Using SAT Solvers to Prevent Causal
Failures in the Cloud

SHONAN SEMINAR 139: CAUSAL REASONING IN SYSTEMS

RUZICA PISKAC
YALE UNIVERSITY

Background

* Cloud services ensure reliability by redundancy:
- Storing data redundantly
- Replicating service states across multiple nodes

* Examples:
- Microsoft Azure, Amazon AWS, Google, etc.
replicate their data and service states

Background

* Cloud services ensure reliability by redundancy:
- Storing data redundantly
- Replicating service states across multiple nodes

* Examples:
- Microsoft Azure, Amazon AWS, Google, etc.
replicate their data and service states

Can replication systems indeed

help Iin obtaining reliability?

Background

Serverd (S4)
172.28.228.24

o T
Server3 (S3)
172.28.228.23

Server2 (S2
172.28.228.22

Server1 (S1)
172.28.228.21

Agg Switch1 Agg Switch2) @gg Switch3 10003
(Agg1) (Agg2) _ (Agg3) e
10.0.0.1 10.0.0.2 .
AN - Service Deployment
COE‘EOR%")EFD COE‘EOR;“Z")E’Z (network/software stacks)
_
75.142.33.98 75.142.33.99

et 3

Background

erverd4 (S4)
72.28.228.24

>
3

Server2 (S2
172.28.228.22

Server1 (S1)
172.28.228.21
Server3 (S3)
172.28.228.23

Agg Switch1 Agg Switchz) ﬁ\gg Switch3 10003
(Agg1) (Agg2) __(Agg3) o
10.0.0.1 10.0.0.2 :
ANV - Service Deployment
Core ROU"EFD Core Router2) (network/software stacks)
(Core1) (Core2)
75.142.33.98 75.142.33.99

et 3

Server1 (S1)
172.28.228.21

Server2 (S2
172.28.228.22

Agg Switch1
(Agg1)

10.0.0.

Background

erverd4 (S4)

72.28.228.24
Server3 (S3)

I
172.28.228.23

Agg Switch2 (Agg Switch3 10.0.0.3
(Agg2) (Agg3) T

10.0.0.2 Service Deployment

(
Core Router2) (petwork/software stacks)
(Core2)

75.142.33.99

Background

erver4 (S4)

72.28.228.24
Server3 (S3)

Server1 (S1) Server2 (S2

172.28.228.21

I
172.28.228.23

Agg Switch2 (Agg Switch3 10.0.0.3
(Agg2) (Agg3) T

10.0.0.2 Service Deployment

(
Core Router2) (petwork/software stacks)
(Core2)

75.142.33.99

Agg Switch1
(Agg1)
10.0.0.

Real-World Correlated Failures

o on Correlated failures resulting from EBS ;-
webservices” due to bugs in one EBS server

Summary of the October 22, 2012 AWS Service Event in the US-East Region

! We’ d like to share more about the service event that occurred on Monday, October 22nd
In the US-East Region. We have now completed the analysis of the events that affected
' AWS customers, and we want to describe what happened, our understanding of how

. customers were affected, and what we are doing to prevent a similar issue from occurring
¥ in the future.

The Primary Event and the Impact to Amazon Elastic Block Store (EBS)
. and Amazon Elastic Compute Cloud (EC2) |

Real-World Correlated Failures

amazon Cerrelated failures resulting from EBS
websenvices” due to bugs in one EBS server :

| Summary of Rackspace Outage Nov 12th

L We’d like to sh:
In the US-East |

AWS customers On November 12th at 13:51 CST Rackspace experienced an isolated issue in their core network. A
customers were small number of their customers were affected, including REW. The outage lasted about 90
in the future. minutes. In simple terms, a core network switch died and when the traffic failed over to the
secondary switch it also died. Rackspace is investigating the incident to find ways to improve their

2 years ago 1,120 Views

The Primary network and processes to ensure this event is not repeated. REW Sysadmins were immediately
notified of the outage by our monitoring tools and were in constant contact with Rackspace during
and Amazon the outage working to resolve as quickly as possible.

REW apologizes for this outage; we promise that we are putting Rackspace's feet to the fire to
ensure maximum uptime for our customers!

