Monotonicity, a deep property in data science

Bernard DE BAETS, Ghent University, Belgium

SFC2019

Nancy, France, 03/09/2019
The narrator

- **Training**: mathematician – computer scientist – knowledge engineer
- **Profession**: senior full professor in applied mathematics
- **Affiliation**: Faculty of Bioscience Engineering at Ghent University
- **Multi- and interdisciplinary research** in three interlaced threads: knowledge-based, predictive and spatio-temporal modelling
- **Ultimate aim**: innovative applications in the bio-engineering sciences
Today’s main character in a three-act play: Monotonicity

A function \(f : P \to P' \) between two partially ordered sets (posets) \((P, \leq)\) and \((P', \leq')\) is called

- **increasing** if \(x \leq y \) implies \(f(x) \leq' f(y) \)
- **decreasing** if \(x \leq y \) implies \(f(y) \leq' f(x) \)
Act I

DECEPTION
Example: Soil erosion

Phenomenon: loss of soil by erosion increases with increasing slope angle and decreasing soil coverage with vegetation

(geoderma, Mitra et al., 1998)

<table>
<thead>
<tr>
<th>slope angle class</th>
<th>very large</th>
<th>large</th>
<th>medium</th>
<th>small</th>
<th>very small</th>
</tr>
</thead>
<tbody>
<tr>
<td>forest</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>pasture</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>land use class</td>
<td>moderately high</td>
<td>moderately low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

Increasing, non-smooth rule base
Monotone fuzzy models?

Starting observations

- In many non-control applications (such as classification), fuzzy rule-based models are used for **one-shot decisions**
- At the level of linguistic terms, the underlying fuzzy rule base usually has some **flavor of monotonicity**
- However, is the resulting input-output function **effectively monotone**?
Fuzzy rule-based model

MISO model characteristics:

- m input variables X_ℓ and a single output variable Y
- rules of the form

 $$R_s: \text{IF } X_1 \text{ IS } B_{j_1, s}^1 \text{ AND } \ldots \text{ AND } X_m \text{ IS } B_{j_m, s}^m \text{ THEN } Y \text{ IS } A_{i_s}$$
- linguistic values $B_{j_\ell, s}^\ell$ of X_ℓ: trapezoidal; Ruspini partition
- linguistic values A_{i_s}: trapezoidal; Ruspini partition (bounded domain)
- natural ordering on the linguistic values of each variable
Ruspini partition
Mamdani–Assilian fuzzy models

Observation

Mamdani–Assilian fuzzy models with a monotone rule base do not necessarily result in a **monotone input-output mapping**

Monotone input-output behaviour under restrictive conditions only

If the original rule base is **complete** and **increasing**, then the input-output mapping can only be **increasing** in the following cases:

1. **Center-of-Gravity defuzzification:**
 - one input variable: basic t-norms T_M, T_P and T_L
 - two or three input variables: T_P and a **smooth** rule base

2. **Mean-of-Maxima defuzzification:**
 - one input variable: basic t-norms T_M, T_P and T_L
 - two or **more** input variables: T_M or T_P, and a **smooth** rule base
Alternative approach

Trivial, yet crucial observations
Consider an increasing function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0) = 0$, then:

- if $x \geq 0$, then $f(x) \geq 0$
- if $x \leq 0$, then $f(x) \leq 0$

Consequences for a fuzzy rule in an increasing rule base
Consider a fuzzy rule “IF X IS C THEN Y IS D”, then

- IF X IS “at least” C THEN Y IS “at least” D
- IF X IS “at most” C THEN Y IS “at most” $D
Cumulative modifiers of fuzzy sets

- **at-least modifier**: \(\text{ATL}(C)(x) = \sup\{C(t) \mid t \leq x\} \)
- **at-most modifier**: \(\text{ATM}(C)(x) = \sup\{C(t) \mid t \geq x\} \)
Implication-based fuzzy models (CRI)

Connectives: left-continuous t-norm and its residual implicant

Modifying an increasing rule base
- **ATL rule base:** applying ATL to all antecedents and consequents
- **ATM rule base:** applying ATM to all antecedents and consequents
- **ATLM rule base:** union of the above rule bases

Increasing input-output mapping
If the original rule base is increasing, then the input-output mapping is increasing in the following cases:

1. ATL rule base and **First-of-Maxima defuzzification**
2. ATM rule base and **Last-of-Maxima defuzzification**
3. ATLM rule base and **Mean-of-Maxima defuzzification**
Act II

OBSTRUCTION
The Age of Aggregation

New paths to growth
The Age of Aggregation

By Wayne G. Borchardt, Jill S. Dailey and Paul F. Nunes

Today’s expanded-scale businesses require ever more substantial sales volumes to create shareholder value. In order to grow, they must become market aggregators—masters at identifying commonalities in far-flung consumer segments—recognizing that the strongest growth will happen not within industries or markets but across and among them.
Data aggregation has become a very successful business model

The battle is for the **customer interface**:

- **Uber**: the world’s largest taxi company, owns no vehicles
- **Facebook**: the world’s most popular media owner, creates no content
- **Alibaba**: the most valuable retailer, has no inventory
- **Airbnb**: the world’s largest accommodation provider, owns no real estate
What processes do AGOP researchers study?

- Mathematically formalized by aggregation functions, formerly called aggregation operators (AGOPs)
- Historically, mostly confined to real numbers
- Numerous examples and parametric families: means, t-norms, t-conorms, uninorms, nullnorms, quasi-copulas, copulas, OWA operators, Sugeno integral, Choquet integral, ...
- Probably the most important spin-off of the fuzzy set community
- Monographs:
 - Aggregation Functions (2009) (Grabisch–Marichal–Mesiar–Pap)
 - etc.
1. The age of aggregation

Aggregation functions

Theory: Embarrassingly general

Consider a bounded poset \((P, \leq, 0, 1)\) and \(n \in \mathbb{N}\). A mapping \(A : P^n \to P\) is called an \(n\)-ary **aggregation function** on \((P, \leq)\) if it satisfies:

1. \(A(0, \ldots, 0) = 0\) and \(A(1, \ldots, 1) = 1\)

2. \(A\) is **increasing**: \(x \leq y \Rightarrow A(x) \leq A(y)\)

Some comments

- Practice is embarrassingly narrow
- The poset context appears dogmatic
- Does not address data types of current interest
First example: Compositional data

- \(k \)-dimensional compositional data vectors: simplex

\[S_k = \{ x \in [0, 1]^k \mid \sum_{i=1}^{k} x_i = 1 \} \]

- Examples of application:
 - **soil science**: relative portions of sand, clay and silt in a soil sample
 - **chemistry**: compositions expressed as molar concentrations
 - **environmental science**: composition of air pollution
 - **mathematics**: weight vector of a weighted quasi-arithmetic mean
 - **fuzzy set theory**: vector of membership degrees in fuzzy \(c \)-means
 - **probability theory**: discrete probability distribution
Illustration: food composition (in %) \((k = 3)\)

Food composition (% fat, % carbonates, % protein) in barycentric coordinates
Mixing compositions

We can “aggregate” compositional data vectors componentwisely resulting in a new compositional data vector: $C : (S_k)^n \rightarrow S_k$

$$C(x^1, \ldots, x^n)_j = \frac{1}{n} \sum_{i=1}^{n} (x^i)_j$$

- The set S_k is not a poset:
 - there is no natural ordering
 - there is no smallest or largest element

The function C can be written as

$$C(x^1, \ldots, x^n)_j = \arg \min_y \sum_{i=1}^{n} ((x^i)_j - y)^2$$
Second example: Ranking data

- Examples of application:
 - Traditionally: voting, decision making, preference modelling
 - Nowadays: high-throughput, omics-scale, biological data, e.g. ranking of genes

- Different problem settings:
 - full rankings
 - incomplete rankings; top-k lists

- The set of (full) rankings $\mathcal{L}(C)$ (briefly, \mathcal{L}) is **not** a poset:
 - there is **no** natural ordering
 - there is **no** smallest or largest element
2. Aggregation outside the poset framework

2.2. Ranking data

Aggregation methods for full rankings

- **Borda methods**: apply aggregation functions to the ranks (possibly leading to ties, resulting in a weak order)

- **Distance-based methods**: consider n full rankings \succ_i

$$A(\succ_1, \ldots, \succ_n) = \arg \min_{\succ} \sum_{i=1}^{n} d(\succ_i, \succ)$$

where $d(\succ_i, \succ)$ is:

- **Kendall’s distance function** K
 (number of pairwise discordances)
 or

- **Spearman’s footrule distance function** S
 (sum of the absolute differences between the ranks)
3. Penalty-based aggregation

