
Finding Minimum Type Error Sources

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAA

Thomas Wies

joint work with Zvonimir Pavlinovic (NYU) and Tim King (Google)

Type Error Localization

let f x y =
 let yi = int_of_string y in
 x + yi
in
f "1" "2" + f "3" "4"

Type Error Localization

let f x y =
 let yi = int_of_string y in
 x + yi
in
f "1" "2" + f "3" "4"

Error: This expression has type string but
an expression was expected of type int

Type Error Localization

let f x y =
 let yi = int_of_string y in
 x + yi
in
f "1" "2" + f "3" "4"

Error: This expression has type string but
an expression was expected of type int

Who should be blamed for a type mismatch?

Type Error Localization

Type Error Localization

acc must have type unit

Type Error Localization

Error: This expression has type ‘a list but
an expression was expected of type unit

acc must have type unit

Type Error Localization

Error: This expression has type ‘a list but
an expression was expected of type unit

acc must have type unit

???

Type Error Localization

Error: This expression has type unit but an
expression was expected of type (float*float) list

A-ha!

Challenges

• Can we find good heuristics to
rank type error sources by their usefulness?

• Can we find a solution that is
agnostic to the specific type system?

• Can we implement that solution
without substantial compiler modifications?

• Can we provide formal quality guarantees?

Is this not a solved problem by now?

Is this not a solved problem by now?

1986

2019

[M. Wand]

[Duggan & Bent]
[Beaven & Stansifer]

[J. Yang]

[O. Chitil]

2000
[Tip & Dinesh]

[Neubauer & Thiemann]
[Stuckey, Sulzmann, & Wazny]

[Haack & Wells] [H. Gast]

[Lerner, Flower, Grossman, & Chambers]

[Chen & Erwig] [Zhang & Myers] [Pavlinovic, King, & Wies]

[Zhang, Myers, Vytiniotis, & Jones]

Defining the Problem

Error Sources

Error Sources

Error Sources

?

Error Sources

?

Error Source

An error source is a set of program expressions that,
once corrected, yield a well-typed program

Minimum Error Sources

Minimum Error Sources

?

Minimum Error Sources

• Rank sources by some useful criterion
– by assigning weights to expressions

?

Minimum Error Source

An error source with minimum cumulative weight

Ranking Criteria - Example

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

? (1)

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

? (1)

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

? (3)

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

? (5)

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Ranking Criteria - Example

• Prefer error sources that require fewer
code modifications?
– assign weights according to expression's size

Problem Definition
[Pavlinovic, King, Wies OOPSLA'14]

Computing Minimum Error Sources

Given a program and a ranking criterion, find a minimum
error source subject to that criterion

Solving the Problem

Type Inference as Constraint Solving

Type Inference as Constraint Solving

®let = ®o

Type Inference as Constraint Solving

®let = ®o

®x = string

Type Inference as Constraint Solving

®let = ®o

®x = string

®app = fun(®i , ®o)

Type Inference as Constraint Solving

®let = ®o

®x = string

®app = fun(®i , ®o)

®not = ®app

Type Inference as Constraint Solving

®let = ®o

®x = string

®app = fun(®i , ®o)

®not = ®app

®i = ®x

Type Inference as Constraint Solving

®let = ®o

®x = string

®app = fun(®i , ®o)

®not = ®app

®i = ®x

®not = fun(bool, bool)

Type Inference as Constraint Solving

®let = ®o

®x = string

®app = fun(®i , ®o)

®not = ®app

®i = ®x

®not = fun(bool, bool)

program is well-typed

if and only if

constraints are satisfiable

®app = fun(®i , ®o)

Type Inference as Constraint Solving

®let = ®o

®x = string

®not = ®app

®i = ®x

®not = fun(bool, bool)

fun(®i , ®o) = fun(bool, bool)

®app = fun(®i , ®o)

Type Inference as Constraint Solving

®let = ®o

®x = string

®not = ®app

®i = ®x

®not = fun(bool, bool)

®app = fun(®i , ®o)

Type Inference as Constraint Solving

®let = ®o

®x = string

®not = ®app

®i = ®x

®not = fun(bool, bool)

fun(®i , ®o) = fun(bool, bool)

®i = bool

®o = bool

®app = fun(®i , ®o)

Type Inference as Constraint Solving

®let = ®o

®x = string

®not = ®app

®i = ®x

®not = fun(bool, bool)

fun(®i , ®o) = fun(bool, bool)

®i = bool

®o = bool

®app = fun(®i , ®o)

Type Inference as Constraint Solving

®let = ®o

®x = string

®not = ®app

®i = ®x

®not = fun(bool, bool)

fun(®i , ®o) = fun(bool, bool)

®i = bool

®o = bool

string = bool

(:A Ç B) Æ(:B Ç :C) Æ A Æ C

Weighted MaxSAT

• Input: a set of clauses in propositional logic
 + a positive weight for each clause

