
1

The Strong Lottery Ticket Hypothesis and
the Random Subset Sum Problem

Frederik Mallmann-Trenn

King’s College London
30 June 2025

x1

x2

x3

z1

z2

z3

2

The slides are based on Francesco d’Amore’s (Gran Sasso Science
Institute in Italy) slides

Thank you so much!

3

Artificial neural networks are large

Usually ranging from millions to hundreds of billions parameters

• RESNET-50: > 20 millions parameters [He et al. 2015]
• BERT: > 100 millions parameters [Devlin et al. 2018]
• GPT-3: > 100 billions parameters [Brown et al. 2020]

4 - 1

Training and Inference are expensive

tr
ai
n

• Training large and dense networks yields good results
• However, it is very resource intensive

4 - 2

Training and Inference are expensive

tr
ai
n

• Training large and dense networks yields good results
• However, it is very resource intensive

• To make them smaller we can remove edges (pruning), which works
well

prune

4 - 3

Training and Inference are expensive

tr
ai
n

• Training large and dense networks yields good results
• However, it is very resource intensive

• To make them smaller we can remove edges (pruning), which works
well

• Pruning ∼ 60− 80% of the edges can lead to better accuracies
[Diffenderfer and Kailkhura 2021]

prune

4 - 4

Training and Inference are expensive

tr
ai
n

• Training large and dense networks yields good results
• However, it is very resource intensive

• To make them smaller we can remove edges (pruning), which works
well

• Pruning ∼ 60− 80% of the edges can lead to better accuracies
[Diffenderfer and Kailkhura 2021]

• Pruning ∼ 99% of the edges can perform well [Hoefler et al. 2021]

prune

5 - 1

What if we train the tiny one?

• Maybe, we can avoid the effort of dense training

tr
ai
n

prune

5 - 2

What if we train the tiny one?

• Maybe, we can avoid the effort of dense training

• The Lottery Ticket Hypothesis:
“A randomly-initialized, dense neural network contains a
subnetwork that is initialized such that—when trained in
isolation—it can match the test accuracy of the original network
after training for at most the same number of iterations.”

tr
ai
n

prune

[Frankle and Carbin 2019, ICLR]

6 - 1

What if we train the tiny one?

• To validate this hypothesis, let’s train a dense network, then prune it

tr
ai
n

prune

6 - 2

What if we train the tiny one?

• To validate this hypothesis, let’s train a dense network, then prune it

• Let’s test the subnetwork by retraining it

tr
ai
n

prune

6 - 3

What if we train the tiny one?

• To validate this hypothesis, let’s train a dense network, then prune it

• Let’s test the subnetwork by retraining it

reinit

• Reinitialize

tr
ai
n

prune

6 - 4

What if we train the tiny one?

• To validate this hypothesis, let’s train a dense network, then prune it

• Let’s test the subnetwork by retraining it

reinit

• Reinitialize

• Train

tr
ai
n

prune

tra
in

6 - 5

What if we train the tiny one?

• To validate this hypothesis, let’s train a dense network, then prune it

• Let’s test the subnetwork by retraining it

reinit

• Reinitialize

• Train

• Bad accuracies

tr
ai
n

prune

tra
in

7

Not reinitialization, rewind instead

• Starting from a random point might be too much

• Rewind instead (back to initial random weights)

[Frankle and Carbin 2019, ICLR]

rew
ind

tr
ai
n

prune

8 - 1

Not reinitialization, rewind instead

• Starting from a random point might be too much

• Rewind instead

[Frankle and Carbin 2019, ICLR]

rew
ind

tr
ai
n

prune

train

8 - 2

Not reinitialization, rewind instead

• Starting from a random point might be too much

• Rewind instead

[Frankle and Carbin 2019, ICLR]

rew
ind

tr
ai
n

prune

train

Lottery Ticket Hypothesis

8 - 3

Not reinitialization, rewind instead

• Starting from a random point might be too much

• Rewind instead

[Frankle and Carbin 2019, ICLR]

rew
ind

tr
ai
n

prune

train

Lottery Ticket Hypothesis

Comparable accuracy!

9 - 1

Lottery tickets

• What does it mean?

rew
ind

tr
ai
n

prune

train

9 - 2

Lottery tickets

• What does it mean?

• This is not a good algorithm (we are still training a dense network)

rew
ind

tr
ai
n

prune

train

9 - 3

Lottery tickets

• What does it mean?

• This is not a good algorithm (we are still training a dense network)

• Existential result

• Training is about topology + initialization

rew
ind

tr
ai
n

prune

train

9 - 4

Lottery tickets

• What does it mean?

• This is not a good algorithm (we are still training a dense network)

• Existential result

• Training is about topology + initialization

rew
ind

tr
ai
n

prune

train

How we find the sub-network
efficiently is the big question

10 - 1

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

???

10 - 2

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

???

10 - 3

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

Lot of subsequent work . . . (but no definitive answer)

???

10 - 4

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin 2019, ICLR]: winning lottery tickets always exists

How do we find lottery ticket without training a dense network?

