
Using SAT Solvers to Prevent Causal
Failures in the Cloud

SHONAN SEMINAR 139: CAUSAL REASONING IN SYSTEMS

RUZICA PISKAC

YALE UNIVERSITY

•Cloud services ensure reliability by redundancy:

-Storing data redundantly

-Replicating service states across multiple nodes

Background

•Examples:

-Microsoft Azure, Amazon AWS, Google, etc.

replicate their data and service states

•Cloud services ensure reliability by redundancy:

-Storing data redundantly

-Replicating service states across multiple nodes

Background

•Examples:

-Microsoft Azure, Amazon AWS, Google, etc.

replicate their data and service states

Can replication systems indeed

help in obtaining reliability?

Background

Background

Data DataData

Background

Data DataData

Background

Data DataData

Summary of the October 22, 2012 AWS Service Event in the US-East Region

We’d like to share more about the service event that occurred on Monday, October 22nd

in the US-East Region. We have now completed the analysis of the events that affected

AWS customers, and we want to describe what happened, our understanding of how

customers were affected, and what we are doing to prevent a similar issue from occurring

in the future.

The Primary Event and the Impact to Amazon Elastic Block Store (EBS)

and Amazon Elastic Compute Cloud (EC2)

Correlated failures resulting from EBS

due to bugs in one EBS server

Real-World Correlated Failures

Summary of the October 22, 2012 AWS Service Event in the US-East Region

We’d like to share more about the service event that occurred on Monday, October 22nd

in the US-East Region. We have now completed the analysis of the events that affected

AWS customers, and we want to describe what happened, our understanding of how

customers were affected, and what we are doing to prevent a similar issue from occurring

in the future.

The Primary Event and the Impact to Amazon Elastic Block Store (EBS)

and Amazon Elastic Compute Cloud (EC2)

Correlated failures resulting from EBS

due to bugs in one EBS server

Real-World Correlated Failures

Summary of the October 22, 2012 AWS Service Event in the US-East Region

We’d like to share more about the service event that occurred on Monday, October 22nd

in the US-East Region. We have now completed the analysis of the events that affected

AWS customers, and we want to describe what happened, our understanding of how

customers were affected, and what we are doing to prevent a similar issue from occurring

in the future.

The Primary Event and the Impact to Amazon Elastic Block Store (EBS)

and Amazon Elastic Compute Cloud (EC2)

Correlated failures resulting from EBS

due to bugs in one EBS server

Real-World Correlated Failures

Existing Approaches

•Cloud providers handle correlated failures via:

- Provenance systems (e.g., Y! [SIGCOMM’14] and ExSPAN

[SIGMOD’10]);

- Troubleshooting systems (e.g., Sherlock [SIGCOMM’07]).

•Solving the problem after outage occurs.

•Prolonged recovery time in complex systems.

•Cannot avoid system downtime

Existing Approaches

•Cloud providers handle correlated failures via:

- Provenance systems (e.g., Y! [SIGCOMM’14] and ExSPAN

[SIGMOD’10]);

- Troubleshooting systems (e.g., Sherlock [SIGCOMM’07]).

•Solving the problem after outage occurs.

•Prolonged recovery time in complex systems.

•Cannot avoid system downtime

Disease prevention is better than diagnosis

-- World Health Organization

Goal of this Project: Preventing Correlated

Failures

• INDaaS: First effort towards this goal [OSDI’14]

• Heading off correlated failures through

Independence-as-a-Service

• This work: an auditing language framework RepAudit

• An auditing language for preventing correlated

failures within the clouds

• INDaaS does pre-deployment recommendations:

- Step1: Automatically collecting dependency data

- Step2: Modeling system stack in fault graph

- Step3: Evaluating independence of alternative

redundancy configurations

Initial Motivation: INDaaS [OSDI’14]

Type Dependency Expression

Network <src=”S” dst=”D” route=”x,y,z”/>

Hardware <hw=”H” type=”T” dep=”x”/>

Software <pgm=”S” hw=”H” dep=”x,y,z”/>

Our defined format

• Reuse existing data collection tools:

- Convert the outputs to uniform format.

