Causality in Models of Computation

Stefan Leue

University of Konstanz
Chair for Software and Systems Engineering

Stefan.Leue@uni-konstanz.de
http://sen.uni-konstanz.de/

Shonan, June 25, 2019

9_)5: - (7))
O T=EEER =t=
S TEATO
O i
Dlewww 1)
engineering

Joint Work with

Georgiana Caltais, University of Konstanz
Florian Leitner-Fischer, ZF
Martin Kolbl, University of Konstanz

Thomas Wies, New York University

]

==

2]
=
)
+—
n
>
2]

ngineering

(0]

Stefan Leue, Shonan, June 2019 2

Causal Analysis

¢ Pearl's Causal Hierarchy (CACM, Vol. 62(3), March 2019)
> association
— how does seeing X change my believe in Y?
> intervention
— what if | do X?
> counterfactuals
— was it X that caused Y?
— what if | had acted differently?
¢ On the "Rightness" of Causal Models
» comply with temporal order of cause and effect
> be well-defined and well-motivated
> be useful

]

FH=HH
f 5
[

o o I I |

Stefan Leue, Shonan, June 2019 3 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Causality Analysis

¢ Actual Causes
> safety evidence at design time
- e.g., 1SO 26262, DO-178C
> fault localization and debugging at development time
— e.g., delta debugging
> failure forensics
—e.g., FTA, WB-analysis
¢ Blame / Responsibility
> not a primary concern here
¢ Causality in Software-based Systems
> assume given System / Software Model
> need to relate to models of Computation

]

e
f E
|

o o I I |

Stefan Leue, Shonan, June 2019 4 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Outline

1. Models of Computation
2. Causation
3. Causality Checking (Dynamic Causal Analysis)
4. Analysis and Repair of Timed Systems (Static Causal Analysis)

5. Conclusion and Further Thoughts

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 5 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Outline

1. Models of Computation

(O]

-

wl_
S
-

(@]

wn

2]
=
)
+—
n
>
2]

Stefan Leue, Shonan, June 2019 6 engineering

Models of Computation

¢ State Machine Models
> semantics as traces (for many models...)

J/ perception_error Normal ErrorData

o) ~O—O)
I/ W calculate Normal idle ErrorData

de <
[IADS_primary.bad]/irajectory_Input(); Normal idle calculate ErrorData
[bad=false /badztrue\l/ /R\/bad=false W

CalculationError Normal idle calculate idle ErrorData

[ErrorData l[
| perception_error/bad=true <) () () < > (:

— event orders matter
¢ Other Models
> process algebras (transition systems, traces)
> timed automata (timed transition systems, timed traces)
> stochastic models (Markov chains, cylinder sets)

systems

osoftware
[=TT

2k
=}
D
D
=
=}
(@)

Stefan Leue, Shonan, June 2019 7

Models of Computation

¢ Characteristics
> closed world
— syntactically closed
— semantically closed
> may contain nondeterminism
— due to abstraction, environment modeling or concurrency

> finite / infinite

% i

Stefan Leue, Shonan, June 2019 8

osoftware

af

systems

>
(9]
9]
=
>
«

Outline

2. Causation

LE @
CiEEEEE=E €
b= i e
Y ||||||||&U)
o >N
w0 2]

Stefan Leue, Shonan, June 2019 9 engineering

Causation

¢ D. Hume, An Enquiry Concerning Human Understanding, 1748:

> "Yet so imperfect are the ideas which we form concerning it, that it is
Impossible to give any just definition of cause, except that it is drawn
from something extraneous and foreign to it."

> "Similar objects are always conjoined with similar."

*1"...therefore, we may define a cause to be an object followed by

another, and where all the objects, similar to the first, are followed by

objects similar to the second.

