
Preven&ve	
 informa&on	
 flow	
 control	

through	
 a	
 mechanism	
 of	
 split	

addresses	

Deepak Subramanian, <deepak.subramanian@supelec.fr>
Guillaume Hiet <guillaume.hiet@supelec.fr>

Christophe Bidan <christophe.bidan@supelec.fr>

May 13th 2014

SUPELEC, CIDRE LAB, SECCLOUD PROJECT

JavaScript	

•  Highly dynamic language.
•  Widely used
•  HTML5 increases possibilities for leak by providing

more functionality
•  No proper code encapsulation
•  Everything can be changed [Including native functions]
•  Functions can be created at runtime [and information

flows can be modified]

IFC	
 related	
 work 	
 	

•  FlowFox – [1]
– Based on the secure multi-execution paradigm
– Divide labels and then execute them as individual

processes.
–  Provides highest formal guarantees.

•  Faceted Approach - [2]
– Based on facets which divides a variable based on

its principal.
– Closest to our model. Requires all paths of the

program to be executed.

OWASP	
 Top	
 10	
 –	
 2013	
 	

•  A1 – Injection
•  A2 – Broken Authentication and Session Management
•  A3 – Cross-Site Scripting (XSS) [1,2]
•  A4 – Insecure Direct Object References [1,2]*
•  A5 – Security Misconfiguration
•  A6 – Sensitive Data Exposure [1,2]*
•  A7 – Missing Function Level Access Control
•  A8 – Cross-Site Request Forgery (CSRF)
•  A9 – Using Known Vulnerable Components
•  A10 – Unvalidated Redirects and Forwards

Probabilis&c	
 vs	

Possibilis&c	

•  Possibilistic
–  All investigated models have been possibilistic IFC in the domain of JS.

We are yet to find a model using probabilistic IFC in the context of JS.
–  The objective of this approach is to eliminate any possibility of leak if the

leak is considered feasible by the model.
–  Subsequently they tend to have a more larger over-approximation

(Reduced precision).
•  Probabilistic

–  Tend to be slower but more effective in making fine-grained IFC.
–  The objective of this approach is to eliminate the possibility of a leak if

the leak has crossed a certain tolerated threshold set in the model
–  Greater precision if effectively utilized but have some performance

considerations.

Address	
 Split	
 Model	

•  Mechanism to monitor and limit information flows
•  This is a preventive enforcement mechanism
•  PROBABILISTIC IFC
•  The model is composed of the following components

–  Policies
– Dictionaries
–  Functions
– Access Control Mechanism
–  Information Flow Control Mechanism

The	
 Split	

Policies	

•  There are 2 main types of policies
–  Static policies

•  Policies that are straightforward and valid for that context
(using variable names etc)

–  Inferred policies
•  Policies are defined in a way that they can be used in multiple

contexts. (Using events etc)

•  Policies can be user defined or developer defined. User
defined policies have precedence over developer policies.

Policies	
 –	
 some	
 problems	

•  Need to be isolated
–  Since JS can access complete DOM

•  Associating policies to code is a problem
–  Function names are unreliable
– Currently considering:

•  Function matching [doing a pattern matching between
functions]

•  Function hashing [using the hash of the function as a
string]

•  Headers can be read / modified by extensions

3+1	
 Permission	
 types	

•  Purpose:
–  Implemented ON Function TO access variables/fields

•  Current models
–  Read / Write / Execute based models [for OS]

•  More access control
–  Tainting models

•  Information flow without fine-tuned access control [Haldar et al. 2005]
[Chong et al. 2007]

•  Usually possibilistic in nature [Hauser et al. 2012]
–  Probabilistic models

•  3+1types of permissions
–  3 permissions for access control + possibilistic information flow

control
–  1 permission for probabilistic information flow control

3	
 access	
 control	
 permissions	

•  Full-bound access
–  Read + Write into variables

•  Semi-bound access
–  2 cases

•  Semi-bound read access
–  Functions can only read from variables
–  Example: Any form field with user input can be given this access right

•  Semi-bound write access
–  Functions can only write into variables
–  Example: Many 3rd party widgets (such as twitter feeds) can be given this

access right

•  Instance access
–  Function gets to use a COPY of the variable which was made

available to it at a particular instance.
–  Instance is a point in time where a set of pre-conditions are

met.
–  Translator example

1	
 informa&on	
 flow	

permission	

•  Transitive Access
–  Probabilistic information flow
– Based on entropy based information disclosure
– Allows for a flexible declassification model
– The transitive permissions are represented in the

variable space (attached to every variable)
– This is still in the initial stages

Informa&on	
 flow	

•  We intend to allow different weights for individual bits
in a string.

