## Finding Minimum Type Error Sources

**Thomas Wies** 



joint work with Zvonimir Pavlinovic (NYU) and Tim King (Google)

```
let f x y =
    let yi = int_of_string y in
    x + yi
in
f "1" "2" + f "3" "4"
```

Error: This expression has type string but an expression was expected of type int

Who should be blamed for a type mismatch?

Error: This expression has type string but an expression was expected of type int

```
let f(lst:move list): (float*float) list =
```

```
let rec loop lst x y dir acc =
    if lst = [] then
        acc
    else
        print_string "foo"
in
List.rev
    (loop lst 0.0 0.0 0.0 [(0.0,0.0)])
```

let f(lst:move list): (float\*float) list =



let f(lst:move list): (float\*float) list =



Error: This expression has type 'a list but an expression was expected of type unit

let f(lst:move list): (float\*float) list =



let f(lst:move list): (float\*float) list =

Error: This expression has type unit but an expression was expected of type (float\*float) list

## Challenges

- Can we find good heuristics to rank type error sources by their usefulness?
- Can we find a solution that is agnostic to the specific type system?
- Can we implement that solution without substantial compiler modifications?
- Can we provide formal quality guarantees?

#### Is this not a solved problem by now?

### Is this not a solved problem by now?

| [M. Wand]                              |                 |                              | 1986 |
|----------------------------------------|-----------------|------------------------------|------|
| [Duggan &                              | Bent]           | [Beaven & Stansifer]         |      |
|                                        | [J. Yang]       |                              |      |
| [O. Chitil]                            |                 | [Tip & Dinesh]               | 2000 |
| [Neubauer & Thiema                     | ann] [Stuc      | [Stuckey, Sulzmann, & Wazny] |      |
| [Haack & Wells                         | s] [H. Gast]    |                              |      |
| [Lerner, Flower, Grossman, & Chambers] |                 |                              |      |
| [Chen & Erwig]                         | [Zhang & Myers] | [Pavlinovic, King, & Wies]   |      |
| [Zhang, Myers, Vytiniotis, & Jones]    |                 |                              | 2019 |

### **Defining the Problem**

#### let x = "hi" in not [?]

#### **Error Source**

An error source is a set of program expressions that, once corrected, yield a well-typed program

#### **Minimum Error Sources**

#### **Minimum Error Sources**



### **Minimum Error Sources**

#### let x = "hi" in ?

Rank sources by some *useful* criterion

 by assigning weights to expressions

#### **Minimum Error Source**

An error source with minimum cumulative weight

Prefer error sources that require fewer code modifications?

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

let x = "hi" in not ?(1)

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size



- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
  - assign weights according to expression's size

#### **Problem Definition** [Pavlinovic, King, Wies OOPSLA'14]

#### **Computing Minimum Error Sources**

Given a program and a ranking criterion, find a minimum error source subject to that criterion

### Solving the Problem

# Type Inference as Constraint Solving
$$\alpha_{let} = \alpha_o$$

$$\alpha_{let} = \alpha_o$$

$$\alpha_r = \text{string}$$

$$\alpha_{let} = \alpha_o$$

$$\alpha_x = \text{string}$$

$$lpha_{app} = {\sf fun}(lpha_i \ , \ lpha_o)$$

$$egin{aligned} &lpha_{let} = lpha_{o} \ &lpha_{x} = \mathsf{string} \ &lpha_{app} = \mathsf{fun}(lpha_{i}\,,\,lpha_{o}) \end{aligned}$$

$$lpha_{not} = lpha_{app}$$

$$egin{aligned} &lpha_{let} = lpha_{o} \ &lpha_{x} = \mathsf{string} \ &lpha_{app} = \mathsf{fun}(lpha_{i}\,,\,lpha_{o}) \ &lpha_{not} = lpha_{app} \ &egin{aligned} &lpha_{i} = lpha_{app} \ &lpha_{i} = lpha_{x} \end{aligned}$$

$$\begin{aligned} \alpha_{let} &= \alpha_o \\ \alpha_x &= \mathsf{string} \\ \alpha_{app} &= \mathsf{fun}(\alpha_i \,, \, \alpha_o) \\ \alpha_{not} &= \alpha_{app} \\ \alpha_i &= \alpha_x \end{aligned}$$
$$\begin{aligned} \alpha_{not} &= \mathsf{fun}(\mathsf{bool}, \, \mathsf{bool}) \end{aligned}$$