> |Or, in other words, where, if the first object had not been, the second

never had existed.”

quoted from:
D. Hume, An Enquiry Concerning Human Understanding, edited by E. Steinberg, 2" ed., Hackett, 1993

]

FH=HH
f 5
[

o o I I |

Stefan Leue, Shonan, June 2019 10 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Counterfactual Reasoning

¢ D. Lewis, “Causation”, Journal of Philosophy, 70: 556—-67 (1973)

> causal dependence:
— "Where ¢ (= cause) and e (= effect) are two distinct possible
events, e causally depends on c if and only if,

“if c were to occur e would occur; \

°land if ¢ were not to occur e would not occur."

> often simplified as:

—{ c is causal for e if were ¢ not to occur, then e would not occur,
either

> foundation of common software debugging techniques
— e.g., delta debugging

]

e
f E
|

o o I I |

engineering

software

(2]
=
)
+—
n
>
(2]

= mail

Stefan Leue, Shonan, June 2019 11

Consequences

¢ Need for Alternate Worlds
> what-if analysis
— had there been another course of action (= "world") in which the
gate had been closed before the car entered the crossing, there
would not have been an accident (= a "good" world)
> "good" world
— the effect (property violation) does not occur
> "bad" world
— the effect (property violation) occurs

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 12 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Counterfactual Reasoning

¢ "Naive" Counterfactual Reasoning
> ¢ is causal for e if were ¢ not to occur, then e would not occur either
(Hume, Lewis)
> limitations
— not suitable for complex logical causal relationships
® conjunction
¢ disjunction (over-determination)
® preemption
— no adaptation to models of computation (e.g., transition systems,
traces)
— missing explicit causality of orderings of multiple events
— causality of non-occurrence of events not explicit

]

FH=HH
f 5
[

o o I I |

Stefan Leue, Shonan, June 2019 13 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Halpern / Pearl Structural Equation Model (SEM)

¢ Key ldeas
> exogenous and endogenous variables over arbitrary domains

> events (variable changes) are represented by boolean variables
— specified using structural equations
» computes minimal boolean disjunction and conjunction of causal

events
> causal dependency of events represented by causal networks

> reference
J. Halpern and J. Pearl, “Causes and explanations: A structural-model approach.
Part I. Causes,” The British Journal for the Philosophy of Science, 2005.

i)

A
i
_;.l.

systems

software
i

B
)

)
S
=
S
O
)
=
S
Q

Stefan Leue, Shonan, June 2019 14

Halpern / Pearl Structural Equation Model (SEM)

¢ Actual Causality Conditions
» AC1: ensures that there exists a world where the boolean
combination of causal events ¢ and the effect e occur
> AC2:
1. if at least one of the causal events does not happen, the effect e
does not happen
2. If the causal events occur, the occurrence of other events can
not prevent the effect
» AC3: no subset of the causal events satisfies AC1 and AC2
(minimality)

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 15 engineering

software

(2]
=
)
+—
n
>
(2]

= mail

Causality Analysis

¢ Causality Analysis In Models of Computation
> inspired by Lewis, Halpern-Pearl
> derive actual causes from models
> characteristics
— preemption implicit
— no (explicit) contingencies
— non-determinism
> algorithmic computation of alternate worlds

"bad" worlds "good" worlds

N\

]

FH=HH
f 5
[

o o I I |

engineering

software

(2]
=
)
+—
n
>
(2]

= mail

Stefan Leue, Shonan, June 2019 16

Causality Analysis

¢ Causality Analysis In Models of Computation
> counterfactual analysis based on (Finite) Models of Computation
— dynamic (semantic) causes
® non-deterministic branch choices during execution
* “pad”: train_approaching, car_crossing, gate closing,
train_crossing
* “good": train_approaching, car_crossing, gate_closing,
car_leaving, train_crossing
® length of delay transitions along execution trace

dbServer db dbServer db

initial reqAwaiting initial reqAwaiting

reqCreate 2 reqCreate 2
a() ~ reaQ) >
reqSent reqReceived reqSent reqReceived i
0 reqProcessing 1 reqProcessing 1
serReceived - 16 77777777 ey l 777777777
errol error
LS @
CiEEEEE=E €
’ E 5 1 I! T : %
ol
Stefan Leue, Shonan, June 2019 17 gﬁafﬁe'éring

