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The slides are based on Francesco d’Amore’s (Gran Sasso Science
Institute in Italy) slides

Thank you so much!
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Artificial neural networks are large

Usually ranging from millions to hundreds of billions parameters

• RESNET-50: > 20 millions parameters [He et al. 2015]
• BERT: > 100 millions parameters [Devlin et al. 2018]
• GPT-3: > 100 billions parameters [Brown et al. 2020]
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• Training large and dense networks yields good results
• However, it is very resource intensive

• To make them smaller we can remove edges (pruning), which works
well

• Pruning ∼ 60− 80% of the edges can lead to better accuracies
[Diffenderfer and Kailkhura 2021]

• Pruning ∼ 99% of the edges can perform well [Hoefler et al. 2021]
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What if we train the tiny one?

• Maybe, we can avoid the effort of dense training

• The Lottery Ticket Hypothesis:
“A randomly-initialized, dense neural network contains a
subnetwork that is initialized such that—when trained in
isolation—it can match the test accuracy of the original network
after training for at most the same number of iterations.”
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[Frankle and Carbin 2019, ICLR]
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What if we train the tiny one?

• To validate this hypothesis, let’s train a dense network, then prune it

• Let’s test the subnetwork by retraining it

reinit

• Reinitialize

• Train

• Bad accuracies
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Not reinitialization, rewind instead

• Starting from a random point might be too much

• Rewind instead (back to initial random weights)

[Frankle and Carbin 2019, ICLR]
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• Starting from a random point might be too much

• Rewind instead

[Frankle and Carbin 2019, ICLR]
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Comparable accuracy!
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Lottery tickets

• What does it mean?

• This is not a good algorithm (we are still training a dense network)

• Existential result

• Training is about topology + initialization

rew
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prune

train

How we find the sub-network
efficiently is the big question
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The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

Lot of subsequent work . . . (but no definitive answer)

???

If we want to understand deep learning, we should probably understand
this first.
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The Strong Lottery Ticket Hypothesis (SLTH)

Intuition

• Do we really need to train any parameters? Image we start with a
incredibly large, and random network

• They might already contain good subnetworks from scratch!

pr
un
e

Learn by pruning

Strong winning lottery ticket
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The Strong Lottery Ticket Hypothesis (SLTH)

SLTH: A network with random weights contains, with high probability,
sub-networks that can approximate any given sufficiently-smaller neural
network.

[Zhou et al. 2019, NeurIPS]: proposes a way to find f : prune weights
according to some probability learned through stochastic gradient descent

[Ramanujan et al. 2020, CVPR] improves on it: random ResNet-50
pruned to match ResNet-34 on ImageNet

• Decent accuracy

[Diffenderfer and Kailkhura 2021, ICLR]: quantized strong winning lottery
tickets in ResNet-50 (binary weights) outperform the original on
ImageNet

[Ramanujan et al. 2020, CVPR]
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Do we have a theorem?

Target result: Let F be the class of neural networks with a given size. If
a network g with random weights is sufficiently large, then, with high
probability, it is possible to prune g to approximate any network in F

• Size: parameter count and depth

• With high probability: 1− δ for any given δ > 0

• Approximation: distance w.r.t. some metric is ε for any given ε > 0
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• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

• [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural
networks (CNNs) with ReLU activation functions and non-negative inputs

SLTH holds for:

• [Burkholz 2022a,b, NeurIPS, ICML]: logarithmically overparameterized dense networks,
CNNs, and residual architectures with a wider class of activation functions and less
depth overhead

• [Ferbach et al. 2022, ICLR]: logarithmically overparameterized equivariant networks
with ReLU activation functions

• [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense
networks

• [Sreenivasan et al. 2022, AIStat]: polylogarithmically overparameterized binary dense
networks
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input layer layer h1

input layer layer h1
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roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

Say w = 0.5, w1 = 0.6, w2 = −0.1, ...
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until getting w, and prune the others

roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. 2023, ESA]: Let
x1, . . . , xn ∈ [−1, 1] be i.i.d. uniform random variables. Given any error
parameter ε > 0, there exists a constant C > 0 such that if n ≥ C log 1/ε
then, with probability 1− exp