Penalty functions

Let $I = [a, b] \subseteq \mathbb{R}$. A function $P : I \times I^n \rightarrow \mathbb{R}$ is a **penalty function** if

1. $P(y; x) \geq 0$
2. $P(y; x) = 0$ if and only if $x = (y, \ldots, y)$
3. $P(\cdot; x)$ is quasi-convex and lower-semicontinuous

(The third condition implies that the set of minimizers of $P(\cdot; x)$ is either a singleton or an interval)
Penalty-based (aggregation) functions

Given a penalty function P, the corresponding **penalty-based function** is the function $f : I^n \rightarrow I$ defined by

$$f(x) = \frac{\ell(x) + r(x)}{2}$$

where $[\ell(x), r(x)]$ is the interval closure of the set of minimizers of $P(\cdot; x)$.

A penalty-based function f is not necessarily increasing.
Remark

Originally, the following condition has been required for a (local) penalty function \((n = 1)\):

\[
\text{if } x' \leq x \leq y \text{ or } y \leq x \leq x', \text{ then } P(y; x) \leq P(y; x')
\]
Betweenness relations instead of order relations

Betweenness relation

A ternary relation \(B \) on \(X \) is called a betweenness relation (BR) if:

1. **Symmetry in the end points:** \((a, b, c) \in B \iff (c, b, a) \in B\)

2. **Closure:**
\[
((a, b, c) \in B \land (a, c, b) \in B) \iff b = c
\]

3. **End-point transitivity:**
\[
((o, a, b) \in B \land (o, b, c) \in B) \Rightarrow (o, a, c) \in B
\]

Product betweenness relation on \(X^n \)

The ternary relation \(B^{(n)} \) on \(X^n \) defined by

\[
(a, b, c) \in B^{(n)} \iff (\forall i \in \{1, \ldots, n\})(a_i, b_i, c_i) \in B
\]
Examples (order relation \leq, distance function d)

1. $B_0 = \{(x, y, z) \in X^3 \mid x = y \lor y = z\}$ (trivial BR)

2. $B_\leq = B_0 \cup \{(x, y, z) \in X^3 \mid (x \leq y \leq z) \lor (z \leq y \leq x)\}$

3. $B_d = \{(x, y, z) \in X^3 \mid d(x, z) = d(x, y) + d(y, z)\}$
A betweenness relation on compositional data

A natural betweenness relation: \(B_{S_k} := (B_{[0,1]})^{(k)} \cap (S_k)^3 \)

\((x, y, z) \in (B_{[0,1]})^{(k)} \iff (\forall i \in \{1, \ldots, k\}) (\min(x_i, z_i) \leq y_i \leq \max(x_i, z_i)) \)
A betweenness relation on rankings

Betweenness relation based on Kendall’s d.f.:

\[(\succ_1, \succ_2, \succ_3) \in B_K \iff K(\succ_1, \succ_3) = K(\succ_1, \succ_2) + K(\succ_2, \succ_3)\]
Generalized penalty functions

Definition

Consider $n \in \mathbb{N}$, a set X and a BR B on X^n. A function $P : X \times X^n \to \mathbb{R}$ is called a **penalty function** (compatible with B) if

(P1) $P(y; x) \geq 0$

(P2) $P(y; x) = 0$ if and only if $x = (y, \ldots, y)$

(P3) The set of minimizers of $P(\cdot; x)$ is always non-empty

(P4) $P(y; x) \leq P(y; x')$, whenever $((y, \ldots, y), x, x') \in B$
Generalized penalty functions

Optional conditions for fixed x

(P5) For any minimizer $z \in X$ of $P(\cdot; x)$ such that

$$((z, \ldots, z), (y, \ldots, y), (y', \ldots, y')) \in B$$

it holds that

$$P(y; x) \leq P(y'; x)$$

(P6) For any two minimizers $z, z' \in X$ of $P(\cdot; x)$ such that

$$((z, \ldots, z), (y, \ldots, y), (z', \ldots, z')) \in B$$

it holds that

$$P(y; x) = P(z; x)$$

Penalty-based function

Given a penalty function P, the corresponding **penalty-based function** is the function $f : X^n \rightarrow \mathcal{P}(X)$ such that $f(x)$ is the set of minimizers of $P(\cdot; x)$.
How to create penalty functions?