Causality Analysis

¢ Causality Analysis In Models of Computation
> counterfactual analysis based on (Finite) Models of Computation
— static (syntactic) causes
® synchronizations, timing bounds, ...

dbServer db
dbServer db
mitial reqAwaiting
initial
r @ \ reqAwaiting
reqCreate
reqCreate time req? [1 1 2]

(UV . 4 AT
ser! " rquecelved reqSent reqReceived
e 5 [1,1]
z>=1 x:=0 / _ , 1 y 1
z:=0 X>=1 reqProcessing

regSent ser()

X y:=0 <=
. Received
. dp reqProcessing ™ []
==z “ y<=1 1’2
CITor
z<=2
o n
EFi Sre=le
TS
= HHHA o)
O[] >

Stefan Leue, Shonan, June 2019 18 engineering

Outline

3. Causality Checking (Dynamic Causal Analysis)

et
w_
S
-

(@]

wn

(2]
=
)
+—
n
>
(2]

Stefan Leue, Shonan, June 2019 19 engineering

Causality Checking

¢ Adaptation of Halpern/Pearl SEM [VMCAI 2013] [IJCCBS]

> reachability properties
—e.g., 0=(Tc ACc)

> relate to concurrent computation models
— transition systems

— traces
Ta Ca Gc Tc Go
> consider

— ordering of events and
— non-occurrence
as potential actual causes

» mechanization
— algorithmic implementation

]

FH=HH
f 5
[

o o I I |

engineering

software

(2]
=
)
+—
n
>
(2]

= mail

Stefan Leue, Shonan, June 2019 20

Causality Checking

¢ Execution Traces Define (Alternate) Worlds
> explore state space with depth-first or breadth-first search
» model check reachability of "bad" (hazardous) states
> “bad traces”
— all simple traces that lead to a state violating the property
> “good traces”
— all simple traces that do not reach a state violating the property

2. set of "bad" traces 2. set of "good" traces

(counterexamples)

]

oo |
I

o o I I |

Stefan Leue, Shonan, June 2019 21 engineering

software

N

D
)
9]
>
7]

il

Actual Cause Conditions for Causality Checking

¢ AC1
> all events occurring along a trace that leads to a hazard

— example candidate: o = Ta, Ca, Gf, Cc, Tc

¢ AC2
» AC2.1: if at least one of the presumed causal events does not occur,
the hazard does not occur
— o satisfies this test since ¢' = Ta, Ca, Gc, Tc does not lead to the
hazard

» AC2.2: if the additional occurrenc of another event prevents the
hazard, then the non-occurrence of this event is to be considered

causal
— 0" =Ta, Ca, Gf, Cc, Cl, Tc does not lead to the hazard, therefore

° s " =Ta, Ca, Gf, Cc, —ClI, Tc is causal
°o=Ta, Ca, Gf, Cc, Tcis not causal

¢ AC3
> no subtrace of the candidate trace satisfies AC1 and AC2

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 22 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Actual Cause Conditions for Causality Checking

¢ OC (Order Condition)
> for the same set of events
— one order leads to the hazard
— a different order does not lead to the hazard

> example
— order of events Cc, —Cl, Tc is important for causing hazard

— relative order of Ta and Ca is not important, but they need to
precede the above events

]

FH=HH
f 5
[

o o I I |

engineering

software

(2]
=
)
+—
n
>
(2]

= mail

Stefan Leue, Shonan, June 2019 23

Algorithmics

¢ Sub-Executions
> reduce checks for AC1-AC3 and OC1 to sub-execution tests

— ordered and unordered sub-trace operators
> (proofs in [JCCBS paper)
¢ Implementation Variants
> on-the-fly
— use DFS / BFS on the state space
® store paths in an adequate data structure as you obtain them

* subset graph

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 24 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Causality Checking

¢ Algorithmic Implementation
> based on Breadth-First Search using SPIN model checking