- Three types of format: NET, HW and SW.

Dependency Data Collections

Example

NSDMiner

Example

NSDMiner

Example

<src=”S1” dst=”Internet” route=”ToR1,Core1”/>

<src=”S1” dst=”Internet” route=”ToR1,Core2”/>

<src=”S2” dst=”Internet” route=”ToR1,Core1”/>

<src=”S2” dst=”Internet” route=”ToR1,Core2”/>

NSDMiner

<src=”S1” dst=”Internet” route=”ToR1,Core1”/>

<src=”S1” dst=”Internet” route=”ToR1,Core2”/>

<src=”S2” dst=”Internet” route=”ToR1,Core1”/>

<src=”S2” dst=”Internet” route=”ToR1,Core2”/>

NSDMiner

DepDB

NSDMiner

Example

Redundancy configuration fails

...

Server 2 failsServer 1 fails

Redundancy configuration fails

...

AND gate: all the

sublayer nodes fail, the

upper layer node fails

Net failsHW fails SW fails SW fails

Server 2 failsServer 1 fails

Net fails HW fails

Redundancy configuration fails

...

OR gate: one of the sublayer nodes fails,

the upper layer node fails

Net fails

Core1 Agg2Agg1

HW fails

Path1 Path2 HBase HDFS

SW fails SW fails

Server 2 failsServer 1 fails

Net fails HW fails

Redundancy configuration fails

...

...

...... ...

Net fails

Core1 Agg2Agg1

HW fails

Path1 Path2 HBase HDFS

SW fails SW fails

Server 2 failsServer 1 fails

Net fails HW fails

Redundancy configuration fails

...

...

...... ...

1 or 0 1 or 0 1 or 0

Net fails

Core1 Agg2Agg1

HW fails

Path1 Path2 HBase HDFS

SW fails SW fails

Server 2 failsServer 1 fails

Net fails HW fails

Redundancy configuration fails

...

...

...... ...

✔ ✔✘

✘

✘ ✘

✘ ✘

• Hard to express diverse auditing tasks, e.g., identifying risks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Issues in INDaaS

• Hard to express diverse auditing tasks, e.g., identifying risks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Issues in INDaaS

Proposed Solution:

RepAudit – An Auditing Engine

• Hard to express diverse auditing tasks, e.g., identifying risks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Proposed Solution: RepAudit

• Hard to express diverse auditing tasks, e.g., identifying risks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Proposed Solution: RepAudit

• Hard to express diverse auditing tasks, e.g., identifying risks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

- Automatically generate improvement plans

Proposed Solution: RepAudit

Identifying Unexpected Dependencies

Identifying Unexpected Dependencies

INDaaS

data collection

INDaaS

data collection

INDaaS

data collection

RepAudit’s Contributions

INDaaS

data collection

Auditing Language

Auditing Language

Auditing Language

DepDB

Cloud Administrator

Auditing
Engine

Auditing
ProgramRAL-Code

Generator

RepAudit’s Contributions

INDaaS

data collection

A risk group means a set of leaf nodes whose

simultaneous failures lead to the failure of root node.

E1 E1

Risk Groups in Fault Graphs

A risk group means a set of leaf nodes whose

simultaneous failures lead to the failure of root node.

{A2} and {A1, A3} are risk groups

{A1} or {A3} is not risk group

E1 E1

Risk Groups in Fault Graphs

Boolean formula

= E1∧E2

= (A1∨A2)∧(A2∨A3)

Reducing the Problem to SAT

• Extracting risk groups can be reduced to the problem of

finding satisfying assignments for a Boolean formula

• E.g., {A1=0, A2=1, A3=0} represents a risk group

Boolean formula

= E1∧E2

= (A1∨A2)∧(A2∨A3)

Reducing the Problem to SAT

•Problem:

