Towards a Constrained Clustering Algorithm Selection

Guilherme Alves, Miguel Couceiro, Amedeo Napoli

Université de Lorraine, CNRS, Inria Nancy G.E., LORIA

Outline

■ Introduction

- Background
- Proposed Approach
- Experiments and Results
- Future Directions

■ An increasing number of available algorithms

Several parametrization and pre-processing approaches

■ "No free lunch"

Save time by reducing the number of alternative algorithms tried out on a given problem

Introduction Meta-learning

Appears in ML research in 90s

A meta-learning system must include

- 1. A learning subsystem, which **adapts with experience**.
- 2. Experience is gained by exploiting meta-knowledge extracted
 - in a previous learning episode on a single dataset
 - or from different domains or problems.
- One case of meta-learning:
 - Algorithm Selection (to recommend an algorithm automatically)
 - The classic application: classification
 - Some research works on **clustering**

Introduction Algorithm Selection Problem (ASP)

Given a set P of algorithms $p \in P$, a set D of datasets $d \in D$ and a cost metric $m: P \times D \rightarrow \mathbb{R}$

Goal: finding a mapping $s: D \rightarrow P$

such that the cost $\sum_{d \in D} m(s(d), d)$ across all datasets is optimized.

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (Vol. 15, pp. 65-118). Elsevier.

SFC'19 Nancy

https://scikit-learn.org/stable/modules/clustering.html#clustering

https://scikit-learn.org/stable/modules/clustering.html#clustering

Examples: mean, variance, std deviation, kurtosis, skewness

Examples:

a label representing the recommended algorithm, a sequence of algorithms

Examples: mean, variance, std deviation, kurtosis, skewness

Examples:

a label representing the recommended algorithm, a sequence of algorithms

Examples: mean, variance, std deviation, kurtosis, skewness

Examples:

a label representing the recommended algorithm, a sequence of algorithms

Examples: mean, variance, std deviation, kurtosis, skewness

Examples:

a label representing the recommended algorithm, a sequence of algorithms

Examples: mean, variance, std deviation, kurtosis, skewness

Examples:

a label representing the recommended algorithm, a sequence of algorithms

Examples: mean, variance, std deviation, kurtosis, skewness

Examples:

a label representing the recommended algorithm, a sequence of algorithms

https://scikit-learn.org/stable/modules/clustering.html#clustering

SFC'19 Nancy

Introduction Constrained Clustering

■ **Must-link**: instances must be assigned to the same cluster

■ **Cannot-link**: instances should be assigned to the distinct clusters

Extensions

■ K-means → COP-Kmeans, MPC-Kmeans

Introduction Active Learning

Getting constraints is costly

 without guarantees of improvements in terms of quality of obtained clusters

Strategies to select informative constraints based on

- Uncertainty: NPU (Normalized Point-based Uncertainty)
- *k*-nearest neighbor graph: **ASC** (Ability to Separate between Clusters)

Constrained Clustering Algorithm Selection Problem (CCASP)

Given a set *P* of algorithms $p \in P$, a set *D* of datasets $d \in D$, the additional knowledge *K* and a cost metric $m': P \times D \times K \to \mathbb{R}$,

Goal: finding a mapping $s': D \times K \to P$

such that the cost $\sum_{d \in D} m'(s'(d, k), d)$ across all datasets is optimized.

SFC'19 Nancy

Introduction Literature

Clustering Algorithm Selection

[Ferrari & de Castro] 2015

(Constraint-Based Overlap) CBO 2017

[Pimentel & de Carvalho] 2019

Constrained Clustering

- 2001 COP-K-means
- 2004 MPC-K-means
- 2008 Min-Max
 - **2010** ASC (Ability to Separate between Clusters)
 - 2014 NPU (Normalized Point-based Uncertainty)

"The question remains **open** to which extent this and other features can be derived from constraints, and to what extent this can lead to better clustering algorithm selection." [Adam & Blockeel 2017]

Combining CBO with other constraints meta-features and our proposed meta-feature can help on providing accurate predictions in CCASP

Background

Background Meta-learning System for Clustering

Background Meta-learning System for Constrained Clustering

Let's now add one more variable in our previous scenario...