> subset graph construction

Level 10: Ca,Ta,Gc,Tc,TI,Go,Ta,Gf,Cc, Tc

Level 6: [Ta,Ca,6f,Cc,Cl,Tc | [Ta,Gf,Ca,Cc,ClTc | [Ca,Ta,Gfcc,clTc] [Ca,Ta,Ge Te, Tl,Go)

Level 5: |Ta,Ca,Gf,Cc,Tci | Ta,Gf,Ca,Cc,Tc | Ca,Ta,Gf,Cc,Tc | Ca,Ta,Gc,Tc, Tl |

Level 4: Ta,Ca,Gf,Cc Ta,Gf,Ca,Cc Ca,Ta,Gf,Cc Ca,Ta,Gc,Tc
Level 3: Ta,Ca,Gf Ta,Gf,Ca Ca,Ta,Gf Ca,Ta,Gc
Level 2: Ta,Ca Ta,Gf Ca,Ta Ca,Gf] f, Ta f,C
Level 1: Ta Ca Gf

> prefix tree data structure

; ; O @

> parallelization g

— “!““I_"—’

ot >,

Stefan Leue, Shonan, June 2019 25 Sﬁg{‘ﬁe‘érm‘g

Subset Graph

Level 10:

Level 6:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

> nodes represent execution traces

Ca,Ta,Gc,T¢,Tl,Go,Ta,Gf,Cc, Te

Ta,Ca,Gf,Cc,Cl,Tc | |Ta,Gf,Ca,Cc,Cl,Tc

Ca,Ta,Gf,Cc,Cl,Tc

Ca,Ta,Gc,Tc,Tl,Go

\

Ta,Ca,Gf,Cc,Tc Ta,Gf,Ca,Cc,Tc | Ca,Ta,Gf,Cc,Te Ca,Ta,Gc,Tc, Tl
ITa,Ca,Gf,Cc Ta,Gf,Ca,Cc Ca,Ta,Gf,Ccl |Ca,Ta,Gc,Tc
[Ta,Ca,Gf Ta,Gf,Ca Ca,Ta,Gf Ca,Ta,Gcl
Ta,Ca Ta,Gf Ca,Ta Ca,Gf f, Ta f, Ca
Ta Gf

> levels correspond to trace length
> sub- /super-traces on adjoining levels are connected

> color indicates potential causality

Stefan Leue, Shonan, June 2019

26

osoftware

systems

2k
=}
D
D
=
=}

«

Subset Graph

Ca,Ta,Gc,Tc,T1,Go,Ta,Gf,Cc, Tc

— o Green

> good execution trace, all sub-traces are colored green

Ta,Ca,Gf,Cc,Cl,Tc > cannot be causal because they are good traces
¢ Red
Ta,Ca,Gf,Cc,Tc » bad execution trace, all sub-traces are colored green
> considered to be causal
Ta,Ca,Gf,Cc ¢ Black
> good execution trace, at least one sub-trace is colored
Ta,Ca,Gf red

> cannot be causal since they are good traces

) . "
ol - needed when checking condition AC2.2

» bad execution trace, at least one sub-trace colored red

> does not fulfill the minimality constraint AC3 for being
causal

SLelns

(@) (TR P
w%w

Stefan Leue, Shonan, June 2019 27 engineering

Causality Checking

¢ QuantUM Tool [SPIN 2014]
> support for automated safety analysis
— e.g., safety evidence according to DO 178C / 1SO 26262

UML/SysML
Case Tool QuantUM Fault Tree

(IBM Rhapsody, o
Enterprise Architect, (Causallty CheCkmg) Visualization

Artisan Studio,
Papyrus...)

@ SpinCause

SysML bdd, stm

(O]

-

CEEES
S
=

(@]

wn

2]
=
)
+—
n
>
2]

Stefan Leue, Shonan, June 2019 28 engineering

QuantUM Case Study: Automated Driving System

¢ Definition of Safety Goals in Accordance with ISO 26262
[FMICS 2018]

> Safety Goal 1 (SG1)
Ensure that the ADS provides driving information to the vehicle
platform at any time.

