The Strong Lottery Ticket Hypothesis and the Random Subset Sum Problem

Frederik Mallmann-Trenn

King's College London 30 June 2025

The slides are based on Francesco d'Amore's (Gran Sasso Science Institute in Italy) slides

Thank you so much!

Artificial neural networks are large

Usually ranging from millions to hundreds of billions parameters

- RESNET-50: > 20 millions parameters [He et al. 2015]
- BERT: > 100 millions parameters [Devlin et al. 2018]
- GPT-3: > 100 billions parameters [Brown et al. 2020]

- Training large and dense networks yields good results
- However, it is very resource intensive

- Training large and dense networks yields good results
- However, it is very resource intensive
- To make them smaller we can remove edges (pruning), which works well

- Training large and dense networks yields good results
- However, it is very resource intensive
- To make them smaller we can remove edges (pruning), which works well
- \bullet Pruning $\sim 60-80\%$ of the edges can lead to better accuracies [Diffenderfer and Kailkhura 2021]

- Training large and dense networks yields good results
- However, it is very resource intensive
- To make them smaller we can remove edges (pruning), which works well
- \bullet Pruning $\sim 60-80\%$ of the edges can lead to better accuracies [Diffenderfer and Kailkhura 2021]
- Pruning $\sim 99\%$ of the edges can perform well [Hoefler et al. 2021]

• Maybe, we can avoid the effort of dense training

- Maybe, we can avoid the effort of dense training
- The Lottery Ticket Hypothesis:

"A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations."

[Frankle and Carbin 2019, ICLR]

• To validate this hypothesis, let's train a dense network, then prune it

- To validate this hypothesis, let's train a dense network, then prune it
- Let's test the subnetwork by retraining it

- To validate this hypothesis, let's train a dense network, then prune it
- Let's test the subnetwork by retraining it
 - Reinitialize

- To validate this hypothesis, let's train a dense network, then prune it
- Let's test the subnetwork by retraining it
 - Reinitialize
 - Train

- To validate this hypothesis, let's train a dense network, then prune it
- Let's test the subnetwork by retraining it
 - Reinitialize
 - Train
 - Bad accuracies

• Starting from a random point might be too much

[Frankle and Carbin 2019, ICLR]

Rewind instead (back to initial random weights)

• Starting from a random point might be too much

[Frankle and Carbin 2019, ICLR]

Rewind instead

• Starting from a random point might be too much

[Frankle and Carbin 2019, ICLR]

Rewind instead

• Starting from a random point might be too much

[Frankle and Carbin 2019, ICLR]

Rewind instead

• What does it mean?

- What does it mean?
- This is not a good algorithm (we are still training a dense network)

- What does it mean?
- This is not a good algorithm (we are still training a dense network)
- Existential result

- What does it mean?
- This is not a good algorithm (we are still training a dense network)
- Existential result

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

Lot of subsequent work ... (but no definitive answer)

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

Lot of subsequent work ... (but no definitive answer)

If we want to understand deep learning, we should probably understand this first.

Intuition

 Do we really need to train any parameters? Image we start with a incredibly large, and random network

Intuition

- Do we really need to train any parameters? Image we start with a incredibly large, and random network
- They might already contain good subnetworks from scratch!

Intuition

 Do we really need to train any parameters? Image we start with a incredibly large, and random network

Intuition

- Do we really need to train any parameters? Image we start with a incredibly large, and random network
- They might already contain good subnetworks from scratch!

Learn by pruning

Intuition

- Do we really need to train any parameters? Image we start with a incredibly large, and random network
- They might already contain good subnetworks from scratch!

Learn by pruning

Strong winning lottery ticket

SLTH: A network with random weights contains, with high probability, sub-networks that can approximate any given sufficiently-smaller neural network. [Ramanujan et al. 2020, CVPR]

SLTH: A network with random weights contains, with high probability, sub-networks that can approximate any given sufficiently-smaller neural network. [Ramanujan et al. 2020, CVPR]

[Zhou et al. 2019, NeurIPS]: proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

SLTH: A network with random weights contains, with high probability, sub-networks that can approximate any given sufficiently-smaller neural network. [Ramanujan et al. 2020, CVPR]

[Zhou et al. 2019, NeurIPS]: proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Decent accuracy

SLTH: A network with random weights contains, with high probability, sub-networks that can approximate any given sufficiently-smaller neural network. [Ramanujan et al. 2020, CVPR]