#### Type Inference as Constraint Solving let x = "hi" in not x $\alpha_{let} = \alpha_o$ $\alpha_r = \text{string}$ program is well-typed $\alpha_{app} = \mathsf{fun}(\alpha_i \ , \ \alpha_o)$ if and only if $\alpha_{not} = \alpha_{app}$ constraints are satisfiable $\alpha_i = \alpha_r$ $\alpha_{not} = fun(bool, bool)$

$$\begin{aligned} \alpha_{let} &= \alpha_o \\ \alpha_x &= \mathsf{string} \end{aligned}$$

$$\alpha_{app} = \mathsf{fun}(\alpha_i \ , \ \alpha_o)$$

$$\alpha_{not} = \alpha_{app}$$

$$\alpha_i = \alpha_x$$

$$\alpha_{not} = \mathsf{fun}(\mathsf{bool},\,\mathsf{bool})$$

# Type Inference as Constraint Solving let x = "hi" in not x $\alpha_{let} = \alpha_o$ $\alpha_r = \text{string}$ $\alpha_{app} = \mathsf{fun}(\alpha_i \ , \ \alpha_o)$ $lpha_{not} = lpha_{app}$ fun( $\alpha_i, \alpha_o$ ) = fun(bool, bool) $\alpha_i = \alpha_x$ $\alpha_{not} = \mathsf{fun}(\mathsf{bool}, \mathsf{bool})$

# Type Inference as Constraint Solving let x = "hi" in not x $\alpha_{let} = \alpha_o$ $\alpha_r = \text{string}$ $\begin{array}{l} \alpha_i = \mathsf{bool} \\ \alpha_o = \mathsf{bool} \end{array}$ $\alpha_{app} = \mathsf{fun}(\alpha_i \ , \ \alpha_o)$ $lpha_{not} = lpha_{app}$ $fun(\alpha_i, \alpha_o) = fun(bool, bool)$ $\alpha_i = \alpha_x$ $\alpha_{not} = fun(bool, bool)$

$$\begin{aligned} \alpha_{let} &= \alpha_o \\ \alpha_x &= \text{string} \\ \alpha_{app} &= \text{fun}(\alpha_i, \alpha_o) \\ \alpha_{not} &= \alpha_{app} \\ \alpha_{not} &= \alpha_x \\ \alpha_{not} &= \text{fun}(\text{bool, bool}) \end{aligned}$$



Input: a set of clauses in propositional logic
 + a positive weight for each clause

$$(\neg A \lor B) \land (\neg B \lor \neg C) \land A \land C$$

$$2 \qquad 1 \qquad 3 \qquad 3$$

• **Output**: satisfiable subset of input clauses with maximum cumulative weight

Input: a set of clauses in propositional logic
 + a positive weight for each clause

$$(\neg A \lor B) \land (\neg B \lor \neg C) \land A \land C$$

$$2 \qquad 1 \qquad 3 \qquad 3$$

• **Output**: satisfiable subset of input clauses with maximum cumulative weight

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specified theory

+ weights

- 3  $f(x) \neq z \land$ 1  $f(y) = z \land$
- 1  $w = y \wedge$
- 4  $(x y = 0 \lor f(w) \neq z)$
- Output: satisfiable subset of input clauses with maximum cumulative weight

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specified theory

+ weights

- 3  $f(x) \neq z \land$
- 1  $f(y) = z \land$
- 1 w=y  $\wedge$
- **4**  $(x y = 0 \lor f(w) \neq z)$
- **Output**: satisfiable subset of input clauses with maximum cumulative weight

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specified theory

+ weights

- 3  $f(x) \neq z \land$
- 1  $f(y) = z \land$
- 1 w=y  $\wedge$
- 4  $(x y = 0 \lor f(w) \neq z)$
- Output: satisfiable subset of input clauses with maximum cumulative weight