Lot of subsequent work . . . (but no definitive answer)

???

If we want to understand deep learning, we should probably understand
this first.

11 - 1

The Strong Lottery Ticket Hypothesis (SLTH)

Intuition

• Do we really need to train any parameters? Image we start with a
incredibly large, and random network

11 - 2

The Strong Lottery Ticket Hypothesis (SLTH)

Intuition

• Do we really need to train any parameters? Image we start with a
incredibly large, and random network

• They might already contain good subnetworks from scratch!

11 - 3

The Strong Lottery Ticket Hypothesis (SLTH)

Intuition

• Do we really need to train any parameters? Image we start with a
incredibly large, and random network

• They might already contain good subnetworks from scratch!

rew
ind

tr
ai
n

prune

train

11 - 4

The Strong Lottery Ticket Hypothesis (SLTH)

Intuition

• Do we really need to train any parameters? Image we start with a
incredibly large, and random network

• They might already contain good subnetworks from scratch!

pr
un
e

Learn by pruning

11 - 5

The Strong Lottery Ticket Hypothesis (SLTH)

Intuition

• Do we really need to train any parameters? Image we start with a
incredibly large, and random network

• They might already contain good subnetworks from scratch!

pr
un
e

Learn by pruning

Strong winning lottery ticket

12 - 1

The Strong Lottery Ticket Hypothesis (SLTH)

SLTH: A network with random weights contains, with high probability,
sub-networks that can approximate any given sufficiently-smaller neural
network. [Ramanujan et al. 2020, CVPR]

12 - 2

The Strong Lottery Ticket Hypothesis (SLTH)

SLTH: A network with random weights contains, with high probability,
sub-networks that can approximate any given sufficiently-smaller neural
network.

[Zhou et al. 2019, NeurIPS]: proposes a way to find f : prune weights
according to some probability learned through stochastic gradient descent

[Ramanujan et al. 2020, CVPR]

12 - 3

The Strong Lottery Ticket Hypothesis (SLTH)

SLTH: A network with random weights contains, with high probability,
sub-networks that can approximate any given sufficiently-smaller neural
network.

[Zhou et al. 2019, NeurIPS]: proposes a way to find f : prune weights
according to some probability learned through stochastic gradient descent

• Decent accuracy

[Ramanujan et al. 2020, CVPR]

12 - 4

The Strong Lottery Ticket Hypothesis (SLTH)

SLTH: A network with random weights contains, with high probability,
sub-networks that can approximate any given sufficiently-smaller neural
network.

[Zhou et al. 2019, NeurIPS]: proposes a way to find f : prune weights
according to some probability learned through stochastic gradient descent

[Ramanujan et al. 2020, CVPR] improves on it: random ResNet-50
pruned to match ResNet-34 on ImageNet

• Decent accuracy

[Ramanujan et al. 2020, CVPR]

12 - 5

The Strong Lottery Ticket Hypothesis (SLTH)

SLTH: A network with random weights contains, with high probability,
sub-networks that can approximate any given sufficiently-smaller neural
network.

[Zhou et al. 2019, NeurIPS]: proposes a way to find f : prune weights
according to some probability learned through stochastic gradient descent

[Ramanujan et al. 2020, CVPR] improves on it: random ResNet-50
pruned to match ResNet-34 on ImageNet

• Decent accuracy

[Diffenderfer and Kailkhura 2021, ICLR]: quantized strong winning lottery
tickets in ResNet-50 (binary weights) outperform the original on
ImageNet

[Ramanujan et al. 2020, CVPR]

13 - 1

Do we have a theorem?

Target result: Let F be the class of neural networks with a given size. If
a network g with random weights is sufficiently large, then, with high
probability, it is possible to prune g to approximate any network in F

13 - 2

Do we have a theorem?

Target result: Let F be the class of neural networks with a given size. If
a network g with random weights is sufficiently large, then, with high
probability, it is possible to prune g to approximate any network in F

• Size: parameter count and depth

13 - 3

Do we have a theorem?

Target result: Let F be the class of neural networks with a given size. If
a network g with random weights is sufficiently large, then, with high
probability, it is possible to prune g to approximate any network in F

• Size: parameter count and depth

• With high probability: 1− δ for any given δ > 0

13 - 4

Do we have a theorem?