[Zhou et al. 2019, NeurIPS]: proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Decent accuracy

[Ramanujan et al. 2020, CVPR] improves on it: random ResNet-50 pruned to match ResNet-34 on ImageNet

SLTH: A network with random weights contains, with high probability, sub-networks that can approximate any given sufficiently-smaller neural network. [Ramanujan et al. 2020, CVPR]

[Zhou et al. 2019, NeurIPS]: proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Decent accuracy

[Ramanujan et al. 2020, CVPR] improves on it: random ResNet-50 pruned to match ResNet-34 on ImageNet

[Diffenderfer and Kailkhura 2021, ICLR]: quantized strong winning lottery tickets in ResNet-50 (binary weights) outperform the original on ImageNet

Target result: Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

Target result: Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

Size: parameter count and depth

Target result: Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

- Size: parameter count and depth
- With high probability: 1δ for any given $\delta > 0$

Target result: Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

- Size: parameter count and depth
- With high probability: 1δ for any given $\delta > 0$
- Approximation: distance w.r.t. some metric is ε for any given $\varepsilon>0$

SLTH holds for:

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions

- [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with ReLU activation functions

- [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense networks

- [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. 2022, AlStat]: polylogarithmically overparameterized binary dense networks

- [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. 2022, AlStat]: polylogarithmically overparameterized binary dense networks
- [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural networks (CNNs) with ReLU activation functions and non-negative inputs

- [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. 2022, AlStat]: polylogarithmically overparameterized binary dense networks
- [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural networks (CNNs) with ReLU activation functions and non-negative inputs
- [Burkholz 2022a,b, NeurIPS, ICML]: logarithmically overparameterized dense networks, CNNs, and residual architectures with a wider class of activation functions and less depth overhead

- [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. 2022, AlStat]: polylogarithmically overparameterized binary dense networks
- [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural networks (CNNs) with ReLU activation functions and non-negative inputs
- [Burkholz 2022a,b, NeurIPS, ICML]: logarithmically overparameterized dense networks, CNNs, and residual architectures with a wider class of activation functions and less depth overhead
- [Ferbach et al. 2022, ICLR]: logarithmically overparameterized equivariant networks with ReLU activation functions

Dense network: $f(\mathbf{x}) = \mathbf{W}_{\ell} \sigma(\mathbf{W}_{\ell-1} \dots \sigma(\mathbf{W}_1 \mathbf{x}))$

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

input layer

layer h1

Dense network: $f(\mathbf{x}) = \mathbf{W}_{\ell} \sigma(\mathbf{W}_{\ell-1} \dots \sigma(\mathbf{W}_1 \mathbf{x}))$

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

layer h1

input layer $\mathbf{y}^{(1)} = \sigma(\mathbf{W}_1 \mathbf{x})$ layer h1

Dense network: $f(\mathbf{x}) = \mathbf{W}_{\ell} \sigma(\mathbf{W}_{\ell-1} \dots \sigma(\mathbf{W}_1 \mathbf{x}))$

ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$

Dense network: $f(\mathbf{x}) = \mathbf{W}_{\ell} \sigma(\mathbf{W}_{\ell-1} \dots \sigma(\mathbf{W}_1 \mathbf{x}))$

ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$

ullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

ullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

• Naïve approach sample many weights $w_i \sim \text{Unif}[-1,1]$ until getting w, and prune the others

ullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

• Naïve approach sample many weights $w_i \sim \text{Unif}[-1,1]$ until getting w, and prune the others

roughly $1/\varepsilon$ samples

 \bullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

• Naïve approach sample many weights $w_i \sim \text{Unif}[-1,1]$ until getting w, and prune the others

roughly $1/\varepsilon$ samples

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

 \bullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

• Naïve approach sample many weights $w_i \sim \text{Unif}[-1,1]$ until getting w, and prune the others

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

Say
$$w = 0.5$$
, $w_1 = 0.6$, $w_2 = -0.1$, ...

 \bullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

• Naïve approach sample many weights $w_i \sim \text{Unif}[-1,1]$ until getting w, and prune the others

roughly $1/\varepsilon$ samples

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

How many?