#### **Observation**:

Type Checking = Satisfiability Modulo Inductive Data Types

$$\alpha_{let} = \alpha_o \wedge$$

let 
$$\mathbf{x} = "hi"$$
 in not  $\mathbf{x}$   
 $\alpha_{let} = \alpha_o \wedge$   
 $\alpha_x = \text{string } \wedge$ 

let  $\mathbf{x} =$  "hi" in not  $\mathbf{x}$   $\alpha_{let} = \alpha_o \wedge$   $\alpha_x = \text{string} \wedge$  $\alpha_{app} = \text{fun}(\alpha_i, \alpha_o) \wedge$ 

let  $\mathbf{x} =$ "hi" in not  $\mathbf{x}$   $\alpha_{let} = \alpha_o \wedge$   $\alpha_x =$ string  $\wedge$   $\alpha_{app} =$ fun $(\alpha_i, \alpha_o) \wedge$  $\alpha_{not} = \alpha_{app} \wedge$ 

let x = "hi" in not x  $\alpha_{let} = \alpha_o \wedge$  $\alpha_x = \text{string } \wedge$  $\alpha_{app} = \operatorname{fun}(\alpha_i, \alpha_o) \land$  $\alpha_{not} = \alpha_{app} \wedge$  $\alpha_i = \alpha_x \qquad \wedge$ 

let x = "hi" in not x $\alpha_{let} = \alpha_o \wedge$  $\alpha_x = \text{string } \wedge$  $\alpha_{app} = \mathsf{fun}(\alpha_i, \alpha_o) \land$  $\alpha_{not} = \alpha_{app} \wedge$  $\alpha_i = \alpha_x \qquad \wedge$  $\alpha_{not} = fun(bool, bool)$ 

$$\alpha_{let} = \alpha_o \wedge$$

$$\alpha_x = \mathsf{string} \land$$

$$\alpha_{app} = \mathsf{fun}(\alpha_i, \alpha_o) \land$$

$$\alpha_{not} = \alpha_{app} \land$$

$$\alpha_i = \alpha_x$$
 /

$$\alpha_{not} = \mathsf{fun}(\mathsf{bool}, \mathsf{bool})$$

let x = "hi" in not x  $T_{let} \implies (\alpha_{let} = \alpha_o \land$  $T_x \implies \alpha_x = \operatorname{string} \wedge$  $T_{app} \implies (\alpha_{app} = \mathsf{fun}(\alpha_i, \alpha_o) \land$  $T_{not} \implies \alpha_{not} = \alpha_{app} \wedge$  $T_i \implies \alpha_i = \alpha_r$ ))  $\wedge$  $T_{not \ impl} \implies \alpha_{not} = \mathsf{fun}(\mathsf{bool}, \mathsf{bool}) \land$  $T_{let} \wedge T_x \wedge T_{app} \wedge T_{not} \wedge T_i \wedge T_{not \ impl}$ 

let x = "hi" in not x  $T_{let} \implies (\alpha_{let} = \alpha_o \land$  $T_x \implies \alpha_x = \operatorname{string} \wedge$  $T_{app} \implies (\alpha_{app} = \mathsf{fun}(\alpha_i, \alpha_o) \land$  $\infty$  $T_{not} \implies \alpha_{not} = \alpha_{app} \wedge$  $T_i \implies \alpha_i = \alpha_r$ ))  $\wedge$  $T_{not \ impl} \implies \alpha_{not} = \mathsf{fun}(\mathsf{bool}, \mathsf{bool})$  $T_{let} \wedge T_x \wedge T_{app} \wedge T_{not} \wedge T_i \wedge T_{not \ impl}$ < ∞





# **Prototype Implementation**

- Supports subset of OCaml (roughly Caml light)
- Evaluated on benchmark suite of more that 700 OCaml programs
- 15% more accuracy than OCaml's type checker (even with a rather simplistic ranking criterion)
- Good scalability (a few seconds for several K lines of code)
  - achieved by efficiently encoding types of polymorphic functions [ICFP'15]

First scalable type error localization tool that provides formal optimality guarantees.

# Conclusions

- Practical algorithm for localizing type errors
- Finds the "best" source of a type error
- Abstracts from the definition of "best"
- Works well for Hindley-Milner type systems (OCaml, SML, Haskell, ...)
- Still work to be done for more expressive type systems (unrestricted polymorphism, refinement types, ...)