Monometric

A mapping $M : X^2 \to \mathbb{R}$ is called a **monometric** w.r.t. a betweenness relation B on X if it satisfies

1. **Non-negativity**: $M(x, y) \geq 0$
2. **Coincidence**: $M(x, y) = 0 \iff x = y$
3. **Compatibility**: if $(x, y, z) \in B$, then $M(x, y) \leq M(x, z)$

Proposition

A distance function $d : X^2 \to \mathbb{R}$ is a monometric w.r.t.

$$B_d = \{(x, y, z) \in X^3 \mid d(x, z) = d(x, y) + d(y, z)\}$$
Monometric-based penalty functions

Monometric \(M \) on \(X \) w.r.t. \(B \)

The function \(P : X^{n+1} \to \mathbb{R}^+ \) defined by

\[
P(y; x) = A(M(y, x_1), \ldots, M(y, x_n)),
\]

is a penalty function (compatible with the betweenness relation \(B^{(n)} \) on \(X^n \)) if \(A \) is an \(n \)-ary **increasing** function such that \(A(x_1, \ldots, x_n) = 0 \) iff \(x_i = 0 \) for \(i = 1, \ldots, n \).

Particular cases: addition and maximum

- \(P(y; x) = \sum_{i=1}^{n} M(y, x_i) \)
- \(P(y; x) = \max_{i=1}^{n} M(y, x_i) \)
5. Key examples

Key examples of penalty-based aggregation

- **Averaging compositional data:**
 - satisfies (P5) and (P6)

- **Method of Kemeny for rankings:**
 - satisfies (P5)
 - satisfies (P6) for those profiles of rankings for which there exists a Condorcet ranking

- **The center string procedure:**

\[
C(S_1, \ldots, S_n) = \arg \min_S \max_{i=1}^n d_H(S_i, S)
\]

where \(d_H\) is the Hamming distance between strings of the same length
 - neither satisfies (P5) nor (P6)
Trends in a related area: Machine Learning

- Originally: shared interest with statistics in classification and regression problems (focus on generalization abilities rather than inference)

- Currently: focus on a broad range of problem settings involving more and more complex data (at the input as well as the output side)
 - classification (multi-label, hierarchical, extreme)
 - regression (ordinal, monotone)
 - structured prediction or structured (output) learning
 - preference learning (label ranking, instance ranking)
 - pairwise learning
 - relational learning
 - multi-task learning
 - and so on

- One commonality: all models (i.e. functions) are the result of solving a mathematical optimization problem
Act III

SHORT-SIGHTEDNESS
Toy example

Classification problem:

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>class label</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>A</td>
</tr>
<tr>
<td>a_2</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>B</td>
</tr>
<tr>
<td>a_3</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
<td>C</td>
</tr>
<tr>
<td>a_4</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
<td>B</td>
</tr>
</tbody>
</table>
Monotone classification problem:

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>Bad</td>
</tr>
<tr>
<td>a_2</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>Moderate</td>
</tr>
<tr>
<td>a_3</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
<td>Good</td>
</tr>
<tr>
<td>a_4</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Bernard De Baets (KERMIT) Monotonicity Nancy, France, 03/09/2019
Monotone classification

Toy example

Monotone classification problem:

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Bad</td>
</tr>
<tr>
<td>a_2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Moderate</td>
</tr>
<tr>
<td>a_3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Good</td>
</tr>
<tr>
<td>a_4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Moderate</td>
</tr>
<tr>
<td>a_5</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Good</td>
</tr>
<tr>
<td>a_6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

If monotonicity applies, any violation of it is simply unacceptable.

How to produce guaranteed **monotone** classification results, even when the set of learning examples is **not monotone**?
Multi-class classification

- Problem: to assign labels from a finite set L to the elements of some set of objects Ω
- Each object $a \in \Omega$ is represented by a feature vector
 $$a = (c_1(a), c_2(a), \ldots, c_n(a))$$
 in the feature space X
- Collection of learning examples: multiset
 $$(S, d) \equiv \{\langle a, d(a) \rangle | a \in S\}$$
 where:
 - $S \subseteq \Omega$ is a given set of objects
 - $d : S \rightarrow L$ is the associated decision function
 - multiset: the same entry can occur more than once, usually giving this entry more importance: we do not write $\langle a, d(a) \rangle$
 - notation: $S_X = \{a | a \in S\}$
Multi-class classification