[
(n− C log 1/ε)2/4n

]
, for each z ∈ [−1, 1]

there exists a subset S ⊆ [n] such that
∣∣z −∑i∈S xi
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roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. 2023, ESA]: Let
x1, . . . , xn ∈ [−1, 1] be i.i.d. uniform random variables. Given any error
parameter ε > 0, there exists a constant C > 0 such that if n ≥ C log 1/ε
then, with probability 1− exp

[
(n− C log 1/ε)2/4n

]
, for each z ∈ [−1, 1]

there exists a subset S ⊆ [n] such that
∣∣z −∑i∈S xi

∣∣ < 2ε

works for all densities h(x) = pf (x) + (1− p)g(x), where f is “uniform”
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Apply RSS for pruning

• Random subset sum (RSS) approach:

add intermediate layer, sample wi ∼ Unif[−1, 1] and find a good subset

x y

w
∼

x

w1
w2
w3

wn

z

1
1
1

1

n ≥ C log 1/ε =⇒ ∃S ⊆ [n] :
∣∣w −

∑
i∈S wi

∣∣ < 2ε

• Completely random initialization + ReLU (non-linearity):

how to deal with non-linearity?

a1
a2
a3

an

b1
b2
b3

bn

=⇒
∣∣wx−

∑
i∈S wix

∣∣ ≤ |x|
∣∣w −

∑
i∈S wi

∣∣ < 2ε|x|

x z

∣∣wx−
∑

i∈S biσ(aix)
∣∣
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• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

ReLU:
σ(x) = max(0, x)



18 - 7

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣

ReLU:
σ(x) = max(0, x)



18 - 8

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣
if x ≤ 0, easy

ReLU:
σ(x) = max(0, x)



18 - 9

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

if x ≤ 0, easy if x > 0, then RSS holds!

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣ = x
∣∣∣w −

∑
i∈[n] bia

+
i

∣∣∣

ReLU:
σ(x) = max(0, x)



18 - 10

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

if x ≤ 0, easy if x > 0, then RSS holds!
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Putting everything together
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approx −σ(−wx) (≤ 0)
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n ≥ C log d2/ε
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Issues with Unstructured pruning
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• Removed edges can be everywhere

• No structure usually implies slower processes

- difficulty encoding unstructured sparsity

- accessing data is more time consuming than processing
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- removes columns!

0 v1,2 0 . . . 0 vi,1 0 . . .
0 v2,2 0 . . . 0 vi,2 0 . . .
0 v3,2 0 . . . 0 vi,2 0 . . .

 ·


y1
y2
...

y3n



y1

y3n

• The one-dimensional RSS result does not work

- leads to exponential bounds

• A multidimensional RSS result is required



23 - 1

The multidimensional RSS problem

• Natural generalization
+1

+1

−1

−1

ε



23 - 2

The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

Input:

• Natural generalization
+1

+1

−1

−1

ε



23 - 3

The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

• Target vector z ∈ [−1,+1]d

Input:

• Natural generalization

z

+1

+1

−1

−1

ε



23 - 4
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The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

• Target vector z ∈ [−1,+1]d

Input:

• Estimate n such that, with high probability, a subset S ⊆ [n] exists with
∥z−

∑
i∈S Xi∥∞ ≤ 2ε

Question:

• Error parameter ε > 0

• Natural generalization

z

+1

+1

−1

−1

ε



24 - 1

MRSS in expectation

+1

+1

−1

−1

ε• Number of ε-cubes: 1/εd = 2d log 1/ε



24 - 2

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε



24 - 3

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets



24 - 4

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

Upper bound



24 - 5

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

( n
n/2

)
≥ 2n/2

Upper bound



24 - 6

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

( n
n/2

)
≥ 2n/2

Upper bound

• Each subset S ⊆ [n], |S| = n
2 , gives a Gaussian YS ∼ N (0, n2Id)



24 - 7

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

( n
n/2

)
≥ 2n/2

Upper bound

• Each subset S ⊆ [n], |S| = n
2 , gives a Gaussian YS ∼ N (0, n2Id)

• Probability roughly (ε/
√
n/2)d to hit any ε-cube



24 - 8

MRSS in expectation
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• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