> Safety Goal 2 (SG2)
Ensure that the emergency mode is enabled when a failure of
the ADS occurs.

> Safety Goal 3 (SG3)

Ensure that the emergency mode of the ADS is available on
demand for at least t, seconds.

i

==
I E
]

o o I I |

Stefan Leue, Shonan, June 2019 29 engineering

software

(2]
=
)
+—
n
>
(2]

= mail

QuantUM Analysis Results

<«Block, QSyMComponents % «flow» «Block, QSyMComponent: cr__{l
Perception | > Trajectory
«flow»

«allocate» - «allocatey.-~ !

e e T e N
allocater | S EL‘faf{?‘cffﬁ?'%é‘llocate>> X_ECU
ADS_backup @ A
. . 81367948E-11
¢ SG1, Architecture Variant 1, 1.320 - 108
» ADS backup_undetected co-occurs
with Perception CalculationError [Perception Normel]
SR =aay
relatively low probability PercetmnErmr
> insignificant for SG1 violation
I ADS_backu ?_u ndetected I

——

¢ SG1, Architecture Variant 2, 4.306 - 10° e
> ADS backup_ undetected occurs ﬁmmm

unconditionally

> significant impact on SG1 violation DS e o]
. _DaCKUp_Tun
probability =~ £

_) ADS_backup_undetected F=-5 = ¢

> result of alternative software mapping Losberepy gmﬁ%é

Stefan Leue, Shonan, June 2019 30 engine'e'ring

QuantUM Analysis

¢ Single Point Failures

ADS_backup_run
___/

MotionControl_Normal
A

-

> easily recognizable in fault tree
> failure probability for each single point failure easily available

]

2}
=
)
+—
0
>
%2}

5

Stefan Leue, Shonan, June 2019 31 engineering

Symbolic Bounded Causality Checking

¢ Algorithmic Scheme [SPIN 2015]
> computation of good and bad traces using bounded model checking

> iterative model refinement and bound increase

Mg, Mg, Mg,

\

—).%.-).0 Ce . .-)@TC), refine
| >

EOL matrices
S A
e

Y
counterexample / path

Q
5 EOL formulas Yup, = (CanCe)n...A(TanTrc)
C -
Q . Q
Lo N 1 T
=
@]
Q’5 “(Umg, VMg, VoV UMg,) ©
Propert SAT Solver
— < constrain |¢M51 v wMEz ViV wMEn

]

(O]

pN—
SR
E _Ilﬁ_
i

Stefan Leue, Shonan, June 2019 32 engineering

2]
=
)
+—
n
>
2]

= mail

Causality Checking

¢ Further Extensions (In the Works...)
> backward search algorithm to compute all traces
— deal with duplicate states during on-the-fly state space exploration
— ->[ATVA 2019]

> CC for general temporal properties
— any linear time property expressible by omega-regular automata

— requires computation of all lasso-shaped counterexamples
° efficient algortihmic solution?

> fully logical encoding of CC
— enables BDD-based computation of actual causes

]

H:
=
I

-

software
i

(2]
=
)
+—
n
>
(2]

T |

Stefan Leue, Shonan, June 2019 33 engineering

Outline

4. Analysis and Repair of Timed Systems (Static Causal Analysis)

]

HE=H
! i
|

o o I I |

engineering

= mail

software

(2]
=
)
+—
n
>
(2]

Stefan Leue, Shonan, June 2019 34

Timed Reachability Property

"maximum 4 time units between sending request and receiving service"

dbServer db

initial

initial reqAwaiting

regAwaiting

—0 N o
reqCreate
T reqCreate time req? [1 ’ 2]

CQUV R i d v el
ser! " :(e:izecewe reqSent reqReceived
:1 - []
7 >=1 x:=0 /ﬁ x>=1 , roqProcessing 1 y 1

Sent
reqSen \ =0 <
. Received
:: & reqProcessing % []
2==2 “ y <= 1 1) 2
crror

= Timed Diagnostic Trace (Counterexample)

(O]

-

CHEEES
S
-

(@]

wn

2]
=
)
+—
n
>
2]

Stefan Leue, Shonan, June 2019 35 engineering

Analysis and Repair

¢ Questions? [CAV 2019]
> why the property violation?
— what are the actual causes?
> can we repair the timed diagnostic trace?
— what is the repair?
> is the repair admissible in the context of the full NTA?
— what does admissibility mean at all in this setting?