•  STRING = S(1),T(3),R(1),I(10),N(1),G(1)
•  If var a = STRING in a function and a has transitive 0.3

with weights as defined above
•  Function f1(a) returns charAt(1) is allowed
•  Function f2(a) returns charAt(4) is denied (returns

charAt(4) of public interface)
•  Example : Driving license numbers

Dic&onaries	

•  What are dictionaries?
–  Dictionaries a.k.a. “access tables” are data structures
–  provide a function side reference for the “3+1

permission types”

Function

Public
Variable

Dictionary Private
Variable

Dic&onaries	

•  Private dictionaries
–  Unique to every function

•  Subset dictionaries
–  Allows chaining of

dictionaries
•  Group dictionaries

–  Allows sharing of
dictionaries between
functions

•  Instance dictionaries
–  Allows sharing of the copy

of the variable

Subset Dictionary
level 2

Subset Dictionary
level 1

Private Dict of
Function f1 Dictf1

Dict 1

Dict 3 Dict 4

Dict 2

Dict 5

DictGrp

Dictf3

Dictf1

Dictf2

Dic&onaries	

Variable reference Type of access Variable Address

FU
N

C
TIO

N
 F1

PR
IVATE

D
IC

TIO
N

A
RY

a Full-Bound 0x1234
b Instance TD(b,submit.onClick)
[SUBSET DICTIONARY: HighDictionary]

Variable reference Event Value

IN
STA

N
C

E
D

IC
TIO

N
A

RY

b submit.onClick 13

Variable reference Type of access Variable Address

H
ighD

ictionary

G
R

O
U

P
D

IC
TIO

N
A

RY

d Full-Bound 0x4894
e Semi-Bound Read-only 0x9812

[SUBSET DICTIONARY: LowDictionary]

Func&ons	

•  Each function ó own privileges to access various
private variables

•  Specifying policy for all functions is a tedious process
– Harder with dynamic language like JS

•  Reduced and effective function policies are required
•  Hence,

 We classify them into 4 main types of functions

Func&ons	
 -­‐	
 Classifica&on	

•  Self-sufficient functions
•  Utility functions
•  Inheritance functions
•  Guest functions

Self-­‐sufficient	
 func&ons	

•  Policies are well-defined

•  If even one policy is specified for a function, it
becomes a self-sufficient function

•  Self-sufficient functions include functions with either
– User defined policies
–  Inferred policies

U&lity	
 func&ons	

•  This is the default state of a function
•  The definition is taken from the “modularity of a

function” perspective
•  The callee function is considered as a module of the

caller
–  It shares the dictionary of the caller function for

that instance and hence has the functionality intact
–  Eg. $.POST() would be a utility function

Inheritance	
 func&on	

•  These functions are created by other
functions

•  Self-sufficient function creates functions
whose privileges will not exceed its
parent’s
–  A utility function can only create utility

functions
 [or in the rare event, self-sufficient
functions]

•  The inheritance function will continue to
be bound to its parent when things change.
–  i f (parent drops privileges) =>

(inheritance function drops privileges)
–  If (parent is deleted) => (inheritance

function drops all privileges) ≠ utility
function

function
addFunction()	
{	
 var s =
document.createElem
ent("script");	
 s.type = "text/
javascript";	
 s.text =
‘function ab1()
{ alert(1); }’;	
 $
('head').append(s);	
}	

Guest	
 func&ons	

•  Can use properties of a self-sufficient/inheritance function
temporarily

•  Pre-conditions must be met
–  These include the occurrence of a particular event in

the system etc.,
•  The set of values that can be used can be restrictive

–  For example, the policy may specify the variables of the
function that can be accessed, the maximum number of
reference lookups, maximum number of instances of
the function that are allowed a lookup etc.,

•  DEMO JSONP & asynchronous communication

Example	
 policies	

•  F3 óFull-Bound >>> FV3	

•  IF (passwordBox IN form) THEN 	
function@[form.onSubmit]
ó(INSTANCE(form.submitButton.onClick)) >>>
passwordBox.text ;	
passwordBox.text ó TRANSITIVE(SIZE(8N,15N),
ENTROPY(0.3), PATTERN(([0-9]|[a-z]|[_])*)	
	

ASD	
 CONCEPTS	

Classifica&on	
 &	

Declassifica&on	

•  Classification
–  Policies + Rules

•  Declassification [3 ways]
– Guest functions [Temporary privilege escalation]
–  Instance access [Protective declassification]
– Transitive access [Selective declassification]

Example	

•  a, b, c, d are global objects
•  Function f1 has full-bound access to a,b
•  Function f2 is a utility function
•  Function f3 is a self-sufficient function with semi-

bound read only access to b, c
•  d is public

Function f1()
{

 a.name = b; //f1 has complete access to object a.. b’s access rights are
added to a.name.. So now f3 has access to a.name

 d = a; //f1 gets complete access to d and d becomes private.
 a = c; //f1 has no access to c. a’s private value now is equal to c’s public

value. [since d still points to ex value of a, the value remains].f1retains access to a
 f2(d,b); //works perfectly!
 f2(a, c); //no access to c since f1() has no acess
 f3(b,c); //works perfectly!
 f3(d,b); //no access to d !
 a = b+c; //Since f1 has no access to c, only b’s properties are added to a

after computation with c_public.f3 can access this value of a.f1 retains access to a
 a = b+d; //Since f1 has access to both a and b, an intersection of the 2

properties are added to a. so here f1 retains control of a but f3 does not.
}

•  Function has write access to a, read access to b and c
–  Private a = Private b + Private c
–  Then, function loses write access to a and gains read access

•  Function has write access to a, read access to b and no access to c
–  Private a = Private b + Public c
–  Then, function loses write access to a and gains read access

•  Function has read access to a, read access to b and read access to c
–  Public a = Public b + Public c
–  [Cannot modify Private a]
–  No change in function privilege

KEEP	
 TRACK	

•  SECCLOUD PROJECT
www.seccloud.cominlabs.ueb.eu

Our IFC dataset repository
git clone https://gforge.inria.fr/git/inflow/inflow.git

EMAIL: subudeepak@gmail.com

