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Introduction

Context

■ An increasing number of available algorithms

■ Several parametrization and pre-processing approaches 

■ “No free lunch”

Save time by reducing the number of alternative algorithms 
tried out on a given problem
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Introduction

Meta-learning

■ Appears in ML research in 90s

■ A meta-learning system must include 

1. A learning subsystem, which adapts with experience.

2. Experience is gained by exploiting meta-knowledge extracted

 in a previous learning episode on a single dataset

 or from different domains or problems.

■ One case of meta-learning: 

■ Algorithm Selection (to recommend an algorithm automatically)

 The classic application: classification

 Some research works on clustering
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Introduction

Algorithm Selection Problem (ASP)

Given a set 𝑃 of algorithms 𝑝 ∈ 𝑃, a set 𝐷 of datasets 𝑑 ∈ 𝐷 and a 
cost metric 𝑚:𝑃 × 𝐷 → ℝ

Goal: finding a mapping 𝑠: 𝐷 → 𝑃

such that the cost σ𝑑∈𝐷𝑚(𝑠 𝑑 , 𝑑) across all datasets is optimized.
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Clustering Algorithm Selection
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Clustering Algorithm Selection
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Clustering Algorithm Selection

Mini Batch K-Means

Affinity Propagation

DBSCAN

Birch

?
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Introduction

Constrained Clustering

■ Must-link: instances must be assigned to 
the same cluster 

■ Cannot-link: instances should be assigned
to the distinct clusters

■ Extensions

 K-means → COP-Kmeans, MPC-Kmeans
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Introduction

Active Learning

■ Getting constraints is costly 

 without guarantees of improvements in terms of quality of obtained 
clusters

■ Strategies to select informative constraints based on

 Uncertainty: NPU (Normalized Point-based Uncertainty)

 k-nearest neighbor graph: ASC (Ability to Separate between Clusters)
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Introduction

Problem Statement

Constrained Clustering Algorithm Selection Problem (CCASP)

Given a set 𝑃 of algorithms 𝑝 ∈ 𝑃, a set 𝐷 of datasets 𝑑 ∈ 𝐷, the 
additional knowledge 𝑲 and a cost metric 𝑚′: 𝑃 × 𝐷 × 𝐾 → ℝ,

Goal: finding a mapping 𝑠′: 𝐷 × 𝐾 → 𝑃

such that the cost σ𝑑∈𝐷𝑚′(𝑠′ 𝑑, 𝓀 , 𝑑) across all datasets is
optimized.
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Introduction

Literature

“The question remains open to which extent this and other features can be derived from constraints, 

and to what extent this can lead to better clustering algorithm selection.” [Adam & Blockeel 2017]
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2001 COP-K-means

2004 MPC-K-means

2008 Min-Max

2010 ASC (Ability to Separate between Clusters)

2014 NPU (Normalized Point-based Uncertainty)
Clustering Algorithm Selection

[Ferrari & de Castro] 2015

(Constraint-Based Overlap) CBO 2017

[Pimentel & de Carvalho]  2019

Constrained Clustering
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Hypothesis

Combining CBO with other constraints meta-features and our 
proposed meta-feature can help on providing accurate 

predictions in CCASP
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Meta-learning System for Clustering
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Background

Meta-learning System for Constrained Clustering
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Let’s now add one more variable in our previous scenario…

For each dataset we may have one or more set of constraints.

Several ways to specify constraints. 

Here, we only consider pairwise constraints must-links and cannot-links
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Background

Constraint Based Overlap (CBO) 

■ First proposed meta-feature for 
characterizing constraints

■ How the clusters overlap based 
on a given set of constraints
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Background

Constraint Based Overlap (CBO) 

■ First proposed meta-feature for 
characterizing constraints

■ How the clusters overlap based 
on a given set of constraints

 the overlap among short 
cannot-links 

 the overlap among pairs of 
parallel must-link and cannot-
link
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Adam, A., & Blockeel, H. (2017). Constraint-based measure for 

estimating overlap in clustering. In Proceedings of the Twenty-Sixth 

Benelux Conference on Machine Learning (Vol. 6, pp. 54–61). 
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TargetMeta-features

Meta-features Schema

 CBO

 Features computed from heuristics for selecting constraints

 Histograms built from distances between all pair of instances 
(constrained and unconstrained)

 Our proposed meta-feature: Constrained Neighborhood
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Proposed Meta-feature

Main Idea

■ Assumption: 

a well-spread set of constraints can provide 

holistic information about the dataset

■ Histograms capture the most information possible about the 
problem being characterized [Kalousis 2002]
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Proposed Meta-feature

Algorithm

SFC'19 Nancy

Algorithm CONSTRAINT NEIGHBORHOOD-BASED HISTOGRAM

INPUT: 
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑠𝑒𝑡: must-link set (or cannot-link set), 