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 36 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Formalization TDT

¢ Logic Representation
> zone constraints not useful due to normalization, optimization
— syntactic structures of constraints in NTA model need to remain
visible
> construction of a strongest postcondition symbolic semantics

reqAwaiting

req?

reqReceived
z:=0 X>=1

y:=0

@ reqProcessing
y<=1

Cra < 2N €y t0, < 2

]

FH=HH
f 5
[

o o I I |

Stefan Leue, Shonan, June 2019 37 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

TDT Constraint System (TDTCS)

¢ TDTCS

Co = /\ cog = 0 (clock initialization)
ceC

A= /\ 6; >0 (time advancement)
j€[0,n]

R = /\ cjr1 =10 (clock resets)
cCreset;,

D= /\ Cjt1 =cj+0; (sojourn time)
cgreset;

1= /\ cj~PBANcj+0;~[3 (location invariants)
(B,~)€ibounds(c,l ;)

g = /\ cj +05 ~ (transition guards)
(B,~)egbounds(c,0;)

L=aQl, N /\ —(@] (location predicates)

11,
Stefan Leue, Shonan, June 2019 38

(O]

-

m_
S
-

(@]

wn

2]
=
)
+—
n
>
2]

engineering

Repair

¢ Non

-Violation of Timed Reachability Property

> for one given trace
» 7w, = ({serReceived}, {z>4}, {error})

dbServer db
initial reqAwaiting
reqCreate
[1,2]
req() >
reqSent reqReceived
reqProcessing [']
ser()
serReceived M
error
[1,1]
Stefan Leue, Shonan, June 2019 39

LB @
= ©
2 ;%
Y T
&&ml:l:llﬂ:li_%
8"‘4"-{‘*‘“4)

)
S
=
S
O
)
=
S
Q

Repair

¢ Bound Variation
» Bound Variation Modified TDTCS (BVTDTCS)
— Location invariant constraints Z%

Crg < 2 F %31 A, +6, < 24 %301
— Transiton guard constraints . G*
Crg T 0, > 1+ %32

T =CoANANAARADANU NI NGOV A ZVY

]

H=H o
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 40 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Repair

¢ Clock Bound Repair Constraint System (CBRCYS)
* there is a model (= assignment of §; values) for 7

(Feis Aj, B2 D)(T™)

> for all concretizations, 7% implies error guard violated
(Vei, ;) (TP = —9)

> force all bound variation variables to 0

bu /\ bv
Fhv . b =0
ci A, (Br,~1)e(ibounds(c;,Aj) U ghounds(ci,\j))

> CBRCS
VP = (s, Ay B2, (TP A (Feis) (TP = ~8)) A F?)
— unsat

— MaxSMT: soft-assert F
° yields non-zero values for some g%

® = repair

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 41 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Repair

¢ Example
» Z3: (define-fun bv x3 1 O Int (- 1))
¢ ,Bbvx,?) =-1
dbServer db

mitial

initial [1 y 1’]1A“'ai‘i“8

4 @ N reqAwaiting
@ reqCreate
T reqCreate timec req? J [)]
CQUV " &Ze)(zi Izid reqSent = reqReceived
5 i ‘ [1.1]

x>=1 reqProcessing
y:=0 x> =
0 reqProcessing SR [1 2]
y <=1 b)
CITor

LB 0
G &
S
Y ||||||||&U)
O i >
n n

Stefan Leue, Shonan, June 2019 42 engineering

Repair

¢ Computing All Minimal Repairs

> iterative scheme
F?¥: bound variation variables forced to 0 in iteration i

3% bound variation variables set to non-zero value in iteration i

Fro = oA N B =0

1

B ”? Y dbServer db
3 exam p I e mitial reqAwaiting
reqCreate
[1,2]
\ 4 reg() [O , O]
reqSent reqReceived
ser) reqProcessing [']
<€
serReceived
[1,2]
error %Fi e g
S
ot >
Stefan Leue, Shonan, June 2019 43 gﬁ“g?ﬁ“e'érmg

