Toward a Certified Information Flows Analysis for

JAVASCRIPT

Martin BODIN

JSCert meeting

© Motivation

© Tracked Sublanguage

© Using Pretty-Big-Step Semantics to Extract Flows

@ Extensions

Motivation

Tainting, dynamic information flow

X = private ;
/* ... %/
public =y ;

This has already been done for other languages, but also for JAVASCRIPT:

@ Noninterference through secure multi-execution, DEVRIESE and
PIESSENS;

@ FlowFox: a Web Browser with Flexible and Precise Information Flow
Control, DE GROEF, DEVRIESE, NIKIFORAKIS and PIESSENS.

Direct Flows

Non-interference

If we change any private value, we don’t produce any observationnal
changes in the public ones.

Goal for JAVASCRIPT

Tracking direct flows (weaker than non-interference).

Undetected Flows

if (private) if (complexFunction ())
public = 1 ; /* false in practise */
else public = 2 ; public = private ;
Indirect Flows Dynamic Flows

o Tracking objects.

o={};
0.X = private ;
public = o.x ;

o Tracking objects.
@ Prototyping.

¢ = { prototype: {x: private} } ;
0 = new ¢ ;
public = o.x ;

@proto -

o Tracking objects.
@ Prototyping.
o Functions.

@ eval?
°

Wish List

o Tracking objects.
@ Prototyping.
e Functions.
@ eval?

°

Flow sensitive

Keep trace of time.

tmp = private ;
/* ... %/

tmp = public ;
public = tmp ;

What We've Got: O’WHILE

Sii=

| skip en=

| s1is2 |

| if e then s; else sp | x

| while e do s | &1 0p &
lx=e 1}

| e1.f = e | e.f

| delete e.f

What's Lacking

@ Closures.

In progress: closures a la \js.

What's Lacking

@ Closures.
In progress: closures a la \js.

@ eval.

Problems of lexing and parsing

Restraining it to an already parsed AST:

eval< /—\)
X e

What's Lacking

@ Closures.
In progress: closures a la \jg.

@ eval.

Problems of lexing and parsing

Restraining it to an already parsed AST:

eval< /—\)
X e

Development of special lattices to track strings representing numbers,
identifiers, etc.

o elfe2].

© Motivation

© Tracked Sublanguage

© Using Pretty-Big-Step Semantics to Extract Flows

@ Extensions

Program source

How to define @

those facts?

Unsafe states

Semantics

Program source

Defining
property

a

Unsafe states

Semantics

Analysis

0
1
4]
@
i
7}
L
©
0
=
=)

Semantics in Pretty-Big-Step

Either a S or an error.

Se— r S, whilel(r, e, s) — ¢
WHILE

EEH_ S whileedos—/

S.s—r S while2(r,es) — ¢

WHILETRUE1
S, whilel((S, true), e, s) —

S, while edo s — r

WHILETRUE2
S,while2(5, e,s) — r

WHILEFALSE

S, whilel((S, false),e,s) = S

abort(te) = r

ABORT
S;te—>r

10

Instrumentation of the Semantics

Amass information from a derivation tree, making the information flow
explicit (but without adding any information).

S, t—r

1

/
7,5, t—=>7r

1

T M., S t— T M r

!
T7M7'7D75T7t_>7-/7MT’7D,7r

!
TaMT7D7FT75T7t_>T,7MT'5DI7FT”r

Standard semantics
Adding traces
Times of last modification
Dependencies of expressions

Direct flows

11

Defining Annotations

We want this approach to scale to the full 720-rules JAVASCRIPT:

@ no copy/pasting;

@ a very general scheme (local rules).

axiom
axiom as, 7 as
N
7 £ 4 UP() down

dai — ar \ne& a3 — de

K304a7€/

up down

Annotations are defined directly from the semantics: we can be quite
confident about them.
12