-Standard SAT solver outputs an arbitrary

satisfying assignment

-What we want is top-k minimal risk groups

Min-cost SAT Problem

For a given Boolean formula φ with n variables

x1, x2,..., xn, and a corresponding cost vector,

{ci | ci ≥ 0,1 ≤ i≤ n}, the goal is to find a satisfying

assignment for φ that minimizes the formula:

C = ∑n
i =1 ci xi

• To find ranking by size we use ci = 1

• If we know the failure probability of each component,

we can compute ranking by failure probability

•Using weighted MaxSAT solver

-Satisfiable assignment with the least weights

-Obtain the least C = ∑ ci ∙ wi

-Very fast with 100% accuracy

•We can use Weighted Partial MaxSAT:

-Solve 100 instances less than 100 sec

-Each instance contains ~1000 clauses

- Industry-scale competition

-Pr

Discovering Risk Groups

1 1 1

A1 A2 A3 weight

1 0 0

0 1 0 1

0 0 1

1 1 0 2

1 0 1 2

0 1 1 2

0 0 0

1 1 1 3

•Using weighted MaxSAT solver

-Satisfiable assignment with the least weights

-Obtain the least C = ∑ ci ∙ wi

-Very fast with 100% accuracy

•We can use Weighted Partial MaxSAT:

-Solve 100 instances less than 100 sec

-Each instance contains ~1000 clauses

- Industry-scale competition

-Pr

Discovering Risk Groups

1 1 1

A1 A2 A3 weight

1 0 0

0 1 0 1

0 0 1

1 1 0 2

1 0 1 2

0 1 1 2

0 0 0

1 1 1 3

•Using weighted MaxSAT solver

-Satisfiable assignment with the least weights

-Obtain the least C = ∑ ci ∙ wi

-Very fast with 100% accuracy

•We can use Weighted Partial MaxSAT:

-Solve 100 instances less than 100 sec

-Each instance contains ~1000 clauses

- Industry-scale competition

-Pr

Discovering Risk Groups

1 1 1

A1 A2 A3 weight

1 0 0

0 1 0 1

0 0 1

1 1 0 2

1 0 1 2

0 1 1 2

0 0 0

1 1 1 3

Discovering top-k critical Risk Groups by

Failure Probability

0.1 0.3 0.2

A1 A2 A3 weight

1 0 0

0 1 0 0.3

0 0 1

1 1 0 0.03

1 0 1 0.02

0 1 1 0.06

0 0 0

1 1 1 0.006

• If we can obtain failure probability of

each component:

Discovering top-k critical Risk Groups by

Failure Probability

0.1 0.3 0.2

A1 A2 A3 weight

1 0 0

0 1 0 0.3

0 0 1

1 1 0 0.03

1 0 1 0.02

0 1 1 0.06

0 0 0

1 1 1 0.006

• If we can obtain failure probability of

each component:

Discovering Critical Risk Groups

• Discovering the top-k risk groups with the

highest failure probabilities

- We want to maximize C = "∏ ci ∙ wi“ rather

than C = ∑ ci ∙ wi

- Use (-100)log ci as the cost

•Find out the top-k critical risk groups

through k loop iterations

-Use a ∧ to connect the current formula

and the negation of the found

assignment

Discovering top-k critical Risk Groups

(A1∨A2)∧(A2∨A3) ∧ ¬(¬A1 ∧ A2 ∧ ¬A3)

RAL Primitive: Failure Probability

RAL Primitive: Failure Probability

0.1 0.2 0.15

?

Example: Failure Probability

let Server(“172.28.228.21”) -> s1;

let Server(“172.28.228.22”) -> s2;

let [s1. s2] -> rep;

let FaultGraph(rep) -> ft;

let FailProb(ft, NET) -> prob;

print(prob);

(A1∨A2)∧(A2∨A3) Model Counter 5

5 /(2^3) = 5/8Failure probability =

Model Counter Example

If we assume the

failure probability of

each leaf node is 0.5

(A1∨A2)∧(A2∨A3) Model Counter 5

5 /(2^3) = 5/8Failure probability =

The probability of Leaf

nodes is not 0.5

in practice.