 \bullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

ullet Naïve approach sample many weights $w_i \sim {\sf Unif}[-1,1]$ until getting w, and prune the others

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. 2023, ESA]: Let $x_1,\ldots,x_n\in[-1,1]$ be i.i.d. uniform random variables. Given any error parameter $\varepsilon>0$, there exists a constant C>0 such that if $n\geq C\log 1/\varepsilon$ then, with probability $1-\exp\left[(n-C\log 1/\varepsilon)^2/4n\right]$, for each $z\in[-1,1]$ there exists a subset $S\subseteq[n]$ such that $|z-\sum_{i\in S}x_i|<2\varepsilon$

ullet Approx one edge: approx y=wx for all x within error ε (no ReLU)

 Naïve approach sample many weights $w_i \sim \mathsf{Unif}[-1,1]$ until getting w, and prune the others

How many?

Theorem [Lueker 1998; da Cunha et al. 2023, ESA]: Let $x_1, \ldots, x_n \in [-1, 1]$ be i.i.d. uniform random variables. Given any error parameter $\varepsilon > 0$, there exists a constant C > 0 such that if $n \ge C \log 1/\varepsilon$ then, with probability $1 - \exp \left[(n - C \log 1/\varepsilon)^2 / 4n \right]$, for each $z \in [-1, 1]$ there exists a subset $S \subseteq [n]$ such that $|z - \sum_{i \in S} x_i| < 2\varepsilon$

works for all densities h(x) = pf(x) + (1-p)g(x), where f is "uniform"

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

 $n \ge C \log 1/\varepsilon \implies \exists S \subseteq [n] : |w - \sum_{i \in S} w_i| < 2\varepsilon$

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

$$n \ge C \log 1/\varepsilon \implies \exists S \subseteq [n] : |w - \sum_{i \in S} w_i| < 2\varepsilon$$

$$\implies |wx - \sum_{i \in S} w_i x| \le |x| |w - \sum_{i \in S} w_i| < 2\varepsilon |x|$$

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

$$n \ge C \log 1/\varepsilon \implies \exists S \subseteq [n] : \left| w - \sum_{i \in S} w_i \right| < 2\varepsilon$$

$$\implies \left| wx - \sum_{i \in S} w_i x \right| \le |x| \left| w - \sum_{i \in S} w_i \right| < 2\varepsilon |x|$$

• Completely random initialization + ReLU (non-linearity):

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

$$n \ge C \log 1/\varepsilon \implies \exists S \subseteq [n] : \left| w - \sum_{i \in S} w_i \right| < 2\varepsilon$$
$$\implies \left| wx - \sum_{i \in S} w_i x \right| \le |x| \left| w - \sum_{i \in S} w_i \right| < 2\varepsilon |x|$$

• Completely random initialization + ReLU (non-linearity): how to deal with non-linearity?

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

 $\mathsf{ReLU:}$ $\sigma(x) = \max(0, x)$

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

ReLU:

$$\sigma(x) = \max(0, x)$$

w

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

ReLU: $\sigma(x) = \max(0, x)$

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

• How? Wlog, assume $w \ge 0$

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

 $\begin{array}{l} \mathsf{ReLU:} \\ \sigma(x) = \max(0, x) \end{array}$

• How? Wlog, assume $w \ge 0$

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

• How? Wlog, assume $w \ge 0$

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

$\begin{array}{l} \mathsf{ReLU:} \\ \sigma(x) = \max(0, x) \end{array}$

• How? Wlog, assume $w \ge 0$

$$a_i^+ = \max(0, a_i)$$

$$x$$

$$a_n^+ = \max(0, a_i)$$

$$a_n^+ b_1$$

$$a_n^+ b_2$$

$$a_n^+ b_2$$

$$a_n^+ b_1$$

$$a_n^+ b_2$$

$$a_n^+ b_2$$

$$a_n^+ b_2$$

$$a_n^+ b_1$$

$$a_n^+ b_2$$

$$a_n^+ b_3$$

$$a_n^+ b_4$$

$$a_n^+ b_$$

if $x \leq 0$, easy

18 - 8

Exploiting properties of the ReLU

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

 $\mathsf{ReLU:}$ $\sigma(x) = \max(0, x)$

• How? Wlog, assume $w \ge 0$

$$a_i^+ = \max(0,a_i)$$

$$x = \min(0,a_i)$$

18 - 9

Exploiting properties of the ReLU

Completely random initialization + ReLU (non-linearity)

Property of ReLU: $wx = \sigma(wx) - \sigma(-wx)$

ReLU: $\sigma(x) = \max(0, x)$

• How? Wlog, assume $w \ge 0$

18 - 10

prune only the right layer: reuse the left layer

prune only the right layer: reuse the left layer

prune only the right layer: reuse the left layer

prune only the right layer: reuse the left layer

prune only the right layer: reuse the left layer

More layers together

More layers together

More layers together

• Removed edges can be everywhere

• Removed edges can be everywhere

• Removed edges can be everywhere

• No structure usually implies slower processes

• Removed edges can be everywhere

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity

• Removed edges can be everywhere

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity
 - accessing data is more time consuming than processing

• Removing entire neurons from the middle layer!

