfiguration operations
- How to reason over a variability model with reconfiguration constraints to find reconfigurations that meet a given criteria?
 - e.g. reduced downtime or costs

Université

Proposed approach

- Combine variability models with temporal constraints and reconfiguration operations
 - Leverage concepts and solutions from model checking

Feature Models and Transition Systems

- Feature model M = (F, C)
 - -F is the set of features

Université de Lille

CRIStAL

 $-C \subseteq \mathcal{P}(F)$

 $C1 = \{A, E\}$ $C2 = \{A, E, F\}$ $C3 = \{A, B, C, E\}$ $C4 = \{A, B, C, E, F\}$ $C5 = \{A, B, D, E\}$ $C6 = \{A, B, D, E, F\}$

SPIRALS

DSPLs as Transition Systems

 $\begin{array}{l} C1 = \{A, E\} \\ C2 = \{A, E, F\} \\ C3 = \{A, B, C, E\} \\ C4 = \{A, B, C, E, F\} \\ C5 = \{A, B, D, E\} \\ C6 = \{A, B, D, E, F\} \end{array}$

Université

de Lille

CRIStAL

"A DSPL's execution can be abstracted as a highly connected state machine where the states are the possible system configurations and the transitions the migration paths."^[6]

[6] B. Morin, O. Barais, J. M. Jezequel, F. Fleurey, and A. Solberg, "Models@run.time to support dynamic adaptation," Computer, vol. 42, no. 10, pp. 44–51, Oct 2009.

DSPLs as Transition Systems

SPIRALS

 $\begin{array}{l} C1 = \{A, E\} \\ C2 = \{A, E, F\} \\ C3 = \{A, B, C, E\} \\ C4 = \{A, B, C, E, F\} \\ C5 = \{A, B, D, E\} \\ C6 = \{A, B, D, E, F\} \end{array}$

Université de Lille

Temporal properties

- A temporal property defines a condition over the executions of a transition system
 - Execution:
 - $\rho = s_0 s_1 s_2 s_3 s_4 \dots$
 - $s_i
 ightarrow s_{i+1}$ is a transition

Université

de Lille

CRIStAL

A property is a set executions

 A system exhibits a property if all its executions are part of the property set

SPIRALS

Feature Models and Transition Systems

• Feature model M = (F, C)

de Lille

• Transition system $TS_M = (S, I, R, AP, L)$ -S = I = C, $R = S \times S$, AP = F, L(x) = x

Temporal properties

• A temporal property is a condition over the executions of a transition system

 $P = \{s_0 s_1 s_2 s_3 \dots \mid C \in L(s_i) \leftrightarrow D \notin L(s_{i+1})\}$

SPIRALS

Université de Lille

Temporal properties

• A temporal property is a condition over the executions of a transition system

 $P = \{s_0 s_1 s_2 s_3 \dots \mid C \in L(s_i) \leftrightarrow D \not\in L(s_{i+1})\}$

SPIRALS

Université de Lille

Linear Temporal Logic (LTL)

- Defines temporal properties over transition systems
- Combines propositional logic with temporal operators (always, eventually, until)

 $-\Box A$

// always A $-\Box(M2 \rightarrow \neg \bigcirc M1)$ // always (M2 is not followed by M1) $-\Box(M2 \rightarrow \neg \diamond M1)$ // after M2, M1 is not allowed

DSPL with temporal properties

SPIRALS

Université de Lille

DSPL with temporal properties

SPIRALS

Université de Lille

Reconfiguration operations

• Doubly labeled transition systems^[22]

[22] M. H. ter Beek et al., "An Action/State-Based Model-Checking Approach for the Analysis of Communication Protocols for Service-Oriented Applications," in Proc. 12th Int. Workshop Formal Methods for Industrial Critical Systems (FMICS'07), Berlin, Germany, Jul. 2008, pp. 133–148.

SPIRALS

Université de Lille

Reconfiguration operations

- Doubly labeled transition systems^[22] -TS = (S, I, OP, R, AP, L)
 - $\ OP$ is the set of reconfiguration operations in the DSPL

[22] M. H. ter Beek et al., "An Action/State-Based Model-Checking Approach for the Analysis of Communication Protocols for Service-Oriented Applications," in Proc. 12th Int. Workshop Formal Methods for Industrial Critical Systems (FMICS'07), Berlin, Germany, Jul. 2008, pp. 133–148.