For each dataset we may have one or more set of constraints.

Several ways to specify constraints.

Here, we only consider pairwise constraints must-links and cannot-links

Background Meta-learning System for Constrained Clustering

Background Meta-instance for CCASP

Background Constraint Based Overlap (CBO)

First proposed meta-feature for characterizing constraints

How the clusters overlap based on a given set of constraints Background Constraint Based Overlap (CBO)

First proposed meta-feature for characterizing constraints

- How the clusters overlap based on a given set of constraints
 - the overlap among short cannot-links

Adam, A., & Blockeel, H. (2017). Constraint-based measure for estimating overlap in clustering. In *Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning* (Vol. 6, pp. 54–61). Background Constraint Based Overlap (CBO)

First proposed meta-feature for characterizing constraints

- How the clusters overlap based on a given set of constraints
 - the overlap among short cannot-links
 - the overlap among pairs of parallel must-link and cannotlink

Adam, A., & Blockeel, H. (2017). Constraint-based measure for estimating overlap in clustering. In *Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning* (Vol. 6, pp. 54–61).

Proposed Approach

Meta-features Schema

- CBO
- Features computed from heuristics for selecting constraints
- Histograms built from distances between all pair of instances (constrained and unconstrained)
- Our proposed meta-feature: Constrained Neighborhood

META-INSTANCE SCHEMA

Proposed Meta-feature Main Idea

a **well-spread set of constraints** can provide **holistic** information about the dataset

■ Histograms capture the most information possible about the problem being characterized [Kalousis 2002]

Proposed Meta-feature Algorithm

Algorithm Constraint Neighborhood-Based Histogram

INPUT:

constraint_set: must-link set (or cannot-link set),

k: maximum number of neighbors

OUTPUT:

h: the histogram in which each bar represents the proportion of shared *k*-nearest instances

```
 \begin{split} \mathcal{E} &= \{\}, \ h = [0, \dots, 0] \\ \text{for each constraint} \in set\_of\_constraint \ \text{do} \\ \text{for } i \in [0, k] \ \text{do} \\ \text{for } x \in constraint \ \text{do} \\ \mathcal{N} &= NearestNeighbors(x, i) \\ h \left[i\right] &= h[i] + \frac{|\mathcal{N} - \mathcal{E}|}{n} \\ \mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{N} \\ \text{end\_for} \\ \text{end\_for} \\ \text{return } h \end{split}
```

Same datasets and number of constraints

- Same datasets and number of constraints
- **Different** constraints organization → **Different** histograms

k = 2

$$h[\mathbf{0}] = \frac{|\{a, b, c, d\}|}{14} \approx 0.3$$

$$h[\mathbf{0}] = \frac{|\{b, d, e\}|}{14} \approx 0.2$$

- Same datasets and number of constraints
- **Different** constraints organization → **Different** histograms

 e_1

k = 2

$$h[\mathbf{0}] = \frac{|\{a, b, c, d\}|}{14} \approx 0.3$$

$$h[1] = \frac{|\{a_1, b_1, c_1, d_1\}|}{14} \approx 0.3$$

$$h[0] = \frac{|\{b, d, e\}|}{14} \approx 0.2$$
$$h[1] = \frac{|\{b_1, d_1, e_1\}|}{14} \approx 0.2$$

4-Sep-19

SFC'19 Nancy

- Same datasets and number of constraints
- **Different** constraints organization → **Different** histograms

k = 2

 $h[0] = \frac{|\{a, b, c, d\}|}{14} \approx 0.3$ $h[1] = \frac{|\{a_1, b_1, c_1, d_1\}|}{14} \approx 0.3$

$$h[2] = \frac{|\{a_2, b_2, c_2, d_2\}|}{14} \approx 0.3$$

$$h[0] = \frac{|\{b, d, e\}|}{14} \approx 0.2$$
$$h[1] = \frac{|\{b_1, d_1, e_1\}|}{14} \approx 0.2$$

$$h[2] = \frac{|\{b_2, a_2\}|}{14} \approx 0.1$$

- Same datasets and number of constraints
- **Different** constraints organization → **Different** histograms

h = [0.3, 0.3, 0.3]

h = [0.2, 0.2, 0.1]