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

57e—> o S,X =, rnp —
AsaG

Sx=e— r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

57e—> o S,X =, rnp —
AsaG

T(),S,X:e—) r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

1 = T0 4+ AscE

7'1,57e—>) S,X =, —
Asc

T(),S,X:e—) r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

1 = T0 4+ AscE

7'1,57e—>72,ro S,X =, —
Asc

T(),S,X:e—) r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

71 = To #+ ASGE T3 = T2 4 AsG1

71,5, = T2, 1o 73,5,x =, g —
Asc

T(),S,X:e—) r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

71 = To #+ ASGE T3 = T2 4 AsG1

71,5, = T2, 1 73,5,%x =, g — T4, r
Asa

T(),S,X:e—) r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Defining Annotations: Example of Traces

Traces 7 are used to identify a point in the derivation, that is to
represen
Flow sensitivity

71 = To #+ ASGE T3 = T2 4 AsG1

A 75 = T4 H+ ASG 1,5, e = T, n 73,5,x =, rg — T4, r
SG

7'0,5,x=e—>7'5,r

axiom
axiom as —7 as
7 y— up down
ar 7 A pext 93 7 36
: EN) :—> ary :
up down

13

Direct Flows

S, t—r

1

7.5, t—=71r

1

M, S t— 1 M r

i
T7MT7DaSTat_>7JaMT’7D,7r

5
TaMTvD’FT7ST7t_>T,7MT’aD,7FT’7r

Standard semantics

Adding traces
7 : Traces

Times of last modification
M, : Var — Traces

Dependencies of expressions
X", 1.£7,. 1€ D

Direct flows
s&ote F;

14

Direct Flows

Standard semantics

S, t—r
!
7.5, t—=71r Adding traces
1 7 : Traces
M, S t— 1 M r Times of last modification
1 M, : Var — Traces
M., DS, t—7 M. D,r Dependencies of expressions
l X", 1.£7,. 1€ D
T, M-, D, F., St = 7' M, D Froyr Direct flows
s&ote F;

Those flows s-& t represent a dependency between:
@ A target: a timed variable x” or a timed field of a location /.£7.

@ A source: a target or a location /.

14

Direct Flows

Hil=1 Hi=Hl~ {}]
71 =7+ OBJ My = M[l — 1] Dy =DuU{l}

OBJ
TaMaDaFaE’Ha{}_>7-17M1’D17F7E7H17l

Those flows s-& t represent a dependency between:
@ A target: a timed variable x” or a timed field of a location /.£7.

@ A source: a target or a location /.

14

Direct Flows

71 = To # ASGE T3 = T H# AsGl
5 = T4 H ASG 7‘1,/\/’,@, Fo,s,e—>7'2,/\/”,D, Fi,no
7—37M3D3F1757X =1 r0_>T47MIa®)F27r
TO,M,Q),FO,S,X: e_>7—5’M/7(Z)7F2ar

Asc

r=r4Ascl E=EHx] M=Mxo 7]

- Ascl
7,M,D,F,S,x = (E,H,v) =7, M,0, {d'@xT |d e D} UF,E,H

Those flows s-& t represent a dependency between:
@ A target: a timed variable x” or a timed field of a location /.£7.

@ A source: a target or a location /.

14

Semantics

EL__ o
N
s AN TR y
S ~
o obcmE,wm/--
e, 7"
.\,NMQ
4

Analysis

Unsafe states

15

Classical points-to abstractions

We chosed something very classical, checking whether it can fit.

@ Objects are abstracted by their point of allocation.
F € Loc* = P (PP)

@ Abstract values are abstract locations and the set of variable on which
they depend.
V € Val* = Loc? x P (Var x PP)

16

Abstract Flows

@ Environment and heap store the last program point of modification.