- **Goal** of supervised classification algorithms:
 - extend the function d to Ω in the most reasonable way
 - concentrate on finding a function $\lambda: \mathcal{X} \rightarrow \mathcal{L}$ that **minimizes the expected loss** on an independent set of test examples

- Different approaches:
 - **instance-based**, such as nearest neighbour methods
 - **model-based**, such as classification trees

- **Distribution classifiers**: output is a PMF over \mathcal{L}
 - mathematically: $\tilde{\lambda}: \mathcal{X} \rightarrow \mathcal{F}(\mathcal{L})$
 - selecting a single label: Bayesian decision
 (label with the highest probability is returned)
Multi-criteria evaluation

- In many cases, \mathcal{L} exhibits a natural ordering and could be treated as an ordinal scale (chain): **ordinal classification/regression**

- Often, objects are described by (true) criteria $(c_i, \leq c_i)$ (chains)

- The **product ordering** turns \mathcal{X} into a **partially ordered set** $(\mathcal{X}, \leq \mathcal{X})$ (poset)

- Multi-criteria evaluation: quality assessment, environmental data, social surveys, etc.

Natural monotonicity constraint

An object a that scores at least as good on all criteria as an object b must be classified (ranked) at least as good as object b
1. Monotone classification

Monotone classification

Monotone classifier

Classifier + **basic monotonicity constraint**:

\[x < x \ y \Rightarrow \lambda(x) \leq \lambda(y) \]

(supervised ranking/ordered sorting, monotone ordinal regression)

Monotone distribution classifier

Distribution classifier + **stochastic monotonicity constraint**:

\[x < x \ y \Rightarrow \tilde{\lambda}(x) \leq_{SD} \tilde{\lambda}(y) \]

(First order) **Stochastic Dominance** (SD):

\[f_X \leq_{SD} f_Y \iff F_X \geq F_Y \]
Stochastic dominance

\[f_Y \quad f_X \]

\[F_Y \quad F_X \]
1. Monotone classification

Selecting a single label

- Bayesian decision potentially breaks the desired monotonicity and is no longer acceptable in this case.

- The well-known relationship

\[f_X \preceq_{SD} f_Y \Rightarrow E[f_X] \leq E[f_Y] \]

cannot be used as it requires the transformation of the ordinal scale into a numeric scale.

- **Set of medians** (interval) of \(f_X \):

\[\text{med}(f_X) = \{ \ell \in \mathcal{L} \mid \mathcal{P}\{X \leq \ell\} \geq 1/2 \land \mathcal{P}\{X \geq \ell\} \geq 1/2 \} \]

 - reduces in the continuous case to the median \(m \): \(\mathcal{P}\{X \leq m\} = 1/2 \)
 - only endpoints of the interval have non-zero probability.
1. Monotone classification

Selecting a single label from the set of medians

- The set of medians reduces the PMF to an interval. Does there exist an ordering on intervals that is compatible with FSD?

\[[k_1, \ell_1] \leq_{\mathcal{L}} [k_2, \ell_2] \iff (k_1 \leq \mathcal{L} k_2 \land \ell_1 \leq \mathcal{L} \ell_2) \]

- New relationship:

\[f_X \leq_{\text{SD}} f_Y \Rightarrow \text{med}(f_X) \leq_{\mathcal{L}}^{[2]} \text{med}(f_Y) \]

Selecting a single label

1. **Pessimistic median** (lower)
2. **Optimistic median** (upper)
3. Midpoint (or smaller/greater of the two midpoints) [not meaningful]

...turn a monotone distribution classifier into a monotone classifier...
How to label a new point?
Minimal and maximal extensions

1. **Minimal Extension**: \(\lambda_{\text{min}} : \mathcal{X} \rightarrow \mathcal{L} \)
 - assigns best label of "objects below":
 \[
 \lambda_{\text{min}}(x) = \max\{d(s) \mid s \in S_x \land s \leq_x x\}
 \]
 - if no such object: \(\lambda_{\text{min}}(x) = \min(\mathcal{L}) \)

2. **Maximal Extension**: \(\lambda_{\text{max}} : \mathcal{X} \rightarrow \mathcal{L} \)
 - assigns worst label of "objects above":
 \[
 \lambda_{\text{max}}(x) = \min\{d(s) \mid s \in S_x \land x \leq_x s\}
 \]
 - if no such object: \(\lambda_{\text{max}}(x) = \max(\mathcal{L}) \)