Here is the incident report from Rackspace if you want the techy details:

Real-World Correlated Failures

T

-inal Root Cause Analysis and
mprovement Areas: Nov 18 Azure

Storage Service Interruption
Posted on December 17, 2014 o O @

. Jason Zander, CVP, Microsoft Azure Team

On November 18, 2014, many of our Microsoft Azure customers experienced a service interruption that impacted
Azure Storage and several other services, including Virtual Machines. Following the incident, we posted a blog that
outlined a preliminary Root Cause Analysis (RCA), to ensure customers understood how we were working to
address the issue. Since that time, our highest priority has been actively investigating and mitigating this incident.
Today, we're sharing our final RCA, which includes a comprehensive outline of steps we've taken to mitigate against
this situation happening again, as well as steps we're taking to improve our communications and support response.
We sincerely apologize and recognize the significant impact this service interruption may have had on your
applications and services. We appreciate the trust our customers place in Microsoft Azure, and I want to personally
thank everyone for the feedback which will help our business continually improve.

Root Cause Analysis

On November 18 [PST] (November 19 [UTC]) Microsoft Azure experienced a service interruption that resulted in

intermittent connectivity icciiec with the Aziire Staranes c:nn.'ir-'g in multinle reninne_Nenendent carvicee nrimarily

ng from EBS f—

srver

v 12th

issue in their core network. A
outage lasted about 90

raffic failed over to the

it to find ways to improve their
ysadmins were immediately
contact with Rackspace during

kspace's feet to the fire to

Here is the incident report from Rackspace if you want the techy details:

Existing Approaches

* Cloud providers handle correlated failures via:

- Provenance systems (e.g., Y! [SIGCOMM'14] and ExSPAN
SIGMOD'10));

- Troubleshooting systems (e.g., Sherlock [SIGCOMM'07]).
* Solving the problem after outage occurs.

* Prolonged recovery time in complex systems.
* Cannot avoid system downtime

Existing Approaches

* Cloud providers handle correlated failures via:

- Provenance systems (e.g., Y! [SIGCOMM'14] and ExSPAN
SIGMOD10]);

- Troubleshooting systems (e.g., Sherlock [SIGCOMM'07]).
* Solving the problem after outage occurs.

* Prolonged recovery time in complex systems.
* Cannot avoid system downtime

Disease prevention is better than diagnosis
-- World Health Organization

Goal of this Project: Preventing Correlated
Failures

* INDaaS: First effort towards this goal [OSDI'14]
* Heading off correlated failures through
Independence-as-a-Service

* This work: an auditing language framework RepAudit
* An auditing language for preventing correlated
failures within the clouds

Initial Motivation; INDaaS [OSDI' 14]

* INDaa$S does pre-deployment recommendations:
- Step1:. Automatically collecting dependency data

- Step2: Modeling syste
- Step3: Evaluating inde

m stack in fault graph

rendence of alternative

redundancy configurations

HBase

HDFS

Server4 (S4)
172.28.228.24

Server1 (S1)
172.28.228.21

>
ok

0§
Server3 (S3)
172.28.228.23

Ggg SwitchD Agg SWitChZ) Ggg SWitChBDm 0.0.3
(Agg1) (Agg2) (Agg3) o
10001 \ /10002 Service Deployment
(Co?é gg%eﬂ COE‘(?: gfe%erz (network/software stacks)

75.142.33.98

75.142.33.99

Dependency Data Collections

* Reuse existing data collection tools:
- Convert the outputs to uniform format.
- Three types of format: NET, HW and SW.

Our defined format

Type Dependency Expression

Network <src="S" dst="D" route="x,y,z"/>

Hardware |<hw="H" type="T" dep="x"/>

Software <pgm="S” hw="H" dep="x,y,z"/>

Example

CPU1 CPU2
Disk1 Disk2
TN 2
ToR Switch1
(ToR1)

Core Routert

Core Router2
(Core1)

(Core2)

Internet

Example

{NSDMinerJ
CPU1 CPU2
Disk1 Disk2
TN 2
ToR Switch1
(ToR1)

Core Routert

Core Router2
(Core1)

(Core2)

Internet

{NSDMinerJ ----------------------------------
CPU1 G
hEN DiskA rﬁm
TN L

ToR Switch1

Core Router2
(Core2)

{NSDMinerJ

<src="S1" dst="Internet” route="ToR1,Core1"/>
<src="S1" ast="Internet” route="ToR1,Core2”/>
<src="S2" ast="Internet” route="ToR1,Core1”/>
<src="S2" ast="Internet” route="ToR1,Core2”/>

S1 \ S2

Core Router2
(Core2)