Model Counter Example

Model Counter Example

Model Counter Example

Model Counter Example

Model Counter Example

1/7

Model Counter Example

1/7

We use an approximate

algorithm

1/7 ≈ 1/8 + 1/64 + 1/512

• Hard to express diverse auditing tasks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in

runtime

- Much faster analysis based on SAT solver variants

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Proposed Solution: RepAudit

• Hard to express diverse auditing tasks

- A new domain-specific auditing language

• Fault graph analysis does not support auditing in

runtime

- Much faster analysis based on SAT solver variants

• Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Proposed Solution: RepAudit

Repair

$Server -> 172.28.228.21, 172.28.228.22

goal(failProb(ft)<0.08 | ChNode | Agg3)

Specification:

Repair

$Server -> 172.28.228.21, 172.28.228.22

goal(failProb(ft)<0.08 | ChNode | Agg3)

Specification:

Repair

$Server -> 172.28.228.21, 172.28.228.22

goal(failProb(ft)<0.08 | ChNode | Agg3)

Specification:

Plan 1: Move replica from S1 -> S4

Plan 2: Move replica from S2 -> S4

Repair Engine

Repair

$Server -> 172.28.228.21, 172.28.228.22

goal(failProb(ft)<0.08 | ChNode | Agg3)

Specification:

Plan 1: Move replica from S1 -> S4

Plan 2: Move replica from S2 -> S4

Repair Engine

Repair

Synthesis

•Realistic case studies

•Evaluating expressiveness of our

language

•Comparing fault graph analysis

algorithms

•Evaluating efficiency of repair engine

Evaluation

•Realistic case studies

•Evaluating expressiveness of our

language

•Comparing fault graph analysis

algorithms

•Evaluating efficiency of repair engine

Evaluation

Expressiveness Evaluation

Auditing Tasks RAL
Minimal
cut set

Failure
sampling

Modeling underlying topologies 4 213 224

Extracting and ranking RCGs 5 244 433

Computing failure probability 9 287 562

Ranking components 10 289
No

support

Recommending the most

independent deployments
16 562 1395

Topology A Topology B Topology C

of Core Routers 144 576 1,024

of Agg Switches 288 1,152 2,048

of ToR Switches 288 1,152 2,048

of Servers 3,456 27,648 65,536

Total # of devices 4,176 30,528 70,656

Fault Graph Analysis

Topology A Topology B Topology C

of Core Routers 144 576 1,024

of Agg Switches 288 1,152 2,048

of ToR Switches 288 1,152 2,048

of Servers 3,456 27,648 65,536

Total # of devices 4,176 30,528 70,656

Fault Graph Analysis

Topology C: 70,656 Nodes

A
c
c
u
ra

c
y

Topology C: 70,656 Nodes

A
c
c
u
ra

c
y

Minimal Cut Set Algorithm

Topology C: 70,656 Nodes

A
c
c
u
ra

c
y

INDaaS (105 rounds)

INDaaS (106 rounds)

INDaaS (107 rounds)

Minimal Cut Set Algorithm

Topology C: 70,656 Nodes

A
c
c
u
ra

c
y

INDaaS (105 rounds)

INDaaS (106 rounds)

INDaaS (107 rounds)

RepAudit Minimal Cut Set Algorithm

Topology C: 70,656 Nodes

A
c
c
u
ra

c
y

INDaaS (105 rounds)

INDaaS (106 rounds)

INDaaS (107 rounds)

Our approach is 300x faster than INDaaS,

and offers 100% accurate results.

RepAudit Minimal Cut Set Algorithm

Conclusion

•RepAudit is a language framework for auditing

correlated failures in system runtime:

-Flexible to express diverse auditing tasks

-Accurate and rapid auditing capabilities

-Useful to build new applications (e.g., repair)

•Source code publicly available at:

-http://github.com/ennanzhai/repaudit

http://github.com/ennanzhai/repaudit