Target result: Let F be the class of neural networks with a given size. If
a network g with random weights is sufficiently large, then, with high
probability, it is possible to prune g to approximate any network in F

• Size: parameter count and depth

• With high probability: 1− δ for any given δ > 0

• Approximation: distance w.r.t. some metric is ε for any given ε > 0

14 - 1

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

SLTH holds for:

14 - 2

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

SLTH holds for:

14 - 3

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

SLTH holds for:

• [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense
networks

14 - 4

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

SLTH holds for:

• [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense
networks

• [Sreenivasan et al. 2022, AIStat]: polylogarithmically overparameterized binary dense
networks

14 - 5

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

• [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural
networks (CNNs) with ReLU activation functions and non-negative inputs

SLTH holds for:

• [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense
networks

• [Sreenivasan et al. 2022, AIStat]: polylogarithmically overparameterized binary dense
networks

14 - 6

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

• [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural
networks (CNNs) with ReLU activation functions and non-negative inputs

SLTH holds for:

• [Burkholz 2022a,b, NeurIPS, ICML]: logarithmically overparameterized dense networks,
CNNs, and residual architectures with a wider class of activation functions and less
depth overhead

• [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense
networks

• [Sreenivasan et al. 2022, AIStat]: polylogarithmically overparameterized binary dense
networks

14 - 7

Overview of the (theoretical) results

• [Malach et al. 2020, ICML]: polynomially overparameterized dense networks with ReLU
activation functions

• [Pensia et al. 2020, NeurIPS]: logarithmically overparameterized dense networks with
ReLU activation functions

• [da Cunha et al. 2022, ICLR]: logarithmically overparameterized convolutional neural
networks (CNNs) with ReLU activation functions and non-negative inputs

SLTH holds for:

• [Burkholz 2022a,b, NeurIPS, ICML]: logarithmically overparameterized dense networks,
CNNs, and residual architectures with a wider class of activation functions and less
depth overhead

• [Ferbach et al. 2022, ICLR]: logarithmically overparameterized equivariant networks
with ReLU activation functions

• [Diffenderfer and Kailkhura 2021, ICLR]: polynomially overparameterized binary dense
networks

• [Sreenivasan et al. 2022, AIStat]: polylogarithmically overparameterized binary dense
networks

15 - 1

Review: Feedforward

Dense network: f (x) = Wℓσ(Wℓ−1 . . . σ(W1x))

• x ∈ Rd0, Wi ∈ Rdi−1×di

• σ(x) = max(0, x) (ReLU)

input layer layer h1

15 - 2

Review: Feedforward

Dense network: f (x) = Wℓσ(Wℓ−1 . . . σ(W1x))

• x ∈ Rd0, Wi ∈ Rdi−1×di

• σ(x) = max(0, x) (ReLU)

y(1) = σ(W1x)

input layer layer h1

input layer layer h1

15 - 3

Review: Feedforward

Dense network: f (x) = Wℓσ(Wℓ−1 . . . σ(W1x))

• x ∈ Rd0, Wi ∈ Rdi−1×di

• σ(x) = max(0, x) (ReLU)

x1

x2

x3

x4

x5

x6

w3,1

w3,2

w3,3

w3,4

w3,5

w3,6

y
(1)
3

y(1) = σ(W1x)

input layer layer h1

input layer layer h1

15 - 4

Review: Feedforward

Dense network: f (x) = Wℓσ(Wℓ−1 . . . σ(W1x))

• x ∈ Rd0, Wi ∈ Rdi−1×di

• σ(x) = max(0, x) (ReLU)

x1

x2

x3

x4

x5

x6

w3,1

w3,2

w3,3

w3,4

w3,5

w3,6

y
(1)
3

y
(1)
3 = σ(

∑6
j=1 w3,jxj)

y(1) = σ(W1x)

input layer layer h1

input layer layer h1

16 - 1

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

16 - 2

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

16 - 3

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

roughly 1/ε samples

16 - 4

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

• Random subset sum (RSS) approach:

x

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

16 - 5

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

• Random subset sum (RSS) approach:

x

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

Say w = 0.5, w1 = 0.6, w2 = −0.1, ...

16 - 6

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

• Random subset sum (RSS) approach:

x

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

How many?

16 - 7

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

• Random subset sum (RSS) approach:

x

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. 2023, ESA]: Let
x1, . . . , xn ∈ [−1, 1] be i.i.d. uniform random variables. Given any error
parameter ε > 0, there exists a constant C > 0 such that if n ≥ C log 1/ε
then, with probability 1− exp

[
(n− C log 1/ε)2/4n

]
, for each z ∈ [−1, 1]

there exists a subset S ⊆ [n] such that
∣∣z −∑i∈S xi

∣∣ < 2ε

16 - 8

Review: SLTH in dense networks
x y

w ∈ [−1, 1]
• Approx one edge: approx y = wx for all x within error ε (no ReLU)

• Näıve approach

x

y1
y2
y3

yn

. .
.

w1
w2
w3

wn

• Random subset sum (RSS) approach:

x

w1
w2
w3

wn

sample many weights wi ∼ Unif[−1, 1]
until getting w, and prune the others

roughly 1/ε samples

z = x ·
∑n

i=1 wi

1
1
1

1

add intermediate layer, sample
wi ∼ Unif[−1, 1] and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. 2023, ESA]: Let
x1, . . . , xn ∈ [−1, 1] be i.i.d. uniform random variables. Given any error
parameter ε > 0, there exists a constant C > 0 such that if n ≥ C log 1/ε
then, with probability 1− exp