TarTar Tool

¢ Architecture
1. UPPAAL model checking on I

2. UPPAAL-TDT to smtlib2

3. Z3: compute repair yielding N
— quantifier elimination on (Ve¢;, 6;)(T° = —®)

4. admissibility check
1. Ltsmin/ Opaal: untimed BAs for N, modified N
2. LearnLib: compare £ (N) = L (N’)

Input Uppaal model |/ 1. Counterexample Creation

‘ ,-J

|. -] . . A~ ﬂ,/‘/a
~> 2.Diagnostic Trace Creation < ——

3. Repair Computaton =~ 5_|teration

AN
.!’ A"

Mol [yes]
< solution? —> 4 Admissibility Check = N
engineering

Stefan Leue, Shonan, June 2019 44

Quantitative Experimental Evaluation

¢ Systematic Fault Seeding
> input: model without property violations

* mutate a single guard/invariant constraint
by {-10, -1, +1, +0.1 Max, +Max}

> check if mutated model violates property
— created 60 TDT by mutation
¢ Results/ TarTar

| Model ||# Seed |# TDT| Typ |Len.|# Rep.|# Adm.|# Sol.| Tor | Tr | SDr | Taam |# Var|# Con.|
repaired db Fig.|2[[35 6]0.005s] 4 12 12 6] 0.217s]0.024s[0.001] 2.331s] 25 40)
CSMA/CD [17[|| 90 6/0.005s| 2 36 16 6| 0.110s][0.024s]0.000] 2.369s| 16 36
Elevator |28 35 310.003s| 1 6 6 3] 0.093s[0.024s[0.000| 2.211s 6 16
Viking 85 310.009s| 18 6 6 3] 0.304s[0.053s[0.000] 2.809s| 120 140
Bando [29] 740 1210.250s| 279 26 24 12]17.490s[6.302s|1.707| 3.847s|1,156]| 2,441
Pacemaker |19] || 240 710.016s| 9 28 16 7] 1.389s]0.174s[0.013] 2.782s| 114 290
SBR |23] 65 14(0.035s| 81 24 16 8111.071s[0.908s]0.219(26.834s| 253| 401
FDDI |29] 100 910.006s| 5 36 30 9] 0.118s]0.031s[0.000| 2.367s| 55 84

> computed at least one repair for 56 (93%) out of 60 TFTs
> computed at least one admissible repair for 54 (90%) of the TDTs

» Ty + T,z depends on Len and #clocks SR [12

¢ =THiTe

B |||||||Ié§

Stefan Leue, Shonan, June 2019 45 é’ﬁé‘fﬁe’érin"é

Outline

5. Conclusion and Further Thoughts

(O]

-

wl_
S
-

(@]

wn

2]
=
)
+—
n
>
2]

Stefan Leue, Shonan, June 2019 46 engineering

Further Thoughts

¢ Causality and Real Time
> counterfactuals
— what are alternate worlds?
— what are closest alternate worlds?
> actual causes
— what are the a.c. for real-time property violations?
® values in a dense domain
> causality checking for real time
— trace based?
— constraint based?
> answers from "first principles"” of causality?

¢ Applicability
> debugging
> fault forensics
> design space exploration

]

FH=HH
f 5
[

o o I I |

Stefan Leue, Shonan, June 2019 47 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Further Thoughts

¢ Dynamic Causal Analysis of Timed Systems

- er o
DY
. e ——.
L a1
—
- 1<6,<2

> establishing a counterfactual trace for delay > 4
— 0, #2V 03#2V 6+, >3

> minimality
— delay value or number of delays to constrain?

