

Expectation vs reality: on the role of stochasticity in flow matching generalization

Mathurin Massias

Work with Q. Bertrand, A. Gagneux, S. Martin, and R. Emonet

SHARP+Foundry workshop @COLT, 2025/06/30

Generative modelling

Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}

3 challenges:

- enforce fast sampling
- generate high quality samples
- ullet properly cover the diversity of $p_{
 m data}$

Modern way to do generative modelling

Map simple base distribution, p_0 , to p_{data} through a map T

A Visual Dive into Conditional Flow Matching, Martin, Gagneux, Emonet, Bertrand & Massias, ICLR Blogpost 2025, https://dl.heeere.com/cfm/

Continuous normalizing flows (CNF)

The map T is defined implicitely through an ODE:

$$\begin{cases} x(0) = x_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$

- $T(x_0) := x(1)$ (ODE solution at time 1)
- learn the velocity field u as $u_{\theta}: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$
- sample by solving the initial value problem with $x(0) = x_0 \sim p_0$

(dynamic animation in blog post)

Framework recap

We have:

- source distribution $p_0 = \mathcal{N}(0, \mathrm{Id})$
- target distribution $p_{\rm data}$ (e.g. realistic images)

We want:

ullet to generate new samples from $p_{
m data}$

How?

• by solving on [0,1]

$$\begin{cases} x(0) = x_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$

• such that solution $x(1) \sim p_{\mathrm{data}}$ when $x(0) \sim p_0$

how to find a u that works well?

Searching for a good u

$$\begin{cases} x(0) = x_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$

- ODE defines probability path $(p_t)_{t\in[0,1]}$ = laws of the solution x(t) when $x(0)\sim p_0$
- ullet we want $p_0=p_0$ and $p_1=p_{
 m data}$

u must drive a progressive transformation of p_0 into p_{data}

Flow matching: building a u

Break down complex problem into small ones:

- introduce conditioning variable $z = (x_0, x_1) \sim p_0 \times p_{\text{data}}$
- define **conditional** probability path $p(\cdot|z=(x_0,x_1),t)=\delta_{(1-t)x_0+tx_1}$ we know the associated conditional velocity: $u^{\mathrm{cond}}(x,z=(x_0,x_1),t)=x_1-x_0$

"Uncondition": define u^* by marginalizing against $z=(x_0,x_1)$:

The magic happens

Theorem 1:

- ullet Averaging the conditional paths give a probability path going from p_0 to $p_{
 m data}$
- u^* transports p_0 to p_{data}

We are done

We have our target, valid velocity:

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[x_1 - x_0]$$

We are done

We have our target, valid velocity:

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[x_1 - x_0]$$

We just need to approximate it with a neural net $u_{\theta}: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$:

$$\min_{\theta} \left\{ \mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{\substack{t \sim \mathcal{U}([0,1]) \\ x_t \sim p(\cdot|t)}} \|u_{\theta}(x_t, t) - u^{\star}(x_t, t)\|^2 \right\}$$

We are done

We have our target, valid velocity:

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[x_1 - x_0]$$

We just need to approximate it with a neural net $u_{\theta}: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$:

$$\min_{\theta} \left\{ \mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{\substack{t \sim \mathcal{U}([0,1]) \\ x_t \sim p(\cdot|t)}} \|u_{\theta}(x_t, t) - u^{\star}(x_t, t)\|^2 \right\}$$

We are not done at all :(

Theorem 2 to the rescue

Ideal loss:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{\substack{t \sim \mathcal{U}([0,1]) \\ x_t \sim p(\cdot|t)}} \|u_{\theta}(x_t, t) - u^{\star}(x_t, t)\|^2$$

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[x_1 - x_0]$$

Theorem 2: Up to a constant, $\mathcal{L}_{\mathrm{FM}}$ is equal to

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim P_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \|u_{\theta}(x_t, t) - (x_1 - x_0)\|^2$$

where
$$x_t := (1 - t)x_0 + tx_1$$

Minimizing $\mathcal{L}_{\mathrm{CFM}}$

To minimize

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2$$
$$(x_t := (1 - t)x_0 + tx_1)$$

- sample $x_0 \sim p_0$: easy!
- sample $t \sim \mathcal{U}([0,1])!$ easy!
- sample $x_1 \sim p_{\mathrm{data}}$? easy if we replace by $x_1 \sim \hat{p}_{\mathrm{data}} := \frac{1}{n} \sum_{i=1}^n \delta_{x^{(i)}}$

$$\min_{\substack{\theta \\ t \sim \mathcal{U}([0,1])}} \mathbb{E}_{\substack{x_0 \sim p_0 \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1-t)x_0 + tx_1)$$

 p_{data}

$$\min_{\substack{\theta \\ t \sim \mathcal{U}([0,1])}} \mathbb{E}_{\substack{x_0 \sim p_0 \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1-t)x_0 + tx_1)$$

 $p_{
m data}$

$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$

$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$

$$\min_{\substack{\theta \\ t \sim \mathcal{U}([0,1])}} \mathbb{E}_{\substack{x_0 \sim p_0 \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1-t)x_0 + tx_1)$$

$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$

A small caveat

But in practice we replace p_{data} by \hat{p}_{data}

 \hat{p}_{data}

$$x_1 \in \{x^{(1)}, \dots, x^{(n)}\}$$

Remember the ideal "unavailable" velocity?