{NSDMinerJ

<src="S1" dst="Internet” route="ToR1,Core1"/>
<src="S1" dst="Internet” route="ToR1,Core2"/>
<src="S2" dst="Internet” route="ToR1,Core1"/>
<src="S2" dst="Internet” route="ToR1,Core2"/>

Core Router Core Router2
(Core2)

{NSDMinerJ

|
|
|
|
|
|
|
|
|
|
|
|
\4

S

S

A

4

CPU1 CPU2
Disk1 Disk2

Redundancy configuration fails

Redundancy configuration fails

o

v

Server 1 fails

A

v

Server 2 fails

AND gafe: all the
sublayer nodes fail, the
upper layer node fails

Redundancy configuration fails

v

Server 1 fails

v

HW fails

Net fails

OR gate: one of-th:e sublayer nodes fails,

SW fails

}
Server 2 fails
|
.......................... >
| —
Net fails | | SW fails || HW fails

the upper layer node fails

Redundancy configuration fails

o

¥ }
Server 1 fails Server 2 fails
|}
¥ # |} y ? }
HW fails | | Net fails SW fails Net fails | | SW fails || HW fails
) ' b ! ' I '
y ! |
Path HBase HDFS
é‘ | |
¢ — e e
Agg CoreT

Redundancy configuration fails

o

¥ }
Server 1 fails Server 2 fails
|}
¥ # |} 4 ? }
HW fails | | Net fails SW fails Net fails | | SW fails || HW fails
) ' b ! ' I '
y | ! |
Path Path?2 HBase HDFS
ﬁ‘ é | |
l l L e
Agg1 Corel Agg?2

o o o
“1or0 &1or0 &1 or0

o

Redundancy configuration fails x

y }
Server 1 fails Server 2 fails
X : X
@ @ — -
HW fails | | Net fails SW fails Net fails SW fails | | HW fails
' | |
) |}
x HBase HDFS
| |

Issues In INDaaS

* Hard to express diverse auditing tasks, e.g., identifying risks
* Fault graph analysis does not support auditing in runtime

* Cannot be used to fix the cascading failure problem

Issues In INDaaS

* Hard to express diverse auditing tasks, e.g., identifying risks

® FaL me

Proposed Solution:
RepAudit — An Auditing Engine

* Car

Proposed Solution: RepAudit

* Hard to express diverse auditing tasks, e.g., identifying risks
- A new domain-specific auditing language

* Fault graph analysis does not support auditing in runtime

* Cannot be used to fix the cascading failure problem

Proposed Solution: RepAudit

* Hard to express diverse auditing tasks, e.g., identifying risks
- A new domain-specific auditing language

* Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

* Cannot be used to fix the cascading failure problem

Proposed Solution: RepAudit

* Hard to express diverse auditing tasks, e.g., identifying risks
- A new domain-specific auditing language

* Fault graph analysis does not support auditing in runtime

- Much faster analysis based on various SAT solvers

* Cannot be used to fix the cascading failure problem

- Automatically generate improvement plans

Identifying Unexpected Dependencies

HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24
& >

Server1 (S1)
172.28.228.21

Server3 (S3)

172.28.228.23
Agg SWItChD Agg SWItChZ) Agg SWitCh3)10 0.03
(Agg1) (Agg2) (Agg3) o
10001 \ / 10002 Service Deployment
Co?é (];!roel:llt)er'D (COEE OR?e%EfZ (network/software stacks)
75.142.33.98 75.142.33.99

C mormet 3

Identifying Unexpected Dependencies

Server1 (S1)
172.28.228.21

HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24
& >

Server3 (S3)
172.28.228.23

Agg Switch
(Agg2)

3)10.0.0.3

2) C\gg Switch
(Agg3)

10.0.0.2

{ Core Router1
(Core1)

75.14R.33.98

Service Deployment

Core Router2 | (petwork/software stacks)

(Core2)
75.142.33.99

Auditing Program

let Server(“172.28.228.21") -> sl

let Server(“172.28.228.22") -> s2

let [sl, s2] -> rep

let FaultGraph(rep) -> ft

let RankRCG(ft, 2, NET, ft) -> ranklist

Auditing Engine | Replig;ation |

—A_

|

|

|

|

I INDaasS Replical Replica2
i| data collection |:> y ¥

|

|

|

HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24
& >

Server1 (S1)
172.28.228.21

Server3 (S3)