Monotone classifiers

1. \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \) are monotone classifiers
2. **Interpolation**: midpoint leads to a monotone classifier
Things can go dead wrong
A more realistic non-monotone data set
3. Handling noise

Noise in multi-criteria evaluation

- \((S, d)\) is called **monotone** if for all \(x\) and \(y\) in \(S\)

\[
x = y \Rightarrow d(x) = d(y)
\]

(absence of doubt/ambiguity)

and

\[
x <_X y \Rightarrow d(x) \leq_L d(y)
\]

(absence of reversed preference)

- Non-monotonicity defines a **symmetric** and **transitive** relation on \(S\)

Monotone extensions

If the data set is monotone, then

1. \(\lambda_{\min}\) and \(\lambda_{\max}\) are monotone **extensions** of \(d\) to \(X\)

2. any monotone extension \(\lambda\) of \(d\) to \(X\):

\[
\lambda_{\min} \leq_L \lambda \leq_L \lambda_{\max}
\]
How to handle noise?

1. **Data reduction**: identify the noisy objects and **delete** them

2. **Data relabelling**: identify the noisy objects and **relabel** them

3. **Non-invasive approach**: keep the data set as is
 - excludes the use of some monotone classification algorithms
 - restricts the accuracy of any monotone classifier
 (independence number)
Option 1, Data reduction: A non-monotone data set
Option 1, Data reduction: A non-monotone data set
Option 1, Data reduction: A non-monotone data set
The maximum independent set problem

The non-monotonicity relation corresponds to a **comparability graph**:

- A monotone subset corresponds to an **independent set** of this graph.
- **Maximal independent set** = independent set that is not a subset of any other independent set.
- **Maximum independent set** (MIS) = independent set of biggest cardinality (= **independence number** \(\alpha \)).
- A MIS in a comparability graph can be determined using **network flow theory** (cubic time complexity).
Option 2, Data relabelling: which MIS to select?

\[|2 - 1| + |3 - 1| = 3 \]
Option 2, Data relabelling: which MIS to select?

\[|1 - 2| + |3 - 2| = 2 \]
Option 2, Data relabelling: options

Universal tool: weighted MIS problems and network flow theory

1. **Optimal ordinal relabelling**: relabelling a minimum number of objects, of which all corona objects are relabelled to a minimum extent.

2. **Optimal cardinal relabelling** (identifying \mathcal{L} with the first n integers): minimal relabelling loss
 - zero-one loss: MIS
 - broad class of loss functions, including L1 loss and squared loss

3. **Optimal hierarchical cardinal relabelling** (single pass):
 - minimizing loss while relabelling a minimal number of objects
 - relabelling a minimal number of objects while minimizing loss
Distribution representation of a data set

- Collection of learning examples \((S, d)\)
- For each \(x \in S_x\), a CDF \(\hat{F}(x, \cdot) : \mathcal{L} \rightarrow [0, 1]\) is built from the collection of learning examples

\[
\hat{F}(x, \ell) = \frac{|\{a \in S \mid a = x \land d(a) \leq \ell \}|}{|\{a \in S \mid a = x\}|}
\]

(cumulative relative frequency distribution)

- The distribution data set \((S_x, \hat{F})\)
A distribution data set
Stochastic minimal and maximal extensions

1. **Minimal Extension**: \(F_{\text{min}} : \mathcal{X} \times \mathcal{L} \rightarrow [0, 1] \)

\[
F_{\text{min}}(x, \ell) = \min\{\hat{F}(s, \ell) \mid s \in S_x \land s \leq_x x\}
\]

- if no such object: \(f_{\text{min}}(x, \min(\mathcal{L})) = 1 \)

2. **Maximal Extension**: \(F_{\text{max}} : \mathcal{X} \times \mathcal{L} \rightarrow [0, 1] \)

\[
F_{\text{max}}(x, \ell) = \max\{\hat{F}(s, \ell) \mid s \in S_x \land x \leq_x s\}
\]

- if no such object: \(f_{\text{max}}(x, \max(\mathcal{L})) = 1 \)

Monotone distribution classifiers

1. \(F_{\text{min}} \) and \(F_{\text{max}} \) are monotone distribution classifiers

