Cominlabs Report

Samuel Risbourg and Alan Schmitt
March 10, 2020

1 Introduction

JavaScript is the language of the web. It is used in every browser to interpret
dynamic pages.

While the first implementation of JavaScript interpreter has been avail-
able in 1996, Netscape started to work with the European association
for standardizing information and communication systems (ECMA)
to standardize the language. The first version of the ECMAScript stan-
dard, ECMA-262, was adopted in 1997. Despite its early specification and
its mainstream adoption by web developers JavaScript has a complex syntax
and semantics. Those can lead to ambiguity or misunderstanding in source
code and finally in security or safety issues in produced software. Targeting
these JavaScript engineering concerns is the purpose of the JSExplain tool.

The story of JSExplain starts with an earlier tool. As JavaScript is ubig-
uitous and very precisely specified, it is amenable to mechanized formaliza-
tion. In the JSRef project, the ECMAScript specification was translated
into Gallina, the Coq proof assistant language, to formally specify the se-
mantics of JavaScript

From there it was possible to extract an OCaml JavaScript interpreter.
Assuming that no error were done during the translation, we can affirm that
this interpreter is correct regarding the official specification of the language.
It is not optimized as the ones in usual web browsers, but it is very close to
the specification. It can thus be used as a reference interpreter to check the
expected behavior of the language.

Such a naive interpreter can be useful for developers implementing real
world interpreters. Even if these developers follow rigorously the specifi-
cation, there is still room for interpretation. This can result in different
interpreters having different behaviors, as ambiguities may remain in the
specification, due to the way it is written in natural language. This is a

common and traditional issue in software engineering. Comparing the re-
sults of interpreters is not sufficient, however. One needs to understand the
reasons behind the correct result. JSExplain is such a tool: it helps to ex-
plain how the specification defines the evaluation of JavaScript to developers
of optimized JavaScript interpreters.

Of course anyone who have any interest in the deep understanding of
JavaScript semantics and behavior, such as web application developers, can
also use this tool. To help spread its usage by the JavaScript community,
the tool is actually embedded in a web page.

2 JSExplain

Inria Celtique’s team main research domains are programming language from
a theoretical point of view: semantics, compilation, safety and security of
various languages are studied in the perspective of producing proof of sound-
ness and certification guarantee on studied language.

The Coq Proof Assistant and OCaml programming language are used to
target these objectives. During the development of JSExplain the decision
to have a convivial web interface developed in JavaScript was made to target
the JavaScript developer community F_-]

Indeed, further than a simple research prototype, the JSExplain team
targets an adoption of the tool by the ECMAScript consortium so that it
help for in debugging and evolution of JavaScript language.

2.1 Software Architecture and build

Starting from the OCaml source code of the JSRef interpreter the tool is
build as follows ([1):

e First the JSRef is converted in JavaScript so that it can be embedded
in the web interface

e The User Interface parses the JavaScript source code submitted. This
code is parsed using the Esprima JavaScript library. The parser re-
turns an Abstract Syntax Tree, a common data structure used to rep-
resent the parsed program.

e Then the core of the tool generates a trace of the symbolic execution
of the program. The interface is used to browse this execution step by

LArthur Charguéraud, Alan Schmitt, and Thomas Wood. JSExplain: A Double
Debugger for JavaScript. In The Web Conference, 2018

step visualizing in parallel the code and state of the program, as well
as the code and state of the interpreter.

. AST of Esprima interpreted
interpreted fe emeereeeenees program
program
compiler ¢ v web page
| Libraries
Interpreter (JS)
and libraries | Interpreter |- > trace
(OCaml) with
traces (JS)
tra’cing \ ...
compiler

Figure 1: JSExplain Architecture

3 Evolution

JSExplain is a join work of Martin Bodin, Alan Schmitt, Arthur Char-
guéraud, and Thomas Wood. During the last year some development was
done by Samuel Risbourg to improve the user interface and add continuous
integration.

3.1 Migration

JSExplain repository was hosted on Github and some of the continuous
integration servers were at Imperial College. One of the task was to migrate
the repository and continuous integration to Inria Gitlab. The project is now
hosted on https://gitlab.inria.fr/star-explain/| and the Continuous
Integration takes place on https://ci.inria.fr/.

3.2 Integration

Another focus was to give a better accessibility to the tool so that it can
be easily tested by the JavaScript developer community. To target this goal

https://gitlab.inria.fr/star-explain/
https://ci.inria.fr/

some cleaning has been done in the installation procedure (Makefile) and
new functionality were added for a better deployment mechanism and sys-
tem compatibility. For example, instead of a static installation, the original
Makefile was migrated to a GNU Autotools generic one. This way some
installation prerequisites could be checked on the targeted operating system
at installation time.

