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Who should be blamed for a type mismatch? 
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an expression was expected of type unit 

acc must have type unit 

??? 
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Error: This expression has type unit but an 
expression was expected of type (float*float) list 

A-ha! 



Challenges 

• Can we find good heuristics to  
rank type error sources by their usefulness? 
 

• Can we find a solution that is  
agnostic to the specific type system? 
 

• Can we implement that solution  
without substantial compiler modifications? 
 

• Can we provide formal quality guarantees? 
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Error Source 
 

An error source is a set of program expressions that, 
once corrected, yield a well-typed program 
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Minimum Error Sources 

 

 

• Rank sources by some useful criterion 
– by  assigning weights to expressions 
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Minimum Error Source 
 

An error source with minimum cumulative weight 
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Ranking Criteria - Example 

• Prefer error sources that require fewer  
code modifications? 
– assign weights according to expression's size 



Problem Definition 
[Pavlinovic, King, Wies OOPSLA'14] 

Computing Minimum Error Sources 
 

Given a program and a ranking criterion, find a minimum 
error source subject to that criterion 



Solving the Problem 
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program is well-typed 
 

if and only if 
 

constraints are satisfiable 
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Type Inference as Constraint Solving 

®let = ®o 

®x = string 

®not = ®app 

®i = ®x 

®not = fun(bool, bool) 

fun(®i , ®o) = fun(bool, bool) 

®i = bool 

®o = bool 

string = bool 
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    + a positive weight for each clause  

 

 

 

 

• Output: satisfiable subset of input clauses with 
maximum cumulative weight 

 

 

 

   2     1   3     3 



(:A Ç B) Æ(:B Ç :C) Æ A Æ C 

Weighted MaxSAT 

• Input: a set of clauses in propositional logic 
    + a positive weight for each clause  

 

 

 

 

• Output: satisfiable subset of input clauses with 
maximum cumulative weight 

 

 

 

   2     1   3     3 
(:A Ç B) Æ(:B Ç :C) Æ A Æ C 



Weighted MaxSMT 



• Input: a set of clauses in 
(quantifier-free) first-order logic 
interpreted in a specified theory 
 
 
 
 

 
• Output: satisfiable subset of input clauses with maximum 

cumulative weight 
 

  
 

Weighted MaxSMT 

f(x)  z      Æ 

f(y) = z Æ 

w    = y Æ 

(x - y = 0 Ç f(w)  z) 

3 
1 
1 
4 

+ weights 



• Input: a set of clauses in 
(quantifier-free) first-order logic 
interpreted in a specified theory 
 
 
 
 

 
• Output: satisfiable subset of input clauses with maximum 

cumulative weight 
 

  
 

Weighted MaxSMT 

f(x)  z      Æ 

f(y) = z Æ 

w    = y Æ 

(x - y = 0 Ç f(w)  z) 

3 
1 
1 
4 

f(x)  z      Æ 

f(y) = z Æ 

w    = y Æ 

(x - y = 0 Ç f(w)  z) 

+ weights 



• Input: a set of clauses in 
(quantifier-free) first-order logic 
interpreted in a specified theory 
 
 
 
 

 
• Output: satisfiable subset of input clauses with maximum 

cumulative weight 
 

  
 

Weighted MaxSMT 

f(x)  z      Æ 

f(y) = z Æ 

w    = y Æ 

(x - y = 0 Ç f(w)  z) 

3 
1 
1 
4 

f(x)  z      Æ 

f(y) = z Æ 

w    = y Æ 

(x - y = 0 Ç f(w)  z) 

+ weights 

Observation:  
Type Checking = Satisfiability Modulo Inductive Data Types 
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Prototype Implementation 

• Supports subset of OCaml (roughly Caml light) 
 

• Evaluated on benchmark suite of more that 700 OCaml 
programs 
 

• 15% more accuracy than OCaml's type checker  
(even with a rather simplistic ranking criterion) 

 
• Good scalability (a few seconds for several K lines of code) 

– achieved by efficiently encoding types of  
polymorphic functions [ICFP'15] 

 

First scalable type error localization tool that provides 
formal optimality guarantees. 



Conclusions 

• Practical algorithm for localizing type errors  

• Finds the "best" source of a type error 

• Abstracts from the definition of "best"  

• Works well for Hindley-Milner type systems 
(OCaml, SML, Haskell, …) 

• Still work to be done for more expressive 
type systems (unrestricted polymorphism, 
refinement types, …) 

 

 

 



Exponential Complexity of  
Type Checking for the ML Language Family 

let pair f x = f x x in 
let f x = pair x in 
let f x = f (f x) in 
let f x = f (f x) in 
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let f x = f (f x) in 
let f x = f (f x) in 
let f x = f (f x) in 
let f x = f (f x) in 
let f x = f (f x) in 
fun z -> f (fun x -> x) z 

I'll reserve a table at Miliways! 
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Constraint size grows exponentially with the nesting depth of lets 
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