[
(n− C log 1/ε)2/4n

]
, for each z ∈ [−1, 1]

there exists a subset S ⊆ [n] such that
∣∣z −∑i∈S xi

∣∣ < 2ε

works for all densities h(x) = pf (x) + (1− p)g(x), where f is “uniform”

17 - 1

Apply RSS for pruning

• Random subset sum (RSS) approach:

x

w1
w2
w3

wn

z

1
1
1

1

add intermediate layer, sample wi ∼ Unif[−1, 1] and find a good subset

x y

w
∼

17 - 2

Apply RSS for pruning

• Random subset sum (RSS) approach:

add intermediate layer, sample wi ∼ Unif[−1, 1] and find a good subset

x y

w
∼

x

w1
w2
w3

wn

z

1
1
1

1

n ≥ C log 1/ε =⇒ ∃S ⊆ [n] :
∣∣w −

∑
i∈S wi

∣∣ < 2ε

17 - 3

Apply RSS for pruning

• Random subset sum (RSS) approach:

add intermediate layer, sample wi ∼ Unif[−1, 1] and find a good subset

x y

w
∼

x

w1
w2
w3

wn

z

1
1
1

1

n ≥ C log 1/ε =⇒ ∃S ⊆ [n] :
∣∣w −

∑
i∈S wi

∣∣ < 2ε

=⇒
∣∣wx−

∑
i∈S wix

∣∣ ≤ |x|
∣∣w −

∑
i∈S wi

∣∣ < 2ε|x|

17 - 4

Apply RSS for pruning

• Random subset sum (RSS) approach:

add intermediate layer, sample wi ∼ Unif[−1, 1] and find a good subset

x y

w
∼

x

w1
w2
w3

wn

z

1
1
1

1

n ≥ C log 1/ε =⇒ ∃S ⊆ [n] :
∣∣w −

∑
i∈S wi

∣∣ < 2ε

• Completely random initialization + ReLU (non-linearity):

a1
a2
a3

an

b1
b2
b3

bn

=⇒
∣∣wx−

∑
i∈S wix

∣∣ ≤ |x|
∣∣w −

∑
i∈S wi

∣∣ < 2ε|x|

x z

17 - 5

Apply RSS for pruning

• Random subset sum (RSS) approach:

add intermediate layer, sample wi ∼ Unif[−1, 1] and find a good subset

x y

w
∼

x

w1
w2
w3

wn

z

1
1
1

1

n ≥ C log 1/ε =⇒ ∃S ⊆ [n] :
∣∣w −

∑
i∈S wi

∣∣ < 2ε

• Completely random initialization + ReLU (non-linearity):

how to deal with non-linearity?

a1
a2
a3

an

b1
b2
b3

bn

=⇒
∣∣wx−

∑
i∈S wix

∣∣ ≤ |x|
∣∣w −

∑
i∈S wi

∣∣ < 2ε|x|

x z

∣∣wx−
∑

i∈S biσ(aix)
∣∣

18 - 1

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

Property of ReLU: wx = σ(wx)− σ(−wx)

ReLU:
σ(x) = max(0, x)

18 - 2

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

z

ReLU:
σ(x) = max(0, x)

18 - 3

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)
z

ReLU:
σ(x) = max(0, x)

18 - 4

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

ReLU:
σ(x) = max(0, x)

18 - 5

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

ReLU:
σ(x) = max(0, x)

18 - 6

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

ReLU:
σ(x) = max(0, x)

18 - 7

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣

ReLU:
σ(x) = max(0, x)

18 - 8

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣
if x ≤ 0, easy

ReLU:
σ(x) = max(0, x)

18 - 9

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

if x ≤ 0, easy if x > 0, then RSS holds!

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣ = x
∣∣∣w −

∑
i∈[n] bia

+
i

∣∣∣

ReLU:
σ(x) = max(0, x)

18 - 10

Exploiting properties of the ReLU

• Completely random initialization + ReLU (non-linearity)

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

Property of ReLU: wx = σ(wx)− σ(−wx)

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

• How? Wlog, assume w ≥ 0

a1
a2

an

b1
b2

x bn z

a+1
a+2
a+n

b1
b2

x bn z

a+i = max(0, ai)

if x ≤ 0, easy if x > 0, then RSS holds!

∣∣∣σ(wx)−∑i∈[n] biσ(aix)
∣∣∣ = ∣∣∣σ(wx)−∑i∈[n] bia

+
i σ(x)

∣∣∣ = x
∣∣∣w −

∑
i∈[n] bia

+
i

∣∣∣
n ≥ C log 1/ε

ReLU:
σ(x) = max(0, x)