𝑘: maximum number of neighbors

OUTPUT: 
ℎ: the histogram in which each bar represents the proportion of shared k-nearest instances 

ℰ = {}, ℎ = [0,… , 0]
for each 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∈ 𝑠𝑒𝑡_𝑜𝑓_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 do

for 𝑖 ∈ [0, 𝑘] do

for 𝑥 ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 do

𝒩 = 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥, 𝑖)

ℎ 𝑖 = ℎ 𝑖 +
𝒩−ℰ

𝑛

ℰ ← ℰ ∪𝒩
end_for

end_for

end_for

return ℎ
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 Same datasets and number of constraints

constraint (must-link or cannot-link)
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Examples
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Proposed Meta-feature

Examples
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 Same datasets and number of constraints

 Different constraints organization → Different histograms
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Experimental Setup

■ Datasets: 23 (available on openml.org)

■ Constraints generation

■ randomly selected (uniform distribution)

■ different sets for the same dataset

■ different number of constraints 

■ 0%, 25%, 50% ,100% over the number of instances

■ Protocol: leave-one-dataset-out

■ Clustering algorithms: 

■ Constrained: COP-K-means (1), MPC-K-means (2), 

■ Unsupervised: K-means (3)
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Experimental Results
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Conclusion

■ The larger number of trees: the main advantages of our 
approach over CBO

 we have more meta-features for describing the same clustering 
problems.

■ ARI improvement

 our meta-features contribute to a better decision of which clustering 
algorithm should be employed (hypothesis).
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Future Directions



Future Work

■ Incorporate more algorithms

■ Select most informative meta-instances (training phase)

■ Online learning
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Thank you Questions?

SFC'19 Nancy 452-Sep-19



References

 Adam, A., & Blockeel, H. (2017). Constraint-based measure for estimating overlap in clustering. In Proceedings of the 
Twenty-Sixth Benelux Conference on Machine Learning (Vol. 6, pp. 54–61). Retrieved from 
https://core.ac.uk/download/pdf/95683794.pdf

 Bilenko, M., Basu, S., & Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised 
clustering. In ICML (p. 11). New York, New York, USA: ACM Press. https://doi.org/10.1145/1015330.1015360

 Brazdil, P., Carrier, C. G., Soares, C., & Vilalta, R. (2009). Metalearning Applications to Data Mining. Berlin, Heidelberg: 
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73263-1

 Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

 Cachada, M. V., Abdulrahman, S. M., & Brazdil, P. (2017). Combining feature and algorithm hyperparameter selection
using some metalearning methods. In AutoML@PKDD/ECML (Vol. 1998). Retrieved from
https://repositorio.inesctec.pt/handle/123456789/7126

 Mallapragada, P. K., Jin, R., & Jain, A. K. (2008). Active query selection for semi-supervised clustering. In ICPR (pp. 1–
4). IEEE. https://doi.org/10.1109/ICPR.2008.4761792

 Pimentel, B. A., & de Carvalho, A. C. P. L. F. (2019). A new data characterization for selecting clustering algorithms 
using meta-learning. Information Sciences, 477, 203–219. https://doi.org/10.1016/J.INS.2018.10.043

 Ruiz, C., Spiliopoulou, M., & Menasalvas, E. (2007). C-DBSCAN: Density-Based Clustering with Constraints. 11th 
International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (Vol. 4482). Berlin, Heidelberg: 
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72530-5

 Vu, V., Labroche, N., & Bouchon-Meunier, B. (2010). Boosting Clustering by Active Constraint Selection. In ECAI. 
Lisbon, Portugal. 

 Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with background knowledge. 
In ICML (Vol. 1, pp. 577-584).

 Wang, G., Song, Q., Zhang, X., & Zhang, K. (2014). A generic multilabel learning-based classification algorithm 
recommendation method. ACM TKDD, 9(1), 7.

 Xiong, S., Azimi, J., & Fern, X. Z. (2014). Active Learning of Constraints for Semi-Supervised Clustering. IEEE TKDE, 
26(1), 43–54. https://doi.org/10.1109/TKDE.2013.22

3-Sep-19 SFC'19 Nancy 46

https://core.ac.uk/download/pdf/95683794.pdf
https://doi.org/10.1145/1015330.1015360
https://doi.org/10.1007/978-3-540-73263-1
https://doi.org/10.1023/A:1010933404324
https://repositorio.inesctec.pt/handle/123456789/7126
https://doi.org/10.1109/ICPR.2008.4761792
https://doi.org/10.1016/J.INS.2018.10.043
https://doi.org/10.1007/978-3-540-72530-5
https://doi.org/10.1109/TKDE.2013.22