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t} \left[x_1 - x_0 \right]$$

Prop: If p_{data} is replaced by $\hat{p}_{\text{data}} := \frac{1}{n} \sum_{i=1}^{n} \delta_{x^{(i)}}$, the optimal velocity has a closed-form:

$$\hat{u}^{\star}(x,t) = \sum_{i=1}^{n} \lambda_i(x,t) \frac{x^{(i)} - x}{1 - t}$$

with
$$\lambda(x,t) = \operatorname{softmax}((-\frac{1}{2(1-t)^2}\|x-tx^{(i')}\|^2)_{i'=1,\dots,n}) \in \mathbb{R}^n$$

 \hat{u}^{\star} is now a finite sum!

What can we observe for \hat{u}^{\star} as $t \to 1$?

Flow matching should not work

- because in practice we use $\hat{p}_{\rm data}$ instead of $p_{\rm data}$, the minimizer of $\mathcal{L}_{\rm CFM}$ is available in closed-form
- this closed-form $\hat{u}^\star(x,t)$ blows up for $t\to 1$ if $x\notin\{x^{(1)},\dots,x^{(n)}\}$
- it can only generate training points!

So why does flow matching generalize?

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity, Bertrand, Gagneux, Massias & Emonet, https://www.arxiv.org/abs/2506.03719

Generalization through variance?

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim \hat{p}_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \|u_{\theta}(x_t, t) - (x_1 - x_0)\|^2$$
$$\hat{u}^*(x, t) = \sum_{i=1}^n \lambda_i(x, t) \frac{x^{(i)} - x}{1 - t}$$

- an x_t is on n different segments $[x_0, x_1 = x^{(i)}]$
- instead of regressing against \hat{u}^* , we pick one of the $\frac{x^{(i)}-x}{1-t}$ (w. proba $\lambda_i(x,t)$) in the sum and regress against it
- ullet \hookrightarrow in training, $u_{ heta}$ is forced to learn various directions at the same (x,t)
- the noise in training may explain imperfect training hence generalization

$$\hat{u}^{\star}(x,t) = \sum_{i=1}^{n} p\left(z = x^{(i)} | x, t\right) u^{\text{cond}}\left(x, t, z = x^{(i)}\right)$$

Common belief STOCHASTICITY

What really happens NON-STOCHASTICITY

$$\hat{u}^{\star}(x_t, t) = \sum_{i=1}^{3} \lambda_i(x_t, t) \frac{x^{(i)} - x_t}{1 - t}$$

$$\hat{u}^{\star}(x_t, t) = \sum_{i=1}^{3} \lambda_i(x_t, t) \frac{x^{(i)} - x_t}{1 - t}$$

$$\hat{u}^{\star}(x_t, t) = \sum_{i=1}^{3} \lambda_i(x_t, t) \frac{x^{(i)} - x_t}{1 - t}$$

Non stochasticity for real data

histograms of cosine similarities between $\hat{u}^\star((1-t)x_0+tx_1,t)$ and $u^{\mathrm{cond}}((1-t)x_0+tx_1,z=x_1,t)=x_1-x_0$

Issues of intuitions from small dimension

Alignment of \hat{u}^{\star} and u^{cond} over time for varying image dimensions d on Imagenette

Stochasticity only occurs for very small t as dimension increases

Refuting the stochasticity argument: regressing against \hat{u}^{\star}

From
$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E} \underset{\substack{x_0 \sim p_0 \\ x_1 \sim \hat{p}_{\text{data}} \\ t \sim \mathcal{U}([0,1])}}{\|u_{\theta}(x_t,t) - (x_1 - x_0)\|^2}$$
 to
$$\mathcal{L}_{\text{EFM}}(\theta) = \mathbb{E} \underset{\substack{x_0 \sim p_0 \\ x_1 \sim \hat{p}_{\text{data}} \\ t \sim \mathcal{U}([0,1])}}{\|u_{\theta}(x_t,t) - \hat{u}^*(x_t,t)\|^2}$$

$$= \mathbb{E} \text{FM - 128} \quad \mathbb{E} \text{FM - 256} \quad \mathbb{E} \text{FM - 256} \quad \mathbb{E} \text{FM - 1000} \quad \mathbb{E} \text{FM - 256} \quad \mathbb{E} \text{FM - 256$$

Learning with a non-stochastic target does not degrade performance

Importance of model capacity

- generalization occurs when approximation degrades
- model u_{θ} has trouble learning \hat{u}^{\star} for both $t \approx 0.2$ and $t \approx 0.9$

Which t matters most?

From a good trained u_{θ} , we build a *hybrid* model (fixed $\tau \in [0,1]$):

- on $[0,\tau]$: follow \hat{u}^{\star}
- on $[\tau,1]$: follow u_{θ}

- au=1 means completely following \hat{u}^{\star} (no generalization)
- au=0 means completely following $u_{ heta}$ (good generalization)

generalization arises early!

Summary

- by design, the true velocity in flow matching is available in closed-form
- flow matching should not create new images, yet it does
- stochasticity is definitely not the reason for it
- small and large times appear to matter most
- failure of u_{θ} to learn \hat{u}^{\star} for small t is critical
- On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity, Bertrand, Gagneux, Massias & Emonet, https://www.arxiv.org/abs/2506.03719
- A Visual Dive into Conditional Flow Matching, Martin, Gagneux, Emonet, Bertrand & Massias, ICLR Blogpost 2025, https://dl.heeere.com/cfm/