• Removing entire neurons from the middle layer!

- Removing entire neurons from the middle layer!
 - removes columns!

$$\begin{bmatrix} 0 & v_{1,2} & 0 & \dots & 0 & v_{i,1} & 0 & \dots \\ 0 & v_{2,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \\ 0 & v_{3,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{3n} \end{bmatrix}$$

- Removing entire neurons from the middle layer!
 - removes columns!
- The one-dimensional RSS result does not work
 - leads to exponential bounds

$$\begin{bmatrix} 0 & v_{1,2} & 0 & \dots & 0 & v_{i,1} & 0 & \dots \\ 0 & v_{2,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \\ 0 & v_{3,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{3n} \end{bmatrix}$$

- Removing entire neurons from the middle layer!
 - removes columns!
- The one-dimensional RSS result does not work
 - leads to exponential bounds
- A multidimensional RSS result is required

$$\begin{bmatrix} 0 & v_{1,2} & 0 & \dots & 0 & v_{i,1} & 0 & \dots \\ 0 & v_{2,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \\ 0 & v_{3,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{3n} \end{bmatrix}$$

• Natural generalization

• Natural generalization

Input:

ullet Sequence of n i.i.d. random vectors X_1,\ldots,X_n

• Natural generalization

Input:

- Sequence of n i.i.d. random vectors X_1, \ldots, X_n
- Target vector $\mathbf{z} \in [-1, +1]^d$

• Natural generalization

Input:

- Sequence of n i.i.d. random vectors X_1, \ldots, X_n
- Target vector $\mathbf{z} \in [-1, +1]^d$
- ullet Error parameter $\varepsilon>0$

• Natural generalization

Input:

- Sequence of n i.i.d. random vectors X_1, \ldots, X_n
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Question:

• Estimate n such that, with high probability, a subset $S \subseteq [n]$ exists with $\|\mathbf{z} - \sum_{i \in S} X_i\|_{\infty} \leq 2\varepsilon$

ullet Number of arepsilon-cubes: $1/arepsilon^d=2^{d\log 1/arepsilon}$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

Upper bound

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

Upper bound

• If subset size $k = \frac{n}{2}$, possible subsets: $\binom{n}{n/2} \ge 2^{n/2}$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

Upper bound

- If subset size $k = \frac{n}{2}$, possible subsets: $\binom{n}{n/2} \ge 2^{n/2}$
- Each subset $S \subseteq [n]$, $|S| = \frac{n}{2}$, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, \frac{n}{2}I_d)$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d\log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

Upper bound

- If subset size $k = \frac{n}{2}$, possible subsets: $\binom{n}{n/2} \ge 2^{n/2}$
- ullet Each subset $S\subseteq [n]$, $|S|=rac{n}{2}$, gives a Gaussian $Y_S\sim \mathcal{N}(\mathbf{0},rac{n}{2}I_d)$
- \bullet Probability roughly $(\varepsilon/\sqrt{n/2})^d$ to hit any $\varepsilon\text{-cube}$

- ullet Number of arepsilon-cubes: $1/arepsilon^d=2^{d\log 1/arepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

Upper bound

- If subset size $k = \frac{n}{2}$, possible subsets: $\binom{n}{n/2} \ge 2^{n/2}$
- Each subset $S \subseteq [n]$, $|S| = \frac{n}{2}$, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, \frac{n}{2}I_d)$
- \bullet Probability roughly $(\varepsilon/\sqrt{n/2})^d$ to hit any $\varepsilon\text{-cube}$

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] \geq 2^{n/2} \cdot \left(\frac{\varepsilon}{\sqrt{n/2}}\right)^{a}$$
$$= 2^{n/2 - d\log 1/\varepsilon - d/2\log n/2} = 2^{O(n)} \text{ if } n \geq Cd\log 1/\varepsilon$$

Lower bound

• If subset size k, possible subsets: $\binom{n}{k} \leq (en/k)^k$

- If subset size k, possible subsets: $\binom{n}{k} \leq (en/k)^k$
- ullet Each subset $S\subseteq [n]$, |S|=k, gives a Gaussian $Y_S\sim \mathcal{N}(\mathbf{0},kI_d)$

