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Generative modelling

Given z ..., z(") sampled from pyata, learn to sample from pyaca

3 challenges: 20 2 23 2@ £ 4(6)

o enforce fast sampling
e generate high quality samples

e properly cover the diversity of pqata



Modern way to do generative modelling

Map simple base distribution, pg, t0 pgata through a map 7

Po T

/—\ Pdata

% A Visual Dive into Conditional Flow Matching, Martin, Gagneux, Emonet, Bertrand & Massias,
ICLR Blogpost 2025, https://dl.heeere.com/cfm/


https://dl.heeere.com/cfm/

Continuous normalizing flows (CNF)

The map T is defined implicitely through an ODE:

2(0) = xg

z(t) = u(x(t),t) Vtel0,1]
e T(z0) := x(1) (ODE solution at time 1)
e learn the velocity field u as up : R? x [0,1] — R?

e sample by solving the initial value problem with z(0) = z¢ ~ pg

Ue(xf,

Xt~ Pt
’.
__3_ 7
%

(dynamic animation in blog post)



https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/

Framework recap

We have:
 source distribution py = N(0,1d)

o target distribution pga.;, (€.g. realistic images)

We want:
o to generate new samples from pgata

How?
by solving on [0, 1]

z(0) =z
z(t) = u(z(t),t) Vte|0,1]

 such that solution z(1) ~ pgata When z(0) ~ pg

[ how to find a « that works well? ]




Searching for a good u

 ODE defines probability path (p;).c(0,1) = laws of the solution z(t) when z(0) ~ po

e we want py = po and p; = paata

u must drive a progressive transformation of py into pgata




Flow matching: building a «

Break down complex problem into small ones:

e introduce conditioning variable z = (zo, z1) ~ po X pdata
o define conditional probability path p(:|z = (zo, z1),t) = 6(1—t)wg+tas
o we know the associated conditional velocity: u*"(z, z = (z0, z1),t) = &1 — x0o

“Uncondition”: define v* by marginalizing against z = (xg, z1):

11¥<.l‘,. ?L) = Ez|zt,t["‘l — ,l'()]

Po



The magic happens

Theorem 1:

e Averaging the conditional paths give a probability path going from pg to paata

e u* transports pg t0 pyata

N ; i
i Pl 2 = 2

pla,t|z = 2
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We are done

We have our target, valid velocity:

u*(x,t) = B 5 ¢ [11 — 20]



We are done

We have our target, valid velocity:
u*(x,t) = B 5 ¢ [11 — 20]

We just need to approximate it with a neural net uy : R? x [0,1] — R%

Hgn {LFM(G) = Et~u([07l]) ||UQ(£Et, t) — u*(a:t, t)||2}

@o~p(-|t)



We are done

We have our target, valid velocity:
u*(x,t) = B 5 ¢ [11 — 20]

We just need to approximate it with a neural net uy : R? x [0,1] — R%

Hgn {LFM(G) = Et~u([07l]) ||U9($t, t) — u*(azt, t)||2}

@o~p(-|t)

We are not done at all :(



Theorem 2 to the rescue

Ideal loss:

Len(0) = Epaiqo,1)) lluo(@e, t) — u* (2, t)]|

zyvp(-|t)

’u*(x,t) =E.jz¢[r1 — 0] ‘

Theorem 2: Up to a constant, Lry is equal to

Lem(0) =E zo~po |ug(xe,t) — (21 — 20)|? z
Z1~Pdata
t~U([0,1])

where z; := (1 — t)xg + tzy




Minimizing £cpyv

To minimize

cond(

Lcrm(0) =E wo~po ||ug(ze,t) —u Ty, 2 = :E1,15)||2

Z1~Pdata
t~U([0,1])

(z¢ := (1 —t)xg + tzq)
e sample xg ~ pg: easy!
e sample t ~U([0,1])! easy!

o sample x1 ~ pgata? €asy if we replace by x1 ~ pyata := %2?21 00



minE ao~po [[[ug (s, t) — u

Po

Z1~Pdata
t~U([0,1])

O

Training flow matching

(@, z = 21,1))?]

