
Expectation vs reality: on the role of stochasticity in flow matching
generalization

Mathurin Massias

Work with Q. Bertrand, A. Gagneux, S. Martin, and R. Emonet

SHARP+Foundry workshop @COLT, 2025/06/30



Generative modelling

Given x(1), . . . , x(n) sampled from pdata, learn to sample from pdata

3 challenges:

• enforce fast sampling

• generate high quality samples

• properly cover the diversity of pdata
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Modern way to do generative modelling

Map simple base distribution, p0, to pdata through a map T

A Visual Dive into Conditional Flow Matching, Martin, Gagneux, Emonet, Bertrand & Massias,
ICLR Blogpost 2025, https://dl.heeere.com/cfm/
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https://dl.heeere.com/cfm/


Continuous normalizing flows (CNF)

The map T is defined implicitely through an ODE:{
x(0) = x0

ẋ(t) = u(x(t), t) ∀t ∈ [0, 1]

• T (x0) := x(1) (ODE solution at time 1)

• learn the velocity field u as uθ : Rd × [0, 1] → Rd

• sample by solving the initial value problem with x(0) = x0 ∼ p0

(dynamic animation in blog post)
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Framework recap
We have:

• source distribution p0 = N (0, Id)

• target distribution pdata (e.g. realistic images)

We want:
• to generate new samples from pdata

How?
• by solving on [0, 1]{

x(0) = x0

ẋ(t) = u(x(t), t) ∀t ∈ [0, 1]

• such that solution x(1) ∼ pdata when x(0) ∼ p0

how to find a u that works well?
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Searching for a good u

{
x(0) = x0

ẋ(t) = u(x(t), t) ∀t ∈ [0, 1]

• ODE defines probability path (pt)t∈[0,1] = laws of the solution x(t) when x(0) ∼ p0

• we want p0 = p0 and p1 = pdata

u must drive a progressive transformation of p0 into pdata
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Flow matching: building a u

Break down complex problem into small ones:
• introduce conditioning variable z = (x0, x1) ∼ p0 × pdata
• define conditional probability path p(·|z = (x0, x1), t) = δ(1−t)x0+tx1

• we know the associated conditional velocity: ucond(x, z = (x0, x1), t) = x1 − x0

“Uncondition”: define u⋆ by marginalizing against z = (x0, x1):
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The magic happens

Theorem 1:

• Averaging the conditional paths give a probability path going from p0 to pdata

• u⋆ transports p0 to pdata
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We are done

We have our target, valid velocity:

u⋆(x, t) = Ez|x,t[x1 − x0]

We just need to approximate it with a neural net uθ : Rd × [0, 1] → Rd:

min
θ

{
LFM(θ) = Et∼U([0,1])

xt∼p(·|t)
∥uθ(xt, t)− u⋆(xt, t)∥2

}

We are not done at all :(
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Theorem 2 to the rescue

Ideal loss:
LFM(θ) = Et∼U([0,1])

xt∼p(·|t)
∥uθ(xt, t)− u⋆(xt, t)∥2

u⋆(x, t) = Ez|x,t[x1 − x0]

Theorem 2: Up to a constant, LFM is equal to

LCFM(θ) = E x0∼p0
x1∼pdata

t∼U([0,1])

∥uθ(xt, t)− (x1 − x0)∥2

wherext := (1− t)x0 + tx1
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Minimizing LCFM

To minimize

LCFM(θ) = E x0∼p0
x1∼pdata

t∼U([0,1])

∥uθ(xt, t)− ucond(xt, z = x1, t)∥2

(xt := (1− t)x0 + tx1)

• sample x0 ∼ p0: easy!

• sample t ∼ U([0, 1])! easy!