E' € Env? = Var — (P (PP) x Val)

H € Heap? = Loct — Field — (P (PP) x Val)

@ This leads to the following abstract flows:

Store* = (Var x PP) + (PP x Field x PP) Source® = PP + Store*

sttt € Dept = P (Sourceti X Storeﬁ)

17

Abstract Semantics

B H, e =/ d
B H. 2P = e = E [xo ({0} 2V)] H, (VU) ox

Asc

WHILE

Eﬂ, I-/ﬁ,whlle edos —>ti Eg, Hg, F

18

Correctness of the analysis

We define a relation < relating
o Traces and PP;
o Heap and Heap";

Theorem (Work in progress)
If

0,0,0,0,0,s — 7, M, F-, E-, H-

and

1,1,s >t B HOF
then E< E', H=< H' and F. < F!.

19

Challenge

Fit It Into CoQ.

S, t—r

1

/
5., t—71,r

1

T M., S t— 7 M, r

Standard semantics

Adding traces
7 : Traces

Times of last modification
M. : Var — Traces

|

¥
TaMTaDaSTvt%TlvMT’lear

I

Dependencies of expressions
x" 1.£7, 1€ D

Direct flows

TvMTvL)vl_TabTat_>T,7MT’7U7’_T'ar

s&oteF;

20

Fit It Into CoQ

Section LastModified.
Variable Locations : Annotations.

Definition ModifiedAnnots := annot_s_r Locations.
Record LastModifiedHeaps : Type :=
makeLastModifiedHeaps {
LCEnvironment : heap var ModifiedAnnots;
LCHeap : heap loc (heap prop_name ModifiedAnnots)

1.

Definition LastModified :=
ConstantAnnotations LastModifiedHeaps.

21

Fit It Into CoQ

Definition LastModifiedAxiom_s (r : LastModifiedHeaps)
EHt o (R:red_stat Locations EH t o) :=
let LCE := LCEnvironment r in
let LCH := LCHeap r in

let (_, tau) := extract_annot_s R in
match R with
| red_stat_ext_stat_assign_ 1 _ _ _ _ _ _ _ X_ _=>

let LCE' := write LCE x tau
in makeLastModifiedHeaps LCE' LCH
| red_stat_stat_delete 1 _f =
let aob :=read LCH 1
in let LCH' := write LCH 1 (write aob f tau)
in makelLastModifiedHeaps LCE LCH'
| red_stat_ext_stat_set_2 1 _f =
let aob :=read LCH 1
in let LCH' := write LCH 1 (write aob f tau)
in makeLastModifiedHeaps LCE LCH'
| _ = makeLastModifiedHeaps LCE LCH
end.

22

Fit It Into CoQ

Definition annotLastModified :=
makeIterativeAnnotations LastModified
(init_e Transmit) (axiom_e Transmit) (up_e Transmit) (down_e
Transmit) (next_e Transmit)
(up_s_e Transmit) (next_e_s Transmit)
(init_s Transmit) LastModifiedAxiom_s (up_s Transmit) (down_s
Transmit) (next_s Transmit).

End LastModified.

23

Extensions

@ Abstract domain for heap.

How to keep precision when taking as input an unknown heap?
What kind of knowledge can we assume on such a heap?

24

Extensions

@ Abstract domain for heap.

How to keep precision when taking as input an unknown heap?
What kind of knowledge can we assume on such a heap?

@ Functions, closures: how to keep precision?

24

Extensions

@ Abstract domain for heap.

How to keep precision when taking as input an unknown heap?
What kind of knowledge can we assume on such a heap?

@ Functions, closures: how to keep precision?
o Extensible records (how to precisely deal with prototype chains?).

B e V. HJICF dlt]l = (po, V)
E', H, delete e.f —* E“,H“,dﬁ@ﬂ\)j,fpo DEL

£ : Present(*)

£ : Missing(*)

£ : MayBeThere(*)
NoFieldsAtAll

a

p

24

Semantics

Program source

Analysis

Unsafe states

Thank you for listening!

25

© Motivation

© Tracked Sublanguage

© Using Pretty-Big-Step Semantics to Extract Flows

@ Extensions

26

	Motivation
	Tracked Sublanguage
	Using Pretty-Big-Step Semantics to Extract Flows
	Extensions

