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Applications of learning in games

» Multi-agent learning: road traffic; network routing; recommender systems; ...
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General setup — finite games in continuous time

» continuous time ¢t > 0
> finite number of playersi € "= {1,..., N}
> finite number of actions (or pure strategies) ; € A; = {1,..., A;}

» action payoffs u; (a1, ..., an)
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General setup — finite games in continuous time

» continuous time ¢t > 0
> finite number of playersi € "= {1,..., N}
> finite number of actions (or pure strategies) ; € A; = {1,..., A;}

» action payoffs u; (a1, ..., an)

Continuous-time learning procedure

forall t > 0 do simultaneously for all players i € N:
Choose mixed strategy x; € X; := A(.Az) # ensures exploration
Sample action a; ~ x;
Observe mixed payoff vector v; () := (u;(ai;T—;))
end for

i €A; # perfect feedback
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Learning dynamics

Continuous-time exponential weights dynamics

Ui (t) = v; (as(t)) # cumulative payoff
() /11,95 (EW)
X5 (t) = e¥i /Heyl H1 # soft-max function
= Continuous-time version of the multiplicative weights algorithm *> Auer et al., 1995; Sorin, 2009
== (EW) is equivalent to the replicator dynamics of Taylor & Jonker (1978) defined by
Tia; = Tia, [Uiai ('T) - Zﬁi Tip; Vig, (:C)} (RD)
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Learning dynamics

Continuous-time exponential weights dynamics

Ui (t) = v; (as(t)) # cumulative payoff
) _ Lyi(t) yi (t) g =
X5 (t) =e /He H 1 # soft-max function
= Continuous-time version of the multiplicative weights algorithm *> Auer et al., 1995; Sorin, 2009
== (EW) is equivalent to the replicator dynamics of Taylor & Jonker (1978) defined by
i’"iai = Tiay [Uiai (.CE) - Zﬁi Tip; Vip; (:C):| (RD)
Rational behaviors: =& Mertikopoulos & Sandholm (2016), Kwon & Mertikopoulos (2017)

» Achieves no-regret
» Underperforming actions become extinct

» "Folk theorem” (convergence vs equilibria)
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Stochastic learning dynamics

Exponential weights dynamics

dYGa, (t) = Via; (X(t))dt # cumulative payoff

Xl(t) = eyi(t)/HeYi(t) Hl # update strategy

What is the impact of random perturbations on the exponential weights dynamics?
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Stochastic learning dynamics

Stochastic exponential weights dynamics

dei (t) = Via; (X(t))dt%*(ﬁ,‘,”i dl/‘/’i,‘,u i # cumulative payoff
Y;(t) /1 .Y (t) (S-EW)
Xz(t) =e’ /||6 K Hl # update strategy
» W(t) = (Wmi (t))iaeAi,ieN is a standard Brownian motion # continuous uncorrelated noise

» 0iq; > 0is the level of noise

P> (S-EW) understood as a stochastic differential equation
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Stochastic learning dynamics

Stochastic exponential weights dynamics

dei (t) = Via; (X(t))dt%*(fmi dl/’][/’yr,‘“[ # cumulative payoff
Y;(t) /1 .Y (t) (S-EW)
Xz(t) =e’ /||6 K Hl # update strategy
» W(t) = (Wmi (t))iaeAi,ieN is a standard Brownian motion # continuous uncorrelated noise

» 0iq; > 0is the level of noise

P> (S-EW) understood as a stochastic differential equation

Related works:
== (S-EW) already studied by Mertikopoulos & Moustakas (2010) and Bravo & Mertikopoulos (2017)

5 Other stochastic variants of (RD): Foster & Young (1990) (pairwise imitation), Fudenberg & Harris (1992)
(biological reproduction)

=& Further works by Cabrales (2000), Imhof (2005), Hofbauer & Imhof (2009), Mertikopoulos & Viossat (2016),
Engel & Piliouras (2023), ...
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Uncertainty favors extremes

Theorem — Evolution close to pures

In any game and for any level of noise, every player reaches an arbitrarily small neighborhood of one of their pures
strategies in finite time

P.-L. Cauvin Université Grenoble Alpes - LIG



Uncertainty favors extremes

Theorem — Evolution close to pures

In any game and for any level of noise, every player reaches an arbitrarily small neighborhood of one of their pures
strategies in finite time

Corollary — Limits of (S-EW)

The only possible limits of (S-EW) are pure strategies
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Uncertainty favors extremes

Theorem — Evolution close to pures

In any game and for any level of noise, every player reaches an arbitrarily small neighborhood of one of their pures
strategies in finite time

Corollary — Limits of (S-EW)
The only possible limits of (S-EW) are pure strategies

Matching Pennies
A Harmonic Game
(4,-6,-1)

I XU
(3,4.~ﬂ<0 gsi 15! \\\

“Uncertainty favors extreme decisions”

P.-L. Cauvin Université Grenoble Alpes - LIG



Stability & attractiveness of pure strategies

Which pure strategies are stable and attracting for (S-EW)?
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Stability & attractiveness of pure strategies

Which pure strategies are stable and attracting for (S-EW)?

> B= Hie/\/’ B; product of pure strategies with 3; C A;
» S = span(B) face of strategies with support in 5 #supp(z;) = {a; € A; : Tia; > 0}

= S is stochastically asymptotically stable if trajectories starting nearby remain nearby and eventually converge
to it with arbitrarily high probability
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Stability & attractiveness of pure strategies
Which pure strategies are stable and attracting for (S-EW)?