2. **Interpolation**: for any \(S \in [0, 1] \), the mapping

\[
\tilde{F} = SF_{\text{min}} + (1 - S)F_{\text{max}}
\]

is also a monotone distribution classifier
Monotone distribution data sets

- \((S\chi, \hat{F})\) is called **monotone** if for all \(x\) and \(y\) in \(S\chi\)
 \[
 x <_{\chi} y \Rightarrow \hat{F}(x, \cdot) \preceq_{SD} \hat{F}(y, \cdot)
 \]

- **Reversed preference:**
 \[
 x <_{\chi} y \text{ while not } \hat{F}(x, \cdot) \preceq_{SD} \hat{F}(y, \cdot)
 \]

Monotone extensions

If the distribution data set is monotone, then

1. \(F_{\min}\) and \(F_{\max}\) are monotone **extensions** of \(\hat{F}\) to \(\chi\)

2. any monotone extension \(F\) of \(d\) to \(\chi\):
 \[
 F_{\min}(y, \cdot) \preceq_{SD} F(y, \cdot) \preceq_{SD} F_{\max}(y, \cdot)
 \]
A non-monotone distribution data set
A non-monotone distribution data set
5. Reversed preference revisited

How to handle noise?

1. **Data reduction**: *identify* the noisy distributions and *delete* them
 - the non-monotonicity relation is **not transitive** (MIS problem is NP-complete)
 - deleting entire distributions is quite invasive
 - deleting a single instance affects the entire distribution and is hard to realize

2. **Data relabelling**: *identify* the noisy distributions and *modify* them
 - transitivity of non-monotonicity still holds at the label level
 - **L1-optimal relabelling** is possible using network flow algorithms
 - does not affect the frequency of feature vectors

3. **Non-invasive approach**: keep the data set as is
After relabelling: a monotone distribution data set
A non-invasive approach

- Aim: to build a monotone distribution classifier from a possibly non-monotone distribution data set
- Weighted sums of F_{\min} and F_{\max} are solutions to this problem
- Aim: to identify more general interpolation schemes, depending on both the element x and the label ℓ
- For given x and ℓ:
 - **monotone situation**: $F_{\min}(x, \ell) \geq F_{\max}(x, \ell)$
 - **reversed preference situation**: $F_{\min}(x, \ell) < F_{\max}(x, \ell)$
The main theorem

OSDL generic theorem

Given two \(\mathcal{X} \times \mathcal{L} \rightarrow [0, 1] \) mappings \(s \) and \(t \), the mapping
\[
\tilde{F} : \mathcal{X} \times \mathcal{L} \rightarrow [0, 1]
\]

\[
\tilde{F}(x, \ell) = \begin{cases}
 s(x, \ell)F_{\min}(x, \ell) + (1 - s(x, \ell))F_{\max}(x, \ell) & \text{if } F_{\min}(x, \ell) \geq F_{\max}(x, \ell) \\
 t(x, \ell)F_{\min}(x, \ell) + (1 - t(x, \ell))F_{\max}(x, \ell) & \text{if } F_{\min}(x, \ell) < F_{\max}(x, \ell)
\end{cases}
\]

is a monotone distribution classifier if and only if

1. \(s \) is decreasing in 1st and increasing in 2nd argument
2. \(t \) is increasing in 1st and decreasing in 2nd argument
The main theorem: realizations

Several realizations

1. **OSDL**: if one does not want to distinguish between the monotone and the reversed preference situation (s and t are identical), then the simple interpolation scheme is the only one.

2. **Balanced and Double-balanced OSDL**: use as weighing functions measures of support that count:
 - the number of instances that indicate that x should receive a label strictly greater than ℓ
 - the number of instances that indicate that x should receive a label at most ℓ
Epilogue
Concluding observations

1. In many modelling problems, there exists a **monotone relationship** between some or all of the **input variables** and the **output variable** that has to be accounted for.

2. **Mamdani–Assilian fuzzy models** for one-shot decisions should be abandoned.

3. Aggregation theory needs a **reboost**.

4. **Resolution of non-monotonicity** can be translated into an optimization problem (network flow theory).

5. Loyalty to the credo of fuzzy set theory (**“First process the data, then defuzzify”**) urges us to develop new mathematics.
References

Aggregation theory

References

Machine learning

Machine learning

Relabelling:

Monotone data set generation:

Merci pour votre attention