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Applications of learning in games

▶ Multi‐agent learning: road traffic; network routing; recommender systems; ...
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General setup — finite games in continuous time

▶ continuous time t ≥ 0

▶ finite number of players i ∈ N = {1, . . . , N}
▶ finite number of actions (or pure strategies) αi ∈ Ai = {1, . . . , Ai}
▶ action payoffs ui(α1, . . . , αN )

Continuous‐time learning procedure
for all t ≥ 0 do simultaneously for all players i ∈ N :

Choose mixed strategy xi ∈ Xi := ∆(Ai) # ensures exploration

Sample action αi ∼ xi

Observe mixed payoff vector vi(x) := (ui(αi;x−i))αi∈Ai
# perfect feedback

end for
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Learning dynamics

Continuous‐time exponential weights dynamics

ẏi(t) = vi(x(t)) # cumulative payoff

xi(t) = eyi(t)/∥eyi(t)∥1 # soft‐max function
(EW)

+ Continuous‐time version of the multiplicative weights algorithm 2 Auer et al., 1995; Sorin, 2009

+ (EW) is equivalent to the replicator dynamics of Taylor & Jonker (1978) defined by

ẋiαi = xiαi

[
viαi(x)−

∑
βi

xiβiviβi(x)
]

(RD)

Rational behaviors: 2 Mertikopoulos & Sandholm (2016), Kwon & Mertikopoulos (2017)

▶ Achieves no‐regret
▶ Underperforming actions become extinct
▶ ”Folk theorem” (convergence vs equilibria)
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Stochastic learning dynamics

Exponential weights dynamics

dYiαi(t) = viαi(X(t))dt

+σiαidWiαi

# cumulative payoff

Xi(t) = eYi(t)/∥eYi(t)∥1 # update strategy

What is the impact of random perturbations on the exponential weights dynamics?

▶ W (t) := (Wiαi(t))iα∈Ai,i∈N is a standard Brownian motion # continuous uncorrelated noise

▶ σiαi > 0 is the level of noise
▶ (S‐EW) understood as a stochastic differential equation

Related works:
+ (S‐EW) already studied by Mertikopoulos & Moustakas (2010) and Bravo & Mertikopoulos (2017)
+ Other stochastic variants of (RD): Foster & Young (1990) (pairwise imitation), Fudenberg & Harris (1992)
(biological reproduction)

2 Further works by Cabrales (2000), Imhof (2005), Hofbauer & Imhof (2009), Mertikopoulos & Viossat (2016),
Engel & Piliouras (2023), ...
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Uncertainty favors extremes

Theorem — Evolution close to pures
In any game and for any level of noise, every player reaches an arbitrarily small neighborhood of one of their pures
strategies in finite time
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Uncertainty favors extremes

Theorem — Evolution close to pures
In any game and for any level of noise, every player reaches an arbitrarily small neighborhood of one of their pures
strategies in finite time

Corollary — Limits of (S‐EW)
The only possible limits of (S‐EW) are pure strategies

“Uncertainty favors extreme decisions”
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Stability & attractiveness of pure strategies

Which pure strategies are stable and attracting for (S‐EW)?
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Which pure strategies are stable and attracting for (S‐EW)?

▶ B =
∏

i∈N Bi product of pure strategies with Bi ⊆ Ai

▶ S = span(B) face of strategies with support in B # supp(xi) := {αi ∈ Ai : xiαi
> 0}

+ S is stochastically asymptotically stable if trajectories starting nearby remain nearby and eventually converge
to it with arbitrarily high probability
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i∈N Bi product of pure strategies with Bi ⊆ Ai

▶ S = span(B) face of strategies with support in B # supp(xi) := {αi ∈ Ai : xiαi
> 0}

+ S is stochastically asymptotically stable if trajectories starting nearby remain nearby and eventually converge
to it with arbitrarily high probability

Theorem — Stable⇐⇒ club
For any level of noise, S is stochastically asymptotically stable if and only if it is closed under better replies

+ S is closed under better replies if

ui(βi;α−i) < ui(α) for all α ∈ B, βi /∈ Bi, i ∈ N

2 Extends results of Ritzberger & Weibull (1995) and Boone & Mertikopoulos (2023)
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Consequences for recurrent dynamics

2‐players zero‐sum game: u1(α, β) = −u2(α, β) for all α ∈ A1, β ∈ A2

+ Trajectories of (EW) are recurrent if game admits fully mixed Nash equilibrium 2 Mertikopoulos et al. (2018)
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Theorem 3 — Failure of recurrence under uncertainty
In any 2‐players zero‐sum game (with a fully mixed Nash equilibrium) and for any level of noise, players’ choices
converge “on average” toward the strategy space boundary.

+ Mathematically,
∑

i∈N E[KL(qi, Xi(t)] → ∞ for some fully mixed q ∈ riX #X :=
∏

i∈N Xi

2 Trajectories do not necessarily converge almost surely to the boundary
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Concluding remarks

Framework extension
General regularizer & correlated noise:

dYi(t) = vi(X(t))dt+dMi(t)

Xi(t) = Qi(Yi(t))
(S‐FTRL)

Open directions:
▶ Vanishing learning rate?
▶ Discontinuous noise?
▶ Discrete time?
▶ Continuous action space?
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Stochastic FTRL dynamics

Stochastic FTRL dynamics

dYi(t) = vi(X(t))dt+ dMi(t) # cumulative payoff

Xi(t) = Qi(Yi(t)) # update strategy
(S‐FTRL)

+ Qi(y) := arg maxxi∈Xi
{⟨y, x⟩ − hi(x)} regularized best response map⇝ ensures exploration

+ Mi(t) continuous square‐integrable martingale⇝ captures all sources of randomness

Assumptions:
▶ hi(xi) =

∑
αi

θi(xiαi) for θi : (0, 1) → R smooth, strongly convex and steep at 0

▶ dMi(t) = σi(X(t))dW (t) for some Lipschitz function σi : X → RAi×d #W (t) d‐dimensional BM

▶ The smallest eigenvalue ofΣ := σσT is strictly positive uniformly on X # persistent noise

Examples of regularizers:

+ Negative Gibbs entropy h(z) = z log z⇝ soft‐max function

+ Fractional (Tsallis) entropy h(z) = −4
√
z
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Failure of recurrence

Theorem 3 — Failure of recurrence under uncertainty, explicit version
In any 2‐players zero‐sum game (with a fully mixed Nash equilibrium) and for any level of noise, trajectories of
(S‐EW) verify:

1.
∑

i∈N E[KL(qi, Xi(t))] → ∞ for some q ∈ riX ;

2. The first exit time τK from a compact subsetK is finite in expectation ifK is not connected to bdX ;

3. The first exit time τK from a compact subsetK is infinite in expectation ifK contains bdX .

Convergence on average vs almost‐surely:
▶ 2× 2 game with u1 = u2 = 0 =⇒ no almost‐sure convergence to boundary
▶ 3× 3 game with u1 = u2 = 0 =⇒ almost‐sure convergence to boundary
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