SPIRALS

Université

de Lille

State/Event LTL

- SE-LTL can express temporal expressions over state and transition labels^[23]
 - Can combine reconfiguration operations and features in temporal constraints

[23] S. Chaki et al. "State/Event-Based Software Model Checking," in Proc. 4th Int. Conf. Integrated Formal Methods (IFM'04), Canterbury, UK, Apr. 2004, pp. 128–147.

SPIRALS

Université

de Lille

Reconfiguration operations

 $OP = \{ActivateF\}$ C1 Α $C1 = \{A, E\}$ C2 **C6** $C2 = \{A, E, F\}$ $C3 = \{A, B, C, E\}$ Ε В $C4 = \{A, B, C, E, F\}$ $C5 = \{A, B, D, E\}$ C3 C5 $C6 = \{A, B, D, E, F\}$ F С $\Box((\neg F \land \bigcirc F) \leftrightarrow ActivateF)$ Université de Lille CRIStAL SPIRALS SEAMS 2017 – Buenos Aires, May 23, 2017

Examples

- Cannot downgrade MySQL plan
 - [](M2 -> !<>M1)
 - [](M3 -> !<>(M1 | M2))
 - [](M4 -> !<>(M1 | M2 | M3))
 - [](Change(ClearDBMySQL) -> UpgradeClearDB)
- Upgrade PostgreSQL
 - [](Change(HerokuPostgres) & (H1 | H2) -> PGCopy)
 - [](Change(HerokuPostgres) -> (PGCopy | FollowerChangeover))
- Change Location
 - [](Change(Location) -> MigrateApp)

CRIStAL

Université

Problem statement

- How to model constraints over the adaptation behavior?
 - Temporal dependencies between features and reconfiguration operations
- How to reason over a variability model with reconfiguration constraints to find reconfigurations that meet a given criteria?
 - e.g. reduced downtime or costs

Université

Reasoning

- Reconfiguration request
 - Features to be included/excluded

Reasoning

- Reconfiguration request
 - Features to be included/excluded
- Cost-based constraints
 - Reconfiguration time, downtime, financial cost, etc

Reasoning

- Reconfiguration query: $Q = (A, E, \phi)$
 - -A: features to include
 - -E: features to exclude
 - $-\phi$: constraint over costs
- Example query: $q = (\{C\}, \{D\}, \text{downtime} = 0)$

Symbolic Representation

- Building the transition system for a feature model can be unfeasible
 - State-explosion problem
- Represent a transition system as a propositional formula
 - Use SAT solver to solve reconfiguration queries

Symbolic Representation

 Feature models^[25] and SE-LTL expressions^[27] can be represented as propositional formulas

- \widetilde{M} and \widetilde{M}' represent the set of possible source and target states (configurations of the feature model M)
- \widetilde{x} is the conjunction of LTL expressions

CRIStAL

– \widetilde{s} represents the current state

Université

– \widetilde{q} represents the reconfiguration query (pseudo-boolean encoding)

SPIRALS

[25] D. Batory, "Feature Models, Grammars, and Propositional Formulas," in Proc. 9th Int. Conf. Software Product Lines (SPLC'05), Rennes, France, Sep. 2005, pp. 7–20.

[27] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani, "Improving the Encoding of LTL Model Checking into SAT," in Proc. 3rd Int. Workshop Model Checking and Abstract Interpretation (VMCAI'02), Venice, Italy, Jan. 2002, pp. 196–207.

Problem statement

- How to model constraints over the adaptation behavior?
 - Temporal dependencies between features and reconfiguration operations
- How to reason over a variability model with reconfiguration constraints to find reconfigurations that meet a given criteria?
 - e.g. reduced downtime or costs

SEAMS 2017 – Buenos Aires, May 23, 2017

- Case study on Heroku PaaS
 - feasibility for modeling reconfiguration constraints
 - performance of reasoning

- Case study on Heroku PaaS
- Feature Model extracted from documentation
 - 7 available regions, 11 programming frameworks, 6 container sizes
 - reconfiguration constraints
 - 161 addon services (data storage, networking, security, ...)
 - 1036 features, 134 cross-tree constraints, 124 temporal constraints

- Case study on Heroku PaaS
- Feature Model extracted from documentation
- Simulate context changes
 - 4 adaptation scenarios
 - 5 reconfiguration queries

Université

de Lille

CRIStAL

SPIRALS

- 3 utilization profiles
- 12 executions

- Case study on Heroku PaaS
- Feature Model extracted from documentation
- Simulate context changes
- Adaptation scenarios
 - Change in database size requires new database plan
 - Request for a new feature not available in current region

SPIRALS

Change in programming framework and database

CRIStAL

Scaling up application container

Université

- Case study on Heroku PaaS
- Feature Model extracted from documentation
- Simulate context changes
- Adaptation scenarios
- Reconfiguration queries
 - No constraints
 - Constraints over price
 - Constraints over downtime/price
 - Optimize on price
 - Optimize on downtime/price

Université

- Case study on Heroku PaaS
- Feature Model extracted from documentation
- Simulate context changes
- Adaptation scenarios
- Reconfiguration queries
- Application utilization profiles

Université

- Database size, application size, startup time, etc...