> B= HieN B; product of pure strategies with 3; C A;
» S = span(B) face of strategies with support in 5 #supp(z;) := {a; € A; : Tia, > 0}

= S is stochastically asymptotically stable if trajectories starting nearby remain nearby and eventually converge
to it with arbitrarily high probability

Theorem — Stable <> club

For any level of noise, .S is stochastically asymptotically stable if and only if it is closed under better replies

= S is closed under better replies if

wi(Bi;a—i) < wui(a) foralla € B,B; ¢ Bi,i € N

=& Extends results of Ritzberger & Weibull (1995) and Boone & Mertikopoulos (2023)
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Closedness under better replies

= S is closed under better replies if

wi(Bi;a—i) <wui(a) foralla € B,B; ¢ Bi,i e N

o—" |
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Closedness under better replies

= S is closed under better replies if

wi(Bi;a—i) < wui(a) foralla € B,B; ¢ Bi,i € N

0.1,0,1)
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Consequences for recurrent dynamics

2-players zero-sum game: u1 (a, 3) = —uz(a, ) foralla € Ay, B € Az

= Trajectories of (EW) are recurrent if game admits fully mixed Nash equilibrium =0 Mertikopoulos et al. (2018)
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Consequences for recurrent dynamics

2-players zero-sum game: u1 (a, 3) = —uz(a, ) foralla € Ay, B € Az

= Trajectories of (EW) are recurrent if game admits fully mixed Nash equilibrium =0 Mertikopoulos et al. (2018)

Theorem 3 — Failure of recurrence under uncertainty

In any 2-players zero-sum game (with a fully mixed Nash equilibrium) and for any level of noise, players’ choices
converge “on average” toward the strategy space boundary.

w5 Mathematically, 3, - E[KL(gs, Xi(t)] — oo for some fully mixed ¢ € ri & #X = Ten X

A Trajectories do not necessarily converge almost surely to the boundary
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Consequences for recurrent dynamics

2-players zero-sum game: u1 (a, 3) = —uz(a, ) foralla € Ay, B € Az

= Trajectories of (EW) are recurrent if game admits fully mixed Nash equilibrium =0 Mertikopoulos et al. (2018)

Theorem 3 — Failure of recurrence under uncertainty

In any 2-players zero-sum game (with a fully mixed Nash equilibrium) and for any level of noise, players’ choices
converge “on average” toward the strategy space boundary.

w5 Mathematically, 3, - E[KL(gs, Xi(t)] — oo for some fully mixed ¢ € ri & #X = Ten X

A Trajectories do not necessarily converge almost surely to the boundary

Theorem 4 — Irreducibility of boundary

In any 2-players zero-sum game (with a fully mixed Nash equilibrium) and for any level of noise, no proper product
of pure strategies span a stochastically asymptotically stable face.
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Consequences for recurrent dynamics

Theorem 3 — Failure of recurrence under uncertainty

In any 2-players zero-sum game (with a fully mixed Nash equilibrium) and for any level of noise, players’ choices
converge “on average” toward the strategy space boundary.

.

Theorem 4 — Irreducibility of boundary

In any 2-players zero-sum game (with a fully mixed Nash equilibrium) and for any level of noise, no proper product
of pure strategies span a stochastically asymptotically stable face.

.
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Concluding remarks

Framework extension

General regularizer & correlated noise:

dYi(t) = vi(X (£))dt+dMi(t)

(S-FTRL)
Xi(t) = Qu(Yi(t))
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Concluding remarks

Framework extension

General regularizer & correlated noise:
dY;(t) = v (X (¢))dt+dM;(t) (S-FTRU
Xi(t) = Qi(Yi(t))
Harmonic games: there exist weights m; > 0 and a fully mixed strategy g € ri X" such that * Legacci et al. (2024)
Zie/\f m;i(vi(z),z; —qi) forallz € X )
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Concluding remarks

Framework extension

General regularizer & correlated noise:
dY;(t) = v (X (¢))dt+dM;(t) (S-FTRU
Xi(t) = Qi(Yi(t))
Harmonic games: there exist weights m; > 0 and a fully mixed strategy g € ri X" such that * Legacci et al. (2024)
Zie/\f m;i(vi(z),z; —qi) forallz € X )

Open directions:
P Vanishing learning rate?
» Discontinuous noise?
P Discrete time?

» Continuous action space?
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Stochastic FTRL dynamics

Stochastic FTRL dynamics

in(t) = vi(X(t))dt + dM; (t) # cumulative payoff

(S-FTRL)
X; (t) = Qi (Yl (t)) # update strategy
w Qi(y) := argmax,, c », {(y, ) — hi(x)} regularized best response map ~ ensures exploration
M, (t) continuous square-integrable martingale ~~ captures all sources of randomness
Assumptions:

> hi(x;) = Zai 0;i(xia;) for 0;: (0,1) — R smooth, strongly convex and steep at 0
> dM;(t) = o;(X (t))dW (t) for some Lipschitz function o; : X — RAi*¢ #W (t) d-dimensional BM
» The smallest eigenvalue of 3 := ool is strictly positive uniformly on X’ # persistent noise

Examples of regularizers:
1= Negative Gibbs entropy h(z) = zlog z ~~ soft-max function
wr Fractional (Tsallis) entropy h(z) = —44/z
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Failure of recurrence

Theorem 3 — Failure of recurrence under uncertainty, explicit version

In any 2-players zero-sum game (with a fully mixed Nash equilibrium) and for any level of noise, trajectories of
(S-EW) verify:

1. > en E[KL(gi, Xi(t))] — oo for some g € 1i &;
2. The first exit time 7k from a compact subset K is finite in expectation if K is not connected to bd X’;

3. The first exit time 7xc from a compact subset K is infinite in expectation if /C contains bd X.

Convergence on average vs almost-surely:
> 2 x 2 game with u; = u2 = 0 = no almost-sure convergence to boundary

» 3 x 3 game with u; = us = 0 = almost-sure convergence to boundary
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