19 - 1

Putting everything together

x y

w

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

z

19 - 2

Putting everything together

x y

w

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

z

prune only the right layer: reuse the left layer

19 - 3

Putting everything together

x y

w

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

z

prune only the right layer: reuse the left layer

x1 y1

x2 y2

x3 y3

19 - 4

Putting everything together

x y

w

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

z

prune only the right layer: reuse the left layer

x1 y1

x2 y2

x3 y3

x1

x2

x3

z1

z2

z3

19 - 5

Putting everything together

x y

w

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

z

prune only the right layer: reuse the left layer

x1 y1

x2 y2

x3 y3

x1

x2

x3

z1

z2

z3

19 - 6

Putting everything together

x y

w

approx σ(wx) (≥ 0)

approx −σ(−wx) (≤ 0)

a1
a2

an

b1
b2

x bn
c1
c2

cn

d1
d2

dn

z

prune only the right layer: reuse the left layer

x1 y1

x2 y2

x3 y3

x1

x2

x3

z1

z2

z3

n ≥ C log d2/ε

d = width original layer

20 - 1

More layers together

x1

x2

x3

y1

y2

y3

20 - 2

More layers together

x1

x2

x3

x1

x2

x3

y1

y2

y3

z1

z2

z3

20 - 3

More layers together

x1

x2

x3

x1

x2

x3

y1

y2

y3

z1

z2

z3

n ≥ C log ℓd2/ε

ℓ = # original layers

=⇒ ∥y − z∥ ≤ 2ε

21 - 1

Issues with Unstructured pruning

x1

x2

x3

z1

z2

z3

• Removed edges can be everywhere

21 - 2

Issues with Unstructured pruning

x1

x2

x3

z1

z2

z3

• Removed edges can be everywhere

21 - 3

Issues with Unstructured pruning

x1

x2

x3

z1

z2

z3

• Removed edges can be everywhere

• No structure usually implies slower processes

21 - 4

Issues with Unstructured pruning

x1

x2

x3

z1

z2

z3

• Removed edges can be everywhere

• No structure usually implies slower processes

- difficulty encoding unstructured sparsity

21 - 5

Issues with Unstructured pruning

x1

x2

x3

z1

z2

z3

• Removed edges can be everywhere

• No structure usually implies slower processes

- difficulty encoding unstructured sparsity

- accessing data is more time consuming than processing

22 - 1

Structured pruning

x1

x2

x3

z1

z2

z3

y1

y3n

22 - 2

Structured pruning

x1

x2

x3

z1

z2

z3



w1,1 0 0
...

...
...

wn,1 0 0
0 w1,2 0
...

...
...

0 wn,2 0
0 0 w1,3

...
...

...
0 0 wn,3


·

x1

x2

x3



y1

y3n

22 - 3

Structured pruning

x1

x2

x3

z1

z2

z3

???

y1

y3n

22 - 4

Structured pruning

x1

x2

x3

z1

z2

z3

???

• Removing entire neurons from the middle layer!
y1

y3n

22 - 5

Structured pruning

???

• Removing entire neurons from the middle layer!x1

x2

x3

z1

z2

z3

y1

y3n

22 - 6

Structured pruning

• Removing entire neurons from the middle layer!x1

x2

x3

z1

z2

z3

- removes columns!

0 v1,2 0 . . . 0 vi,1 0 . . .
0 v2,2 0 . . . 0 vi,2 0 . . .
0 v3,2 0 . . . 0 vi,2 0 . . .

 ·


y1
y2
...

y3n



y1

y3n

22 - 7

Structured pruning

• Removing entire neurons from the middle layer!x1

x2

x3

z1

z2

z3

- removes columns!

0 v1,2 0 . . . 0 vi,1 0 . . .
0 v2,2 0 . . . 0 vi,2 0 . . .
0 v3,2 0 . . . 0 vi,2 0 . . .

 ·


y1
y2
...

y3n



y1

y3n

• The one-dimensional RSS result does not work

- leads to exponential bounds

22 - 8

Structured pruning

• Removing entire neurons from the middle layer!x1

x2

x3

z1

z2

z3

- removes columns!

0 v1,2 0 . . . 0 vi,1 0 . . .
0 v2,2 0 . . . 0 vi,2 0 . . .
0 v3,2 0 . . . 0 vi,2 0 . . .

 ·


y1
y2
...

y3n



y1

y3n

• The one-dimensional RSS result does not work

- leads to exponential bounds

• A multidimensional RSS result is required

23 - 1

The multidimensional RSS problem

• Natural generalization
+1

+1

−1

−1

ε

23 - 2

The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

Input:

• Natural generalization
+1

+1

−1

−1

ε

23 - 3

The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

• Target vector z ∈ [−1,+1]d

Input:

• Natural generalization

z

+1

+1

−1

−1

ε

23 - 4

The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

• Target vector z ∈ [−1,+1]d

Input:

• Error parameter ε > 0

• Natural generalization

z

+1

+1

−1

−1

ε

23 - 5

The multidimensional RSS problem

• Sequence of n i.i.d. random vectors X1, . . . , Xn

• Target vector z ∈ [−1,+1]d

Input:

• Estimate n such that, with high probability, a subset S ⊆ [n] exists with
∥z−

∑
i∈S Xi∥∞ ≤ 2ε

Question:

• Error parameter ε > 0

• Natural generalization

z

+1

+1

−1

−1

ε

24 - 1

MRSS in expectation

+1

+1

−1

−1

ε• Number of ε-cubes: 1/εd = 2d log 1/ε

24 - 2

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

24 - 3

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

24 - 4

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

Upper bound

24 - 5

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

(n
n/2

)
≥ 2n/2

Upper bound

24 - 6

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

(n
n/2

)
≥ 2n/2

Upper bound

• Each subset S ⊆ [n], |S| = n
2 , gives a Gaussian YS ∼ N (0, n2Id)

24 - 7

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

(n
n/2

)
≥ 2n/2

Upper bound

• Each subset S ⊆ [n], |S| = n
2 , gives a Gaussian YS ∼ N (0, n2Id)

• Probability roughly (ε/
√
n/2)d to hit any ε-cube

24 - 8

MRSS in expectation

+1

+1

−1

−1

ε

• Sequence of n i.i.d. random vectors
X1, . . . , Xn ∼ N (0, Id)

• Number of ε-cubes: 1/εd = 2d log 1/ε

• 2n possible subsets

• If subset size k = n
2 , possible subsets:

(n
n/2

)
≥ 2n/2

Upper bound

• Each subset S ⊆ [n], |S| = n
2 , gives a Gaussian YS ∼ N (0, n2Id)

• Probability roughly (ε/
√
n/2)d to hit any ε-cube

E [# subsets approximating any cube] ≥ 2n/2 ·
(

ε√
n/2

)d

= 2n/2−d log 1/ε−d/2 log n/2 = 2O(n) if n ≥ Cd log 1/ε

25 - 1

MRSS in expectation

Lower bound

• If subset size k, possible subsets:
(n
k

)
≤ (en/k)k

25 - 2

MRSS in expectation

Lower bound

• If subset size k, possible subsets:
(n
k

)
≤ (en/k)k

• Each subset S ⊆ [n], |S| = k, gives a Gaussian YS ∼ N (0, kId)

25 - 3

MRSS in expectation

Lower bound

• If subset size k, possible subsets:
(n
k

)
≤ (en/k)k

• Each subset S ⊆ [n], |S| = k, gives a Gaussian YS ∼ N (0, kId)

• Probability roughly (ε/
√
k)d to hit any ε-cube

25 - 4

MRSS in expectation

Lower bound

• If subset size k, possible subsets:
(n
k

)
≤ (en/k)k

• Each subset S ⊆ [n], |S| = k, gives a Gaussian YS ∼ N (0, kId)

• Probability roughly (ε/
√
k)d to hit any ε-cube

E [# subsets approximating any cube] ≤
n∑

k=1

(en/k)k ·
(

ε√
k

)d

=
n∑

k=1

2k log(en/k)−d log 1/ε−d/2 log k ≤ n · 2n/2 log(2e)−d log 1/ε−d/2 log n/2

25 - 5

MRSS in expectation

Lower bound

• If subset size k, possible subsets:
(n
k

)
≤ (en/k)k

• Each subset S ⊆ [n], |S| = k, gives a Gaussian YS ∼ N (0, kId)

• Probability roughly (ε/
√
k)d to hit any ε-cube

E [# subsets approximating any cube] ≤
n∑

k=1

(en/k)k ·
(

ε√
k

)d

=
n∑

k=1

2k log(en/k)−d log 1/ε−d/2 log k ≤ n · 2n/2 log(2e)−d log 1/ε−d/2 log n/2

< 1 if n ≤ cd log 1/ε for c small enough

26 - 1

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

26 - 2

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- for S ⊆ [n], YS = 1 if
∑

i∈S Xi approximates target z and 0 otherwise

26 - 3

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- for S ⊆ [n], YS = 1 if
∑

i∈S Xi approximates target z and 0 otherwise

26 - 4

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- P [Zn ≥ 1] ≥ (E [Zn])
2/E

[
Z2
n

]
- for S ⊆ [n], YS = 1 if

∑
i∈S Xi approximates target z and 0 otherwise

26 - 5

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- P [Zn ≥ 1] ≥ (E [Zn])
2/E

[
Z2
n

]
- for S ⊆ [n], YS = 1 if

∑
i∈S Xi approximates target z and 0 otherwise

• Challenge: dealing with dependencies to estimate E
[
Z2
n

]

26 - 6

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- P [Zn ≥ 1] ≥ (E [Zn])
2/E

[
Z2
n

]
- for S ⊆ [n], YS = 1 if

∑
i∈S Xi approximates target z and 0 otherwise

• Challenge: dealing with dependencies to estimate E
[
Z2
n

]
- choose only subsets of size αn so that the “average intersection” concentrates around
α2n

26 - 7

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- P [Zn ≥ 1] ≥ (E [Zn])
2/E

[
Z2
n

]
- for S ⊆ [n], YS = 1 if

∑
i∈S Xi approximates target z and 0 otherwise

• Challenge: dealing with dependencies to estimate E
[
Z2
n

]
- choose only subsets of size αn so that the “average intersection” concentrates around
α2n