### Exponential Complexity of Type Checking for the ML Language Family

```
let pair f x = f x x in
let f x = pair x in
let f x = f (f x) in
fun z -> f (fun x -> x) z
```

I'll reserve a table at Miliways!

## Let Polymorphism

let id x = x in
id 1, id true

$$\begin{bmatrix} \alpha_{id} = \mathsf{fun}(\alpha_x, \alpha_r) \\ \alpha_x = \alpha_r \end{bmatrix}$$

## Let Polymorphism

$$\begin{aligned} \alpha_{app_1} &= \mathsf{fun}(\alpha_{i_1}, \alpha_{o_1}) \\ \alpha_{i_1} &= \mathsf{int} \\ \alpha_{app_1} &= \alpha_{id_1} \\ \alpha_{id_1} &= \mathsf{fun}(\alpha_{x_1}, \alpha_{r_1}) \\ \alpha_{x_1} &= \alpha_{r_1} \end{aligned}$$

$$\begin{array}{l} \alpha_{id} = \mathsf{fun}(\alpha_x,\alpha_r) \\ \alpha_x = \alpha_r \end{array} \end{array}$$

$$\begin{split} &\alpha_{app_2} = \mathsf{fun}(\alpha_{i_2}, \alpha_{o_2}) \\ &\alpha_{i_2} = \mathsf{bool} \\ &\alpha_{app_2} = \alpha_{id_2} \\ &\alpha_{id_2} = \mathsf{fun}(\alpha_{x_2}, \alpha_{r_2}) \\ &\alpha_{x_2} = \alpha_{r_2} \end{split}$$

## Let Polymorphism



Constraint size grows exponentially with the nesting depth of lets
• How do we tame blow-up?

• How do we tame blow-up?

let first (a, b, \_) = a
let second (a, b, \_) = b

```
let f x =
  let first_x = first x in
  let second_x = int_of_string (second x) in
  first_x + second_x
```

• How do we tame blow-up?

let first (a, b, \_) = a
let second (a, b, \_) = b

```
let f x =
   let first_x = first x in
   let second_x = int_of_string (second x) in
   first_x + second_x
```

• How do we tame blow-up?

let first (a, b, \_) = a
let second (a, b, \_) = b

; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))

; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))  $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$ 

; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))  $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$ 

- ; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))  $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$
- Guard each usage of a function's principal type

- ; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))  $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$
- Guard each usage of a function's principal type
   with the minimum weight in its defining expression

- ; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))  $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$
- Guard each usage of a function's principal type
   with the minimum weight in its defining expression

 $T_{f_2} \implies P_{let f} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$ 

- ; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$ ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ ; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$ f ("1", "2", f ("3", "4", 5))  $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$
- Guard each usage of a function's principal type
   with the minimum weight in its defining expression

 $T_{f_2} \implies P_{let f} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$ 

; first : 
$$\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$$
  
; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$   
; f :  $\forall \alpha_a \operatorname{fun}(\operatorname{int} * \operatorname{string} * \alpha_a, \operatorname{int})$   
f ("1", "2", f ("3", "4", 5))  
 $T_{f_2} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$ 

Guard each usage of a function's principal type
 – with the minimum weight in its defining expression

$$T_{f_2} \implies P_{let f} \implies \gamma = \operatorname{fun}(\operatorname{int} * \operatorname{string} * \beta, \operatorname{int})$$

### **Incremental Expansion**

- ; first :  $\forall \alpha_a, \alpha_b, \alpha_c \; \mathsf{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$
- ; second :  $\forall \alpha_a, \alpha_b, \alpha_c \mathsf{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$

let f x =
 let first\_x = first x in
 let second\_x = int\_of\_string (second x) in
 first\_x + second\_x

### **Incremental Expansion**

- ; first :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$
- ; second :  $orall lpha_a, lpha_b, lpha_c \, \mathsf{fun}(lpha_a st lpha_b st lpha_c, lpha_b)$

```
let f x =
   let first_x = first x in
   let second_x = int_of_string (second x) in
   first_x + second_x
```

### **Incremental Expansion**

; first : 
$$\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_a)$$
  
; second :  $\forall \alpha_a, \alpha_b, \alpha_c \operatorname{fun}(\alpha_a * \alpha_b * \alpha_c, \alpha_b)$ 

f ("1", "2", f ("3", "4", 5))

Second