- Same datasets and number of constraints
- **Different** constraints organization → **Different** histograms

Experiments and Results

Experimental Setup

■ Datasets: 23 (available on openml.org)

Constraints generation

- randomly selected (uniform distribution)
- different sets for the same dataset
- different number of constraints
 - 0%, 25%, 50% ,100% over the number of instances

■ **Protocol**: leave-one-dataset-out

■ Clustering algorithms:

- Constrained: COP-K-means (1), MPC-K-means (2),
- Unsupervised: K-means (3)

Experimental Results

Meta-learner: Random Forest

Conclusion

■ The larger number of trees: the **main advantages of our** approach over CBO

 we have more meta-features for describing the same clustering problems.

■ ARI improvement

 our meta-features contribute to a better decision of which clustering algorithm should be employed (hypothesis).

Future Directions

- Incorporate more algorithms
- Select most informative meta-instances (training phase)
- Online learning

Thank you

Questions?

References

- Adam, A., & Blockeel, H. (2017). Constraint-based measure for estimating overlap in clustering. In Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning (Vol. 6, pp. 54–61). Retrieved from <u>https://core.ac.uk/download/pdf/95683794.pdf</u>
- Bilenko, M., Basu, S., & Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised clustering. In *ICML* (p. 11). New York, New York, USA: ACM Press. <u>https://doi.org/10.1145/1015330.1015360</u>
- Brazdil, P., Carrier, C. G., Soares, C., & Vilalta, R. (2009). *Metalearning Applications to Data Mining*. Berlin, Heidelberg: Springer Berlin Heidelberg. <u>https://doi.org/10.1007/978-3-540-73263-1</u>
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. <u>https://doi.org/10.1023/A:1010933404324</u>
- Cachada, M. V., Abdulrahman, S. M., & Brazdil, P. (2017). Combining feature and algorithm hyperparameter selection using some metalearning methods. In *AutoML@PKDD/ECML* (Vol. 1998). Retrieved from <u>https://repositorio.inesctec.pt/handle/123456789/7126</u>
- Mallapragada, P. K., Jin, R., & Jain, A. K. (2008). Active query selection for semi-supervised clustering. In *ICPR* (pp. 1– 4). IEEE. <u>https://doi.org/10.1109/ICPR.2008.4761792</u>
- Pimentel, B. A., & de Carvalho, A. C. P. L. F. (2019). A new data characterization for selecting clustering algorithms using meta-learning. *Information Sciences*, 477, 203–219. <u>https://doi.org/10.1016/J.INS.2018.10.043</u>
- Ruiz, C., Spiliopoulou, M., & Menasalvas, E. (2007). C-DBSCAN: Density-Based Clustering with Constraints. 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (Vol. 4482). Berlin, Heidelberg: Springer Berlin Heidelberg. <u>https://doi.org/10.1007/978-3-540-72530-5</u>
- Vu, V., Labroche, N., & Bouchon-Meunier, B. (2010). Boosting Clustering by Active Constraint Selection. In ECAI. Lisbon, Portugal.
- Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with background knowledge. In *ICML* (Vol. 1, pp. 577-584).
- Wang, G., Song, Q., Zhang, X., & Zhang, K. (2014). A generic multilabel learning-based classification algorithm recommendation method. ACM TKDD, 9(1), 7.
- Xiong, S., Azimi, J., & Fern, X. Z. (2014). Active Learning of Constraints for Semi-Supervised Clustering. *IEEE TKDE*, 26(1), 43–54. <u>https://doi.org/10.1109/TKDE.2013.22</u>