3.2.1 OPAM

In the same perspective of easy delivery, the tool is now integrated as a
package in OPAM, the OCaml Package Manager. The reason why the project
is present in the OCaml ecosystem and not the JavaScript one is that the
build toolchain is an OCaml one, the JavaScript core of the web site comes
from a compilation from a JavaScript interpreter written in OCaml.

This OPAM package installation procedure now give an synthetic way to
get the tool. It is available in the README of the repository. The main gain
of this achievement is that the final user does not have to take care of many
software dependencies. In the future this could become even easier. Each
official software release could be integrated in OPAM. Thus, if the user has
already OPAM installed, the installation could be done in one instruction.

3.2.2 Site hosting

Another facility is given to the tool developer to deploy an online ver-
sion through Makefile command line. The site is hosted there http://
jsexplain.gforge.inria.fr/. This could be useful during presentation
to show new functionality or to fix a bug fast.

3.2.3 The Inria Forge

Both the OPAM packages and the web site are hosted on the Inria Forge.
At this point the generation and the deployment of both services on the
platform is managed through the Makefile. This could be an entry point in
further continuous integration testing. We also plan to migrate hosting to
Inria Gitlab, as the Inria Forge will be deprecated.

3.3 Development

The figure [2] is a screenshot of the final Web User Interface.
JSExplain is a JavaScript program debugger that can be used in a browser.
The interface is divided in a classical way for such a tool.

http://jsexplain.gforge.inria.fr/
http://jsexplain.gforge.inria.fr/

sm PoDDms @9 ¢ =

o S s

exampils

onditions: Reoch | Test | Using: S(x), S_1aw(x), Sline), I(x), Liine)

Tvar x = (LRI T+ (R Tt] (D [+
() L1401
x

to_prinitive(vi, None);
to_primitive(v2, None);

5 i antics: Evaluation
strctness: rue
reExpression sion + MultiplicativeExpression

this: <Object>{global) o
e biect>
nv:
o2 <symaxobject>
#RETURN.VALUES: Resultsome wth
v n

ecord-object <Object>(global)

record-object <Object>(global)

NOTE1

NOTE2

Figure 2: JSExplain User Interface

e You can write or load the program you want to verify, and then inter-
pret and run it step by step

e We visualize at the same time:

— The program execution context: memory state, expressions, vari-
ables, types and values

— The lexical context
e At each program step we see in parallel:

— The JavaScript interpreter code and its localization regarding the
precise execution point .

— What part of the ECMAScript specification it corresponds to.

e Buttons in the menu bar allow the user to go forward and backward
in the program execution and to skip functions that he does not want
to inspect

The main evolution during the last year in software architecture concern
both the core of the tool as well as its front-end.

3.3.1 Core

e Targeting future development and maintenance of the tool, an interme-
diate Abstract Syntax Tree has been added been added in the OCaml to
JavaScript Compiler (fjs_of_fml). Previously the compiler was just a
JavaScript printer based on the OCaml AST. Now there is a JavaScript
AST and a translation from the OCaml AST to the JavaScript one.
This could help to manage new language feature and to understand
some compilation error.

e Another task was to simplify the interpreter to get code closer to the
ECMA specification. As a consequence, the parallel between pseudo
formal ECMA specification and the JavaScript implementation of the
embedded interpreter becomes more apparent.

3.3.2 Front-end

o A first task was to add a frame to the ECMA website https://tc39.
es/| JavaScript Specification in the User Interface and to synchronize
it with the code of the interpreter. Thus, while the studied source
code is interpreted through the embedded interpreter, the user can
see the step by step execution of the source code, the step by step
execution of the interpreter code and the corresponding ECMAScript
specification. Thus, the user can understand a JavaScript program or
the right behavior expected by the ECMA consortium.

e Some cosmetic and ergonomic change has been done to the user inter-
face to improve user experience. A modern web framework has been
added to manage the different sub-windows in the interface.

e Some bug fixes have been done in the trace navigation functionality.

3.4 Tests

Another effort was made on benchmarking the tool to avoid any regression in
it while adding any new feature in it. Since the language semantics changes
often, the tool has to be updated frequently to stay synchronous with it. As
a test suite is available and maintained by the ECMA Script team (https://
github.com/tc39/test262) the tool is tested with it. Thus, we can compare
two different states (git commit) of the tool. A script test both of them an
check that the interpreter stays stable.

https://tc39.es/
https://tc39.es/
https://github.com/tc39/test262
https://github.com/tc39/test262

4 Conclusion

During this year the development effort focused on usability. Integration and
deployment has been improved, as well as the User Experience trough a new
Interface.

On a more technical side, the tool is now tested using the official EC-
MAScript test suite. We automated the usage of this test suite to avoid any
regressions during the software evolution.

	Introduction
	JSExplain
	Software Architecture and build

	Evolution
	Migration
	Integration
	OPAM
	Site hosting
	The Inria Forge

	Development
	Core
	Front-end

	Tests

	Conclusion