(zy := (1 —t)xg + txq)

Pdata



Training flow matching

meinIEIivg;po [||u9(:ct,t) - ucond(azt, z= :cl,t)||2] (zy := (1 —t)xg + txq)
£~ ([0.1)
Pdata
Po »
g 1

7* g
Zo



Training flow matching

mink so~po [lug (e, t) — ™ (24, 2 = 21, 1)|1%] (¢ := (1 = t)wo + ta1)
it (0,1])
Pdata
Po
1

@)

= (1 —t)xo +tay

Zo



Training flow matching

minE oo (e t) — ez = o, D) (= (1=t + ta)
t~U((0,1))
Pdata
Do ug (e, t) ~ x1 — 20
/' T
: Lt
= (1 —=t)zo + tay

Zo



Training flow matching

n%inIE zo~po  [||ug(we,t) — un(zy, 2 = :cl,t)||2] (zy := (1 —t)xg + txq)

Z1~Pdata
t~U([0,1])

Pdata

Po




Training flow matching

minE zo~po  [[lug(ay,t) — un(zy, 2 = :cl,t)||2] (zy := (1 —t)xg + txq)
0 T1~Pdata

t~U([0,1])
Pdata

Po  wug(xe,t) = a1 — X0

1

Lo



A small caveat

[ But in practice we replace pgata bY Paata
®
Po xx %
X % xr1 € {33(1)
O
o *ox
%

’x(m}



Remember the ideal “unavailable” velocity?

’u*(x,t) =E. 4t [21 — 20] ‘

Prop: If pgaia is replaced by pyata := % >t 8., the optimal velocity has a closed-form:

20 _ g
11—t

Wz, t) =Y Ni(w,t)
i=1

with A(z, t) = softmax(( T — tx(i/>||2)i/:17_‘_7n) eR"

1
Teend|

[ 4* is now a finite sum! ]

What can we observe for 4* ast — 1?



Flow matching should not work

e because in practice we use pgas. instead of pyata,
the minimizer of Lcry is available in closed-form

e this closed-form @*(z,t) blows up for¢ — 1

o # (a0 ) e
@)

e it can only generate training points!

So why does flow matching generalize? ]

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity,
Bertrand, Gagneux, Massias & Emonet, https://www.arxiv.org/abs/2506.03719


https://www.arxiv.org/abs/2506.03719

Generalization through variance?

ug (e, t) =777

Lepm(0) =E zo~po [ug(ze,t) — (21 — 20)||? 4
it (10217) ~ __——

\__/
Z i o o " \

an z, is on n different segments [z, z; = ()]

instead of regressing against *, we pick one of the ’”(1);;” (w. proba \;(z,t)) in the
sum and regress against it

< in training, uy is forced to learn various directions at the same (z, ¢)

the noise in training may explain imperfect training hence generalization

Ty



Non stochasticity of u*

n
a*(x, 1) = Zp (z=xPx,1) u® (x,1,z = xV)

i=1

a* a*

X X
Common belief What really happens

STOCHASTICITY NON-STOCHASTICITY



Non stochasticity of u*

X 2
u*(xtat) = Z?:l )‘i(xtvt)'LlT(t

6
A~ (0.3,0.4,0.3) %

()
Zo

23



Non stochasticity of u*
~ % _ 3 :t(i)—xt
u ('rht) - Zi:l )‘i(xht)?

1
A= (0.1,0.8,0.1) *

@ o

To

2@
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Non stochasticity of u*

N (2) _
W (1) = o) M@, t) S

)



Non stochasticity for real data
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Issues of intuitions from small dimension
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Alignment of &* and u°"¢ over time for varying image dimensions d on Imagenette

Stochasticity only occurs for very small ¢ as dimension increases

20



Refuting the stochasticity argument: regressing against @*

2
From CCFM(H) =K To~Po ||UQ(:IZt,t) — (:171 — l‘o)”
Z1~Pdata
t~U([0,1])
~x 2
to ACEFM(Q) =E To~Po ||U,9(.’.Ct,t) —Uu (l‘t,t)ll
Z1~Pdata
t~U([0,1])
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Learning with a non-stochastic target does not degrade performance
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Importance of model capacity

———  # samples 4000
# samples 5000
# samples 10000
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Approximation quality

e generalization occurs when approximation degrades

—
o
1

—
o
|

)

e model uy has trouble learning 4* for both t ~ 0.2 and ¢t ~ 0.9

7

Measures of generalization
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Which ¢ matters most?

From a good trained wuy, we build a hybrid model (fixed = € [0,1]):
e on [0, 7]: follow @*

e on [, 1]: follow uy

e 7 =1 means completely following @* (no generalization)

o 7 =0 means completely following uy (good generalization)

23



distance to closest
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generalization arises early!
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Summary

by design, the true velocity in flow matching is available in closed-form

flow matching should not create new images, yet it does

stochasticity is definitely not the reason for it

small and large times appear to matter most

o failure of uy to learn 4* for small ¢ is critical

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity,
Bertrand, Gagneux, Massias & Emonet, https://www.arxiv.org/abs/2506.03719

% A Visual Dive into Conditional Flow Matching, Martin, Gagneux, Emonet, Bertrand & Massias,
ICLR Blogpost 2025, https://dl.heeere.com/cfm/
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