172.28.228.23
Adgg SwitchD Agg Switch2) Agg Swi'cch?)10 0.0.3
(Agg1) (Agg2) (Agg3) o
10.0.0.1 10.0.0.2 .
AN Service Deployment
Cozggroe‘{‘)erg C°E§§:’e“2t)e’2 (network/software stacks)
75.142.33.98 75.142.33.99

C mormet 3

Auditing Program

let Server(“172.28.228.21") -> sl

let Server(“172.28.228.22") -> s2

let [sl, s2] -> rep

let FaultGraph(rep) -> ft

let RankRCG(ft, 2, NET, ft) -> ranklist

Auditing Engine [Replication | (Weighted)

¥ MaxSAT solver

—A_ ~

|
1
1
|
,d INDT}aS_ |:> Replical | |Replica2 |:>
1| data collection ¥ ¥
= A \Y)
: ﬂ ﬂ CNF = (A2) A (A1 VvV A3)
1
|

ﬁ |A’1 | |'A2 vl <Weight Vector>
- e omm o o om | e e am mm mm mm o mm mm o Em o mm mm Em Em Em Em Em EE Em Em Em Em Em Em Em Em mm Em mm |
HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24

> >
Server1 (S1)

172.28.228.21

Server3 (S3)

172.28.228.23
Agg SwitchD Agg Switch2) Agg Swi'cch?)10 0.0.3
(Agg1) (Agg2) (Agg3) o
10.0.0.1 10.0.0.2 .
AN Service Deployment
COE%;%‘{‘)E’D C°E§§:’e“2t)e’2 (network/software stacks)
75.142.33.98 75.142.33.99

C mormet 3

Auditing Program

let Server(“172.28.228.21") -> sl e

let Server(“172.28.228.22") -> s2 Auditing Results

let [sl, s2] -> rep 1. {Corel[“75.142.33.98"]}

let FaultGraph(rep) -> ft _ 2. {Aggl[“10.0.0.1”], Agg2[“10.0.0.2"1}
let RankRCG(ft, 2, NET, ft) -> ranklist

Auditing Engine [Replication | (Weighted)

¥ MaxSAT solver

—A_ ~

|
1
1
|
,d INDT}aS_ |:> Replical | |Replica2 |:>
1| data collection ¥ ¥
= A \Y)
: ﬂ ﬂ CNF = (A2) A (A1 VvV A3)
1
|

ﬁ |A’1 | |'A2 vl <Weight Vector>
- e omm o o om | e e am mm mm mm o mm mm o Em o mm mm Em Em Em Em Em EE Em Em Em Em Em Em Em Em mm Em mm |
HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24

> >
Server1 (S1)

172.28.228.21

Server3 (S3)

172.28.228.23
Agg SwitchD Agg Switch2) Agg Swi'cch?)10 0.0.3
(Agg1) (Agg2) (Agg3) o
10.0.0.1 10.0.0.2 .
AN Service Deployment
COE%;%‘{‘)E’D C°E§§:’e“2t)e’2 (network/software stacks)
75.142.33.98 75.142.33.99

C mormet 3

RepAudit’'s Contributions

Auditing Program

let Server(“172.28.228.21") -> sl e

let Server(“172.28.228.22") -> s2 Auditing Results

let [sl, s2] -> rep 1. {Corel[“75.142.33.98"]}

let FaultGraph(rep) -> ft _ 2. {Aggl[“10.0.0.1”], Agg2[“10.0.0.2"]}
let RankRCG(ft, 2, NET, ft) -> ranklist

¥ MaxSAT solver

~A_ PN

: Auditing Engine [Replication | (Weighted)
|
|
[q INDﬁaS_ Replical Replica2
t t
| fata cotiection |:> é ﬁ |:> CNF = (A2) A (A1 V A3)
|
|

ﬁ | Pl'1 | |'A2 vl <Weight Vector>
- eem omm o omm o om | e e e e e o o o o e e e Ee Ee Ee EE EE EE EE o o Em o Em e Em Em Em o4
HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24
> >
Server1 (S1)
172.28.228.21
Server3 (S3)
172.28.228.23
Adgg SwitchD Agg Switch2) Agg Swi'cch?)10 0.0.3
(Agg1) (Agg2) (Agg3) e
10.0.0.1 10.0.0.2 .
AN Service Deployment
Cozigroe‘{‘)erg (‘302252‘56’2 (network/software stacks)
75.142.33.98 75.142.33.99