• sample x1 ∼ pdata? easy if we replace by x1 ∼ p̂data := 1
n

∑n
i=1 δx(i)
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Training flow matching

min
θ

E x0∼p0
x1∼pdata

t∼U([0,1])

[
∥uθ(xt, t)− ucond(xt, z = x1, t)∥2

]
(xt := (1− t)x0 + tx1)
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A small caveat

But in practice we replace pdata by p̂data

13



Remember the ideal “unavailable” velocity?

u⋆(x, t) = Ez|x,t [x1 − x0]

Prop: If pdata is replaced by p̂data := 1
n

∑n
i=1 δx(i) , the optimal velocity has a closed-form:

û⋆(x, t) =

n∑
i=1

λi(x, t)
x(i) − x

1− t

with λ(x, t) = softmax((− 1
2(1−t)2

∥x− tx(i′)∥2)i′=1,...,n) ∈ Rn

û⋆ is now a finite sum!

What can we observe for û⋆ as t → 1?
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Flow matching should not work

• because in practice we use p̂data instead of pdata,
the minimizer of LCFM is available in closed-form

• this closed-form û⋆(x, t) blows up for t → 1
if x /∈ {x(1), . . . , x(n)}

• it can only generate training points!

So why does flow matching generalize?

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity,
Bertrand, Gagneux, Massias & Emonet, https://www.arxiv.org/abs/2506.03719
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https://www.arxiv.org/abs/2506.03719


Generalization through variance?

LCFM(θ) = E x0∼p0
x1∼p̂data

t∼U([0,1])

∥uθ(xt, t)− (x1 − x0)∥2

û⋆(x, t) =

n∑
i=1

λi(x, t)
x(i) − x

1− t

• an xt is on n different segments [x0, x1 = x(i)]

• instead of regressing against û⋆, we pick one of the x(i)−x
1−t (w. proba λi(x, t)) in the

sum and regress against it

• ↪→ in training, uθ is forced to learn various directions at the same (x, t)

• the noise in training may explain imperfect training hence generalization
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Non stochasticity of û⋆
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Non stochasticity of û⋆
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Non stochasticity of û⋆
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Non stochasticity of û⋆
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Non stochasticity for real data
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ucond((1− t)x0 + tx1, z = x1, t) = x1 − x0

19



Issues of intuitions from small dimension

Alignment of û⋆ and ucond over time for varying image dimensions d on Imagenette

Stochasticity only occurs for very small t as dimension increases
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Refuting the stochasticity argument: regressing against û⋆

From LCFM(θ) = E x0∼p0
x1∼p̂data

t∼U([0,1])

∥uθ(xt, t)− (x1 − x0)∥2

to LEFM(θ) = E x0∼p0
x1∼p̂data

t∼U([0,1])

∥uθ(xt, t)− û⋆(xt, t)∥2

Learning with a non-stochastic target does not degrade performance
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Importance of model capacity

# samples 10

# samples 100

# samples 500

# samples 1000

# samples 2000

# samples 3000

# samples 4000

# samples 5000

# samples 10000

Approximation quality Measures of generalization

• generalization occurs when approximation degrades

• model uθ has trouble learning û⋆ for both t ≈ 0.2 and t ≈ 0.9
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Which t matters most?

From a good trained uθ, we build a hybrid model (fixed τ ∈ [0, 1]):

• on [0, τ ]: follow û⋆

• on [τ, 1]: follow uθ

• τ = 1 means completely following û⋆ (no generalization)

• τ = 0 means completely following uθ (good generalization)
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generalization arises early!
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Summary

• by design, the true velocity in flow matching is available in closed-form

• flow matching should not create new images, yet it does

• stochasticity is definitely not the reason for it

• small and large times appear to matter most

• failure of uθ to learn û⋆ for small t is critical

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity,
Bertrand, Gagneux, Massias & Emonet, https://www.arxiv.org/abs/2506.03719

A Visual Dive into Conditional Flow Matching, Martin, Gagneux, Emonet, Bertrand & Massias,
ICLR Blogpost 2025, https://dl.heeere.com/cfm/
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