• Result: n ≥ poly(d) log(d/ε) (α = 1/
√
d)

26 - 8

MRSS: current results

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- Zn =
∑

S⊆[n] YS random variable yielding number of subsets approximating target z

- P [Zn ≥ 1] ≥ (E [Zn])
2/E

[
Z2
n

]
- for S ⊆ [n], YS = 1 if

∑
i∈S Xi approximates target z and 0 otherwise

• Challenge: dealing with dependencies to estimate E
[
Z2
n

]
- choose only subsets of size αn so that the “average intersection” concentrates around
α2n

• Result: n ≥ poly(d) log(d/ε) (α = 1/
√
d)

• What about approximating all the hypercube [−1, 1]d? The union bound is highly
non-optimal

27 - 1

Apply MRSS for structured pruning

x1

x2

x3

z1

z2

z3

y1

y3n

a1

a3

x1 x′
1

x2 x′
2

x3 x′
3

w1

w3

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)b1

b3n

b2

bn

(each neuron i has one bi)

27 - 2

Apply MRSS for structured pruning

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

27 - 3

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

27 - 4

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

27 - 5

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

27 - 6

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

• Solution:

- for S ⊆ [n], XS =
∑

i∈S a1,ibi

27 - 7

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

• Solution:

- for S ⊆ [n], XS =
∑

i∈S a1,ibi

- conditional on a1,i for each i ∈ S, XS is distributed as
N (0,

∑
i∈S a

2
1,i · Id)

27 - 8

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

• Solution:

- for S ⊆ [n], XS =
∑

i∈S a1,ibi

- conditional on a1,i for each i ∈ S, XS is distributed as
N (0,

∑
i∈S a

2
1,i · Id)

-
∑

i∈S a
2
1,i is a Chi-squared distribution: concentration

inequalities!

27 - 9

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

• Solution:

- for S ⊆ [n], XS =
∑

i∈S a1,ibi

- conditional on a1,i for each i ∈ S, XS is distributed as
N (0,

∑
i∈S a

2
1,i · Id)

-
∑

i∈S a
2
1,i is a Chi-squared distribution: concentration

inequalities!

- things do not change too much

yn

a2

27 - 10

Apply MRSS for structured pruning

• For simplicity: no ReLU

x1

x2

x3

y1

y3n

a1

a3

b1

b3n

x1 x′
1 = w1,1x1

x2 x′
2 = w1,2x1

x3 x′
3 = w1,3x1

w1

w3

z1

z2

z3

∥x1w1 −
∑n

i=1 x1a1,ibi∥∞ ≤ |x1|∥w1 −
∑n

i=1 a1,ibi∥∞

b2

bn

• ai ∼ N (0, In), bi ∼ N (0, Id) (here, d = 3)

• Issue: dependencies among entries of a1,ibi!

• Solution:

- for S ⊆ [n], XS =
∑

i∈S a1,ibi

- conditional on a1,i for each i ∈ S, XS is distributed as
N (0,

∑
i∈S a

2
1,i · Id)

-
∑

i∈S a
2
1,i is a Chi-squared distribution: concentration

inequalities!

- things do not change too much

• Result: n ≥ poly(d) · polylog(dℓ/ε)

yn

a2

28

Convolutional neural networks (CNNs)

• Generality: There are even some results for CNNs. What other architectures can the
SLTH be applied to?

D

D

c0

1
1

c0

n·c0

∗ ∗

d
d

c1

n·c0

n

∗
D

D

c0

d

d
c0

c1

=⇒

29 - 1

Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight wi learn a probability pi

29 - 2

Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight wi learn a probability pi

For all i, set w′
i = wi ·Bern(pi)

29 - 3

Zhou et al. Algorithm

[Zhou et al 2019, NeurIPS]

For each weight wi learn a probability pi

This leads to some robustness

For all i, set w′
i = wi ·Bern(pi)

30 - 1

Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

Iv denotes the input to node v Zv denote the output, Zv = σ(Iv)

30 - 2

Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

Iv denotes the input to node v Zv denote the output, Zv = σ(Iv)

Theorem: When edge (i, k) replaces (j, k) and the rest of the subnetwork
remains fixed, then the loss decreases for the mini-batch (provided the
loss is sufficiently smooth).

30 - 3

Edge-Popup Algorithm

[Ramanujan et al 2020, CVPR]: Edge-popup Algorithm

Iv denotes the input to node v Zv denote the output, Zv = σ(Iv)

Crucially, their the final network only has the a size of k%

Theorem: When edge (i, k) replaces (j, k) and the rest of the subnetwork
remains fixed, then the loss decreases for the mini-batch (provided the
loss is sufficiently smooth).

31 - 1

Lower bounds

• Almost all of the lower bounds focus on approximating a single neuron

31 - 2

Lower bounds

• Almost all of the lower bounds focus on approximating a single neuron

• At the core lies some packing argument: there are many linear functions that one might
one to approximate. A network must be able to approximate any fixed function.