- Case study on Heroku PaaS
- Feature Model extracted from documentation
- Simulate context changes
- Adaptation scenarios
- Reconfiguration queries
- Application utilization profiles

Université

- DBSize: 10GB, AppSize: 100 MB, AppStartUp: 15
- DBSize: 100GB, AppSize: 200 MB, AppStartUp: 30s

SPIRALS

SEAMS 2017 – Buenos Aires, May 23, 2017

DBSize: 2TB, AppSize: 500 MB, AppStartUp: 60s

Process step	Execution time (ms)				1
	Avg	StdDev	Min	Max	#Exec
Build Trans System	8777.31	303.71	8262	10308	720
- Process FM	244.75	28.57	191	552	
- Process LTL	8533.57	291.81	8025	10023	
All Queries	183.34	50.20	118	389	720
- Build	83.05	50.69	27	227	
- Solve	100.29	37.13	5	200	
Q wo/ Constraints	140.97	12.93	118	198	144
- Build	32.73	4.56	27	48	
- Solve	108.24	11.58	90	153	
Q w/ Constraints	224.23	55.55	128	389	288
- Build	140.41	27.65	80	227	211 kg (2122
- Solve	83.82	53.13	5	200	
Q w/ Optimization	163.63	13.26	136	230	288
- Build	50.85	7.11	38	77	
- Solve	112.77	10.21	94	166	

SPIRALS

Université de Lille

Process step	Execution time (ms)				1
	Avg	StdDev	Min	Max	#Exec
Build Trans System	8777.31	303.71	8262	10308	720
- Process FM	244.75	28.57	191	552	
- Process LTL	8533.57	291.81	8025	10023	
All Queries	183.34	50.20	118	389	720
- Build	83.05	50.69	27	227	
- Solve	100.29	37.13	5	200	
Q wo/ Constraints	140.97	12.93	118	198	144
- Build	32.73	4.56	27	48	
- Solve	108.24	11.58	90	153	
Q w/ Constraints	224.23	55.55	128	389	288
- Build	140.41	27.65	80	227	ors kan beset
- Solve	83.82	53.13	5	200	
Q w/ Optimization	163.63	13.26	136	230	288
- Build	50.85	7.11	38	77	100000000
- Solve	112.77	10.21	94	166	

SPIRALS

Université de Lille

Process step	Execution time (ms)				1
	Avg	StdDev	Min	Max	#Exec
Build Trans System	8777.31	303.71	8262	10308	720
- Process FM	244.75	28.57	191	552	
- Process LTL	8533.57	291.81	8025	10023	
All Queries	183.34	50.20	118	389	720
- Build	83.05	50.69	27	227	
- Solve	100.29	37.13	5	200	
Q wo/ Constraints	140.97	12.93	118	198	144
- Build	32.73	4.56	27	48	
- Solve	108.24	11.58	90	153	
Q w/ Constraints	224.23	55.55	128	389	288
- Build	140.41	27.65	80	227	and a restar
- Solve	83.82	53.13	5	200	
Q w/ Optimization	163.63	13.26	136	230	288
- Build	50.85	7.11	38	77	1000000
- Solve	112.77	10.21	94	166	

SPIRALS

Université de Lille

- Temporal constraints enhance modeling of DSPLs
 - Compact notation for constraints over transitions
 - Support for reasoning over reconfiguration operations
- Performance is acceptable in the cloud context
 Implementation can be improved
- Threats to validity

Université

Case study is not exhaustive and considers only cloud computing

Conclusion & Perspectives

- Temporal constraints in DSPL
 - Better modeling of adaptive behavior
 - Reasoning over adaptation alternatives

Conclusion & Perspectives

- Temporal constraints in DSPL
 - Better modeling of adaptive behavior
 - Reasoning over adaptation alternatives
- Cardinality-based feature models

• Multi-cloud environment adaptation

Questions

Gustavo Sousa

gustavo.sousa@inria.fr

More information

http://researchers.lille.inria.fr/sousa/seams2017/