( n
n/2

)
≥ 2n/2

Upper bound

• Each subset S ⊆ [n], |S| = n
2 , gives a Gaussian YS ∼ N (0, n2Id)

• Probability roughly (ε/
√
n/2)d to hit any ε-cube

E [# subsets approximating any cube] ≥ 2n/2 ·
(

ε√
n/2

)d

= 2n/2−d log 1/ε−d/2 log n/2 = 2O(n) if n ≥ Cd log 1/ε
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MRSS in expectation

Lower bound

• If subset size k, possible subsets:
(n
k

)
≤ (en/k)k

• Each subset S ⊆ [n], |S| = k, gives a Gaussian YS ∼ N (0, kId)

• Probability roughly (ε/
√
k)d to hit any ε-cube

E [# subsets approximating any cube] ≤
n∑

k=1

(en/k)k ·
(

ε√
k

)d

=
n∑

k=1

2k log(en/k)−d log 1/ε−d/2 log k ≤ n · 2n/2 log(2e)−d log 1/ε−d/2 log n/2

< 1 if n ≤ cd log 1/ε for c small enough
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MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- P [Zn ≥ 1] ≥ (E [Zn])
2/E

[
Z2
n

]
- for S ⊆ [n], YS = 1 if

∑
i∈S Xi approximates target z and 0 otherwise

• Challenge: dealing with dependencies to estimate E
[
Z2
n

]
- choose only subsets of size αn so that the “average intersection” concentrates around
α2n

• Result: n ≥ poly(d) log(d/ε) (α = 1/
√
d)

• What about approximating all the hypercube [−1, 1]d? The union bound is highly
non-optimal
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bn

(each neuron i has one bi)
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• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3
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i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

• Solution:
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- conditional on a1,i for each i ∈ S, XS is distributed as
N (0,

∑
i∈S a

2
1,i · Id)

-
∑

i∈S a
2
1,i is a Chi-squared distribution: concentration

inequalities!
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• Result: n ≥ poly(d) · polylog(dℓ/ε)
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Convolutional neural networks (CNNs)

• Generality: There are even some results for CNNs. What other architectures can the
SLTH be applied to?
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Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight wi learn a probability pi

This leads to some robustness

For all i, set w′
i = wi ·Bern(pi)
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Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

Iv denotes the input to node v Zv denote the output, Zv = σ(Iv)

Crucially, their the final network only has the a size of k%

Theorem: When edge (i, k) replaces (j, k) and the rest of the subnetwork
remains fixed, then the loss decreases for the mini-batch (provided the
loss is sufficiently smooth).
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Lower bounds

• Almost all of the lower bounds focus on approximating a single neuron

• At the core lies some packing argument: there are many linear functions that one might
one to approximate. A network must be able to approximate any fixed function.

• Even approximating the null-function seems ‘hard’

• Open Problem: None of the proofs have really moved beyond one layer. How much
harder is it to approximate a deep neural network?
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Overparameterization

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Issue: All results consider a overparameterization (at least logarithmic)

• Unfair: We aim to replicate a target network that is potentially optimal - real-world
networks are not of optimal size.

• Open Problem: How can we make the comparison fairer?



33 - 1

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy



33 - 2

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!



33 - 3

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?



33 - 4

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

• Open Problem (2): How hard is neuron-pruning?



33 - 5

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

• Open Problem (2): How hard is neuron-pruning?

• Open Problem (3): How to apply the SLTH to transformers?



33 - 6

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

• Open Problem (2): How hard is neuron-pruning?

• Open Problem (3): How to apply the SLTH to transformers?

Thank you!

I’m on sabbatical soon, if you want to work on this, let me know :)
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RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

Consider ft(x) =

{
1 if x ∈ [−1, 1] and ∃S ⊆ [t] :

∣∣x−
∑

i∈S Xi

∣∣ < 2ε

0 otherwise

vt =
1
2

∫ 1

−1
ft(x) dx keeps track of the approximated volume

ft+1(z) = ft(z) + (1− ft(z)) ft(z −Xt+1).

For all 0 ≤ t < n, it holds thatE [vt+1 | X1, . . . , Xt] ≥ vt
[
1 + 1

4 (1− vt)
]
.
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