31 - 3

Lower bounds

• Almost all of the lower bounds focus on approximating a single neuron

• At the core lies some packing argument: there are many linear functions that one might
one to approximate. A network must be able to approximate any fixed function.

• Even approximating the null-function seems ‘hard’

31 - 4

Lower bounds

• Almost all of the lower bounds focus on approximating a single neuron

• At the core lies some packing argument: there are many linear functions that one might
one to approximate. A network must be able to approximate any fixed function.

• Even approximating the null-function seems ‘hard’

• Open Problem: None of the proofs have really moved beyond one layer. How much
harder is it to approximate a deep neural network?

32 - 1

Overparameterization

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

32 - 2

Overparameterization

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Issue: All results consider a overparameterization (at least logarithmic)

32 - 3

Overparameterization

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Issue: All results consider a overparameterization (at least logarithmic)

• Unfair: We aim to replicate a target network that is potentially optimal - real-world
networks are not of optimal size.

32 - 4

Overparameterization

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Issue: All results consider a overparameterization (at least logarithmic)

• Unfair: We aim to replicate a target network that is potentially optimal - real-world
networks are not of optimal size.

• Open Problem: How can we make the comparison fairer?

33 - 1

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

33 - 2

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

33 - 3

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

33 - 4

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

• Open Problem (2): How hard is neuron-pruning?

33 - 5

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

• Open Problem (2): How hard is neuron-pruning?

• Open Problem (3): How to apply the SLTH to transformers?

33 - 6

Conclusions

• LTH: Every network contains a sub-network that can be trained in isolation to achieve
the same test accuracy

• SLTH: Every sufficiently large network contains a subnetwork that does the job!

• Open Problem (1): We know the lottery tickets exist. But how can we find them
efficiently?

• Open Problem (2): How hard is neuron-pruning?

• Open Problem (3): How to apply the SLTH to transformers?

Thank you!

I’m on sabbatical soon, if you want to work on this, let me know :)

34 - 1

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

34 - 2

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

34 - 3

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

34 - 4

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

34 - 5

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

34 - 6

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

34 - 7

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

34 - 8

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

34 - 9

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

Consider ft(x) =

{
1 if x ∈ [−1, 1] and ∃S ⊆ [t] :

∣∣x−
∑

i∈S Xi

∣∣ < 2ε

0 otherwise

34 - 10

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

Consider ft(x) =

{
1 if x ∈ [−1, 1] and ∃S ⊆ [t] :

∣∣x−
∑

i∈S Xi

∣∣ < 2ε

0 otherwise

vt =
1
2

∫ 1

−1
ft(x) dx keeps track of the approximated volume

34 - 11

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

Consider ft(x) =

{
1 if x ∈ [−1, 1] and ∃S ⊆ [t] :

∣∣x−
∑

i∈S Xi

∣∣ < 2ε

0 otherwise

vt =
1
2

∫ 1

−1
ft(x) dx keeps track of the approximated volume

34 - 12

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

Consider ft(x) =

{
1 if x ∈ [−1, 1] and ∃S ⊆ [t] :

∣∣x−
∑

i∈S Xi

∣∣ < 2ε

0 otherwise

vt =
1
2

∫ 1

−1
ft(x) dx keeps track of the approximated volume

ft+1(z) = ft(z) + (1− ft(z)) ft(z −Xt+1).

34 - 13

RSS proof overview

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

• X1, . . . , Xn uniform random variables over [−1, 1]

• Error parameter ε > 0

−1 1

ε

ε

ε ε ε ε ε

ε ε ε ε ε

• Approximate the whole interval

Consider ft(x) =

{
1 if x ∈ [−1, 1] and ∃S ⊆ [t] :

∣∣x−
∑

i∈S Xi

∣∣ < 2ε

0 otherwise

vt =
1
2

∫ 1

−1
ft(x) dx keeps track of the approximated volume

ft+1(z) = ft(z) + (1− ft(z)) ft(z −Xt+1).

For all 0 ≤ t < n, it holds thatE [vt+1 | X1, . . . , Xt] ≥ vt
[
1 + 1

4 (1− vt)
]
.

	Intro
	Artificial neural networks are large
	Training and Inference are expensive
	What if we train the tiny one?
	What if we train the tiny one?
	Not reinitialization, rewind instead
	Not reinitialization, rewind instead
	Lottery tickets
	The Lottery Ticket Hypothesis (LTH)
	The \emph{Strong} Lottery Ticket Hypothesis (SLTH)
	The \emph{Strong} Lottery Ticket Hypothesis (SLTH)
	Do we have a theorem?
	Overview of the (theoretical) results
	Review: Feedforward
	Review: SLTH in dense networks
	Exploiting properties of the ReLU
	Putting everything together
	More layers together
	Issues with Unstructured pruning
	Structured pruning
	The multidimensional RSS problem
	MRSS in expectation
	MRSS in expectation
	MRSS: current results
	Apply MRSS for structured pruning
	Convolutional neural networks (CNNs)
	Lower bounds
	Overparameterization
	Conclusions
	RSS proof overview