- If subset size k, possible subsets: $\binom{n}{k} \leq (en/k)^k$
- ullet Each subset $S\subseteq [n]$, |S|=k, gives a Gaussian $Y_S\sim \mathcal{N}(\mathbf{0},kI_d)$
- \bullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any $\varepsilon\text{-cube}$

- If subset size k, possible subsets: $\binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$
- ullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any ε -cube

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] \leq \sum_{k=1}^{n} (en/k)^k \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

$$= \sum_{k=1}^{n} 2^{k \log(en/k) - d \log 1/\varepsilon - d/2 \log k} \leq n \cdot 2^{n/2 \log(2e) - d \log 1/\varepsilon - d/2 \log n/2}$$

- If subset size k, possible subsets: $\binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$
- \bullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any $\varepsilon\text{-cube}$

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] \leq \sum_{k=1}^{n} (en/k)^k \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

$$= \sum_{k=1}^{n} 2^{k\log(en/k) - d\log 1/\varepsilon - d/2\log k} \leq n \cdot 2^{n/2\log(2e) - d\log 1/\varepsilon - d/2\log n/2}$$

$$< 1 \text{ if } n \leq cd\log 1/\varepsilon \text{ for } c \text{ small enough}$$

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ random variable yielding number of subsets approximating target \mathbf{z}

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and $\mathbf{0}$ otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ random variable yielding number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and $\mathbf{0}$ otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ random variable yielding number of subsets approximating target ${f z}$
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ random variable yielding number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$
- choose only subsets of size αn so that the "average intersection" concentrates around $\alpha^2 n$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and $\mathbf{0}$ otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ random variable yielding number of subsets approximating target ${f z}$
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$
- choose only subsets of size αn so that the "average intersection" concentrates around $\alpha^2 n$
- Result: $n \ge \operatorname{poly}(d) \log(d/\varepsilon)$ $(\alpha = 1/\sqrt{d})$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ random variable yielding number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \geq 1\right] \geq (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$
- choose only subsets of size αn so that the "average intersection" concentrates around $\alpha^2 n$
- Result: $n \ge \operatorname{poly}(d) \log(d/\varepsilon)$ $(\alpha = 1/\sqrt{d})$
- What about approximating all the hypercube $[-1,1]^d$? The **union bound** is highly non-optimal

27 - 1

- $\mathbf{a}_i \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3\text{)}$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

 $x_3' = w_{1,3}x_1$

- $\mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3)$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

• Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$

 $\ddot{\mathbf{W}}_3$

 $x_3' = w_{1,3}x_1$

- $\mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3)$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:

- for
$$S \subseteq [n]$$
, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$

 $\ddot{\mathbf{W}}_3$

- $\mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n)$, $\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d)$ (here, d = 3)
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$

- $\mathbf{a}_i \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n)$, $\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d)$ (here, d = 3)
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$
 - $\sum_{i \in S} a_{1,i}^2$ is a Chi-squared distribution: concentration inequalities!

 $\ddot{\mathbf{W}}_3$

- $\mathbf{a}_i \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n)$, $\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d)$ (here, d = 3)
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$
 - $\sum_{i \in S} a_{1,i}^2$ is a Chi-squared distribution: concentration inequalities!
 - things do not change too much

- $\mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n)$, $\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d)$ (here, d = 3)
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$
 - $\sum_{i \in S} a_{1,i}^2$ is a Chi-squared distribution: concentration inequalities!
 - things do not change too much

 $x_3' = w_{1,3} x_1^{\bullet} \text{ Result}: \ n \geq \operatorname{poly}(d) \cdot \operatorname{polylog}(d\ell/\varepsilon)$

Convolutional neural networks (CNNs)

• **Generality**: There are even some results for CNNs. What other architectures can the SLTH be applied to?

Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight w_i learn a probability p_i

Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight w_i learn a probability p_i

For all i, set $w'_i = w_i \cdot Bern(p_i)$

Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight w_i learn a probability p_i

For all i, set $w'_i = w_i \cdot Bern(p_i)$

This leads to some robustness

Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

 I_v denotes the input to node v Z_v denote the output, $Z_v = \sigma(I_v)$

Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

 I_v denotes the input to node v Z_v denote the output, $Z_v = \sigma(I_v)$

Theorem: When edge (i, k) replaces (j, k) and the rest of the subnetwork remains fixed, then the loss decreases for the mini-batch (provided the loss is sufficiently smooth).

Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

 I_v denotes the input to node v Z_v denote the output, $Z_v = \sigma(I_v)$

Theorem: When edge (i, k) replaces (j, k) and the rest of the subnetwork remains fixed, then the loss decreases for the mini-batch (provided the loss is sufficiently smooth).

Crucially, their the final network only has the a size of k%

• Almost all of the lower bounds focus on approximating a single neuron

- Almost all of the lower bounds focus on approximating a single neuron
- At the core lies some packing argument: there are many linear functions that one might one to approximate. A network must be able to approximate any fixed function.

- Almost all of the lower bounds focus on approximating a single neuron
- At the core lies some packing argument: there are many linear functions that one might one to approximate. A network must be able to approximate any fixed function.
- Even approximating the null-function seems 'hard'

- Almost all of the lower bounds focus on approximating a single neuron
- At the core lies some packing argument: there are many linear functions that one might one to approximate. A network must be able to approximate any fixed function.
- Even approximating the null-function seems 'hard'
- **Open Problem**: None of the proofs have really moved beyond one layer. How much harder is it to approximate a deep neural network?

Overparameterization

• **SLTH**: Every sufficiently large network contains a subnetwork that does the job!

Overparameterization

• **SLTH**: Every sufficiently large network contains a subnetwork that does the job!

• Issue: All results consider a overparameterization (at least logarithmic)

Overparameterization

- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!
- **Issue**: All results consider a overparameterization (at least logarithmic)
- **Unfair**: We aim to replicate a target network that is potentially optimal real-world networks are not of optimal size.

Overparameterization

- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!
- **Issue**: All results consider a overparameterization (at least logarithmic)
- **Unfair**: We aim to replicate a target network that is potentially optimal real-world networks are not of optimal size.
- Open Problem: How can we make the comparison fairer?

• LTH: Every network contains a sub-network that can be trained in isolation to achieve the same test accuracy

- LTH: Every network contains a sub-network that can be trained in isolation to achieve the same test accuracy
- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!

- LTH: Every network contains a sub-network that can be trained in isolation to achieve the same test accuracy
- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!
- Open Problem (1): We know the lottery tickets exist. But how can we find them efficiently?

- LTH: Every network contains a sub-network that can be trained in isolation to achieve the same test accuracy
- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!
- Open Problem (1): We know the lottery tickets exist. But how can we find them efficiently?
- Open Problem (2): How hard is neuron-pruning?

- LTH: Every network contains a sub-network that can be trained in isolation to achieve the same test accuracy
- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!
- Open Problem (1): We know the lottery tickets exist. But how can we find them efficiently?
- Open Problem (2): How hard is neuron-pruning?
- Open Problem (3): How to apply the SLTH to transformers?

- LTH: Every network contains a sub-network that can be trained in isolation to achieve the same test accuracy
- **SLTH**: Every sufficiently large network contains a subnetwork that does the job!
- Open Problem (1): We know the lottery tickets exist. But how can we find them efficiently?
- Open Problem (2): How hard is neuron-pruning?
- Open Problem (3): How to apply the SLTH to transformers?

I'm on sabbatical soon, if you want to work on this, let me know:)

• [Lueker 1998; da Cunha et al. 2023]

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

Consider
$$f_t(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

Consider
$$f_t(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

 $v_t = \frac{1}{2} \int_{-1}^1 f_t(x) dx$ keeps track of the approximated volume

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

Consider
$$f_t(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

 $v_t = \frac{1}{2} \int_{-1}^1 f_t(x) dx$ keeps track of the approximated volume

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

Consider
$$f_t(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

$$v_t = \frac{1}{2} \int_{-1}^1 f_t(x) \, \mathrm{d}x \text{ keeps track of the approximated volume}$$

$$f_{t+1}(z) = f_t(z) + (1 - f_t(z)) \, f_t(z - X_{t+1}).$$

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

Consider
$$f_t(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

$$v_t = \frac{1}{2} \int_{-1}^1 f_t(x) dx$$
 keeps track of the approximated volume $f_{t+1}(z) = f_t(z) + (1 - f_t(z)) f_t(z - X_{t+1}).$

For all $0 \le t < n$, it holds that $\mathbb{E}[v_{t+1} \mid X_1, ..., X_t] \ge v_t [1 + \frac{1}{4}(1 - v_t)]$.