• Output: satisfiable subset of input clauses with
maximum cumulative weight

 2 1 3 3

(:A Ç B) Æ(:B Ç :C) Æ A Æ C

Weighted MaxSAT

• Input: a set of clauses in propositional logic
 + a positive weight for each clause

• Output: satisfiable subset of input clauses with
maximum cumulative weight

 2 1 3 3
(:A Ç B) Æ(:B Ç :C) Æ A Æ C

Weighted MaxSMT

• Input: a set of clauses in
(quantifier-free) first-order logic
interpreted in a specified theory

• Output: satisfiable subset of input clauses with maximum

cumulative weight

Weighted MaxSMT

f(x)  z Æ

f(y) = z Æ

w = y Æ

(x - y = 0 Ç f(w)  z)

3
1
1
4

+ weights

• Input: a set of clauses in
(quantifier-free) first-order logic
interpreted in a specified theory

• Output: satisfiable subset of input clauses with maximum

cumulative weight

Weighted MaxSMT

f(x)  z Æ

f(y) = z Æ

w = y Æ

(x - y = 0 Ç f(w)  z)

3
1
1
4

f(x)  z Æ

f(y) = z Æ

w = y Æ

(x - y = 0 Ç f(w)  z)

+ weights

• Input: a set of clauses in
(quantifier-free) first-order logic
interpreted in a specified theory

• Output: satisfiable subset of input clauses with maximum

cumulative weight

Weighted MaxSMT

f(x)  z Æ

f(y) = z Æ

w = y Æ

(x - y = 0 Ç f(w)  z)

3
1
1
4

f(x)  z Æ

f(y) = z Æ

w = y Æ

(x - y = 0 Ç f(w)  z)

+ weights

Observation:
Type Checking = Satisfiability Modulo Inductive Data Types

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

Reduction to Weighted MaxSMT

1

< 1

Reduction to Weighted MaxSMT

?

1

< 1

1 1 1 1 0 1

Reduction to Weighted MaxSMT

?

1

< 1

Prototype Implementation

• Supports subset of OCaml (roughly Caml light)

• Evaluated on benchmark suite of more that 700 OCaml
programs

• 15% more accuracy than OCaml's type checker
(even with a rather simplistic ranking criterion)

• Good scalability (a few seconds for several K lines of code)

– achieved by efficiently encoding types of
polymorphic functions [ICFP'15]

First scalable type error localization tool that provides
formal optimality guarantees.

Conclusions

• Practical algorithm for localizing type errors

• Finds the "best" source of a type error

• Abstracts from the definition of "best"

• Works well for Hindley-Milner type systems
(OCaml, SML, Haskell, …)

• Still work to be done for more expressive
type systems (unrestricted polymorphism,
refinement types, …)

Exponential Complexity of
Type Checking for the ML Language Family

let pair f x = f x x in
let f x = pair x in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
let f x = f (f x) in
fun z -> f (fun x -> x) z

I'll reserve a table at Miliways!

Let Polymorphism

let id x = x in

id 1, id true

®id = fun(®x, ®r)

 ®x = ®r

Let Polymorphism

let id x = x in

id 1, id true

®id = fun(®x, ®r)

 ®x = ®r

®app1 = fun(®i1, ®o1)

®i1 = int

®app1 = ®id1

®id1 = fun(®x1, ®r1)

®x1 = ®r1

®app2 = fun(®i2, ®o2)

®i2 = bool

®app2 = ®id2

®id2 = fun(®x2, ®r2)

®x2 = ®r2

Let Polymorphism

let id x = x in

id 1, id true

®id = fun(®x, ®r)

 ®x = ®r

®app1 = fun(®i1, ®o1)

®i1 = int

®app1 = ®id1

®id1 = fun(®x1, ®r1)

®x1 = ®r1

®app2 = fun(®i2, ®o2)

®i2 = bool

®app2 = ®id2

®id2 = fun(®x2, ®r2)

®x2 = ®r2

Constraint size grows exponentially with the nesting depth of lets

Taming Constraint Explosion
[Pavlinovic, King, Wies ICFP'15]

• How do we tame blow-up?

Taming Constraint Explosion
[Pavlinovic, King, Wies ICFP'15]

• How do we tame blow-up?

Taming Constraint Explosion
[Pavlinovic, King, Wies ICFP'15]

• How do we tame blow-up?

Taming Constraint Explosion
[Pavlinovic, King, Wies ICFP'15]

• How do we tame blow-up?

Principal Type Abstraction

Principal Type Abstraction

Principal Type Abstraction

Principal Type Abstraction

• Guard each usage of a function's principal type

Principal Type Abstraction

• Guard each usage of a function's principal type

– with the minimum weight in its defining expression

Principal Type Abstraction

• Guard each usage of a function's principal type

– with the minimum weight in its defining expression

Principal Type Abstraction

• Guard each usage of a function's principal type

– with the minimum weight in its defining expression

Principal Type Abstraction

• Guard each usage of a function's principal type

– with the minimum weight in its defining expression

Incremental Expansion

Incremental Expansion

Incremental Expansion