]

HE=H
! i
|

o o I I |

Stefan Leue, Shonan, June 2019 48 engineering

software

(2]
=
)
+—
n
>
(2]

Nimsmmil

Further Musings

¢ Repair
> in the context of counterfactual causality
— repair = elimination of all actual causes?

Stefan Leue, Shonan, June 2019 49

i)

A
i
_;.l.

systems

software
i

B
)

)
S
=
S
O
)
=
S
Q

Selected Publications

¢ [SAFECOMP 2011] M. Kuntz, F. Leitner-Fischer and S. Leue: From Probabilistic
Counterexamples via Causality to Fault Trees, Proc. SAFECOMP 2011), Springer LNCS,
2011.

¢ [VMCAI 2013] F. Leitner-Fischer and S.Leue: Causality Checking for Complex System
Models, Proc. VMCAI 2013, Springer LNCS, 2013.

¢ [IJCCBS]F. Leitner-Fischer and S. Leue: Probabilistic Fault Tree Synthesis using Causality
Computation, International Journal of Critical Computer-Based Systems, Vol. 4, No. 2,
pp.119-143, 2013.

¢ [SPIN 2014] F. Leitner-Fischer and S. Leue: SpinCause: A Tool for Causality Checking.
Proc. SPIN 2014, ACM, 2014.

¢ [SPIN 2015] A. Beer, S. Heidinger, U. Kiulhne, F. Leitner-Fischer and S. Leue: Symbolic
Causality Checking Using Bounded Model Checking. Proc. SPIN 2015, Springer LNCS,
2015.

¢ [CREST 2016] G. Caltais, S. Leue, M. Mousavi: (De-)Composing Causality in Labeled
Transition Systems. CREST@ETAPS 2016: 10-24

¢ [FMICS 2018] M. Kdlbl, S. Leue: Automated Functional Safety Analysis of Automated
Driving Systems. FMICS 2018: 35-51.

¢ [ATVA 2019] M. Kolbl and S. Leue: An Efficient Algorithm for Computing Causal Trace
Sets in Causality Checking. In: Proc. ATVA 2019, LNCS, Springer. 2019. To appear.

¢ [CAV 2019] M. Kdlbl, S. Leue, T. Wies: Clock Bound Repair for Timed Traces, Proc. CAV
2019, LNCS, Springer. 2019. To appear.

OF 2
CiEEEEE=E €
E _II!ﬁII&%

PP >
SMM wn

Stefan Leue, Shonan, June 2019 50 engine'e'ring

Universitat = 5
Konstanz

	Causality in Models of Computation
	Joint Work with
	Causal Analysis
	Causality Analysis
	Outline
	Outline
	Models of Computation
	Models of Computation
	Outline
	Causation
	Counterfactual Reasoning
	Consequences
	Counterfactual Reasoning
	Halpern / Pearl Structural Equation Model (SEM)
	Halpern / Pearl Structural Equation Model (SEM)
	Causality Analysis
	Causality Analysis
	Causality Analysis
	Outline
	Causality Checking
	Causality Checking
	Actual Cause Conditions for Causality Checking
	Actual Cause Conditions for Causality Checking
	Algorithmics
	Causality Checking
	Subset Graph
	Subset Graph
	Causality Checking
	QuantUM Case Study: Automated Driving System
	QuantUM Analysis Results
	QuantUM Analysis
	Symbolic Bounded Causality Checking
	Causality Checking
	Outline
	Timed Reachability Property
	Analysis and Repair
	Formalization TDT
	TDT Constraint System (TDTCS)
	Repair
	Repair
	Repair
	Repair
	Repair
	TarTar Tool
	Quantitative Experimental Evaluation
	Outline
	Further Thoughts
	Further Thoughts
	Further Musings
	Selected Publications
	Foliennummer 51