C mormet 3

Auditing Language

S

I{e)

op

g

lete —+ g Assignment

print{e) Output

51:8 | if(e){S;} else{S;:} | while(e){S}
(a) Statements of RAL.

glellle) | qleioper
i|str

nil | [e1, ..., 4]
<|<|=t=|>|=>
Server(e)

Switch(e)
FaultGraph(e)
RankRCG(ej, ez, m,t)
RankNode(e,m,t)
FailProb(e,t)
RecRep(eq, e, m)

SIZE | PROB
NET | Softw | Hardw

Expression

Real number or string
List

Operator

Initializing server node
Initializing switch node
Generating fault graph
Ranking RCGs
Ranking devices
Failure probability
Recommendation

Ranking metric
Dependency types

(b) Expressions of RAL.

Auditing Language

§ = lete—g Assignment
| print{e) Output
| 51:8 | if(e){S;} else{S;:} | while(e){S}
(a) Statements of RAL.
e = glec|lle)|g|e; opes Expression
C = i|str Real number or string
[{e} == nil]|ler,...,en List
op = <|<|=1=>]|> Operator
q = Server(e) Initializing server node
Switch(e) Initializing switch node
FaultGraph(e) Generating fault graph
RankRCG(ej, ez, m,t) Ranking RCGs
RankNode(e,m,t) Ranking devices
FailProb(e,t) Failure probability
RecRep(eq, e, m) Recommendation
m = SIZE | PROB Ranking metric
t = NET | SoftW | Hardw Dependency types

(b) Expressions of RAL.

Auditing Language
Cloud Administrator

Auditing —>
—— RAL-Code Program —>»

Generator 7 Auditing

A\ Engine

q = Server(e) Initializing server node
Switch(e) Initializing switch node
FaultGraph(e) Generating fault graph
RankRCG(ej, ez, m,t) Ranking RCGs
RankNode(e,m,t) Ranking devices
FailProb(e,t) Failure probability
RecRep(eq, e, m) Recommendation

m ::= SIZE | PROB Ranking metric

t i= NET | SoftW | Hardw Dependency types

(b) Expressions of RAL.

RepAudit’'s Contributions

Auditing Program

let Server(“172.28.228.21") -> sl e

let Server(“172.28.228.22") -> s2 Auditing Results

let [sl, s2] -> rep 1. {Corel[“75.142.33.98"]}

let FaultGraph(rep) -> ft _ 2. {Aggl[“10.0.0.1”], Agg2[“10.0.0.2"]}
let RankRCG(ft, 2, NET, ft) -> ranklist

¥ MaxSAT solver

[

[

1 9

[

I INDaaS _ Replical Replica2 G
1| data collection ¥ ¥
[

1

[

Auditing Engine [Replication | (Weighted)

> CNF = (A2) A (A1 v A3)

ﬁ | Pl'1 | |'A2 vl <Weight Vector>
HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24
> >
Server1 (S1)
172.28.228.21
Server3 (S3)
172.28.228.23
Adgg SwitchD Agg Switch2) Agg Swi'cch?)10 0.0.3
(Agg1) (Agg2) (Agg3) e
10.0.0.1 10.0.0.2 .
AN Service Deployment
Cozigroe‘{‘)erg (‘302252‘56’2 (network/software stacks)
75.142.33.98 75.142.33.99

C mormet 3

Risk Groups in Fault Graphs

Redundancy Deployment

a

Y
El

v
A1

A3

A risk group means a set of leaf nodes whose
simultaneous failures lead to the failure of root node.

Risk Groups in Fault Graphs

Redundancy Deployment

a

Y Y

El

Li Y v

v
A1 A2 A3

A risk group means a set of leaf nodes whose
simultaneous failures lead to the failure of root node.

{A2} and {Al, A3} are risk groups
{A1} or {A3} Is not risk group

Reducing the Problem to SAT

Redundancy Deployment

v

Y

v

Data Source E1

Data Source E2

&

v

A1

A2

A

A3

>

Boolean formula
= E1AE2
= (A1VA2)A(A2VA3)

* Extracting risk groups can be reduced to the problem of
finding satisfying assignments for a Boolean formula

* E.g., {A1=0, A2=1, A3=0} represents a risk group

Reducing the Problem to SAT

Redundancy Deployment

v

Y

v

Data Source E1

Data Source E2

>

&

v

A

A1

A2

A3

Boolean formula
= E1AE2
= (A1VA2)A(A2VA3)

* Problem:

- Standard SAT solver outputs an arbitrary

satisfying assignment

-What we want is top-k minimal risk groups

Min-cost SAT Problem

For a given Boolean formula ¢ with n variables
X1, X5,..., Xp, @Nd @ corresponding cost vector,
{c.| c.2 0,71 <1< n}, the goal Is to find a satisfying
assignment for ¢ that minimizes the formula:

C=2"-1GX

 To find ranking by size we use ¢;= 1

» If we know the failure probability of each component,
we can compute ranking by failure probability

Discovering Risk Groups

* Using weighted MaxSAT solver

- Satisfiable assignment with the least weights
-Obtain the least C = ¢i - w;

- Very fast with 100% accuracy

Redundancy Deployment Al A2 A3 Weight
' 1 0 0
+ . + 0 1 0 1
Data Source E1 Data Source E2 0 0 1
h h 1 1 0 >
v Y 1 0 1 2
A1 A2 A3 0 1 1 >
1 1 1
0 0 0
1 1 1 3

Discovering Risk Groups

* Using weighted MaxSAT solver

- Satisfiable assignment with the least weights
-Obtain the least C = ¢i - w;

- Very fast with 100% accuracy

Redundancy Deployment Al A2 A3 Weight
Y 1 0 0
+ + 0 1 0 1
Data Source E1 Data Source E2 0 0 1
h h 1 1 0 >
v Y 1 0 1 2
A1 A2 A3 0 1 1 >
1 1 1
0 0 0
1 1 1 3

Discovering Risk Groups

* Using weighted MaxSAT solver

- Satisfiable assignment with the least weights
-Obtain the least C = ¢i - w;

- Very fast with 100% accuracy

Redundancy Deployment Al A2 A3 Weight
Y 1 0 0
+ + 0 1 0 1
Data Source E1 Data Source E2 0 0 1
h h 1 1 0 >
: + 1 0 1 2
- - 0 1 1 2
1 1
0 0 0
1 1 1 3

Discovering top-k critical Risk Groups by
Failure Probability

 If we can obtain failure probability of
each component:

Redundancy Deployment AT A2 A3 Weight
! T 0 0
+ + 0 1 0 0.3
Data Source E1 Data Source E2 0 0 T
h ﬁ 1 1 0 0.03
A: +Az + ta@ 1 0 1 0.02
0 l L 0.06
0.1 0.3 0.2 > > >
T l 1 0.006

Discovering top-k critical Risk Groups by
Failure Probability

 If we can obtain failure probability of
each component:

Redundancy Deployment AT A2 A3 Weig ht
! 1 0 0
_a
Data Source E1 Data Source E2 0 0 T
h ﬁ 1 1 0 0.03
A: +,«3\2 + ;\3 1 0 1 0.02
0 l L 0.06
0.1 0.3 0.2 > > >
T l 1 0.006

Discovering Critical Risk Groups

* Discovering the top-k risk groups with the
highest failure probabillities
- We want to maximize C ="[] ¢i - wi" rather
than C =) Gi- wi
- Use (-100)log ci as the cost

Discovering top-k critical Risk Groups
* Find out the top-k critical risk groups

through «loop iterations
- Use a A to connect the current formula

and the negation of the found
assignment

(A1VA)A(A2VA3) A =(=A1 A A2 A 2 A3)

RAL Primitive: Failure Probability

HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24

Server2 (S2

172.28.228.22
Server1 (S1) ‘ Server3 (S3)
172.28.228.21 172.28.228.23
Agg Switch1 Agg Switch2 Agg Switch3 10.0.0.3
(Agg1) (Agg2) (Agg3) o
10.0.0.1 10.0.0.2
ore Router1 Core Router2
(Coret) (Core2)

75. 142 33.98 i i 75.142.33.99

RAL Primitive: Failure Probability

L] L]
HBase HBase Redundancy Deployment ?
st) ¢

Server1 (S1) Server3 (S3) v v
172.28.228.21 172.28.228.23
Ve T T Data Source E1 Data Source E2
(Agg1) 10.0.0.3
10.0.0.1 .0.0.
Core Router1 Core Router2
(Core1) (Core2) v Y ¥ ¥

75.142.33.98 75.142.33.99 A1 A2 A3
‘m 0.1 0.2 0.5

Example: Failure Probabillity

]]
HBase HBase
HDFS HDFs Serverd (S4) let Server(“172.28.228.217) -> s1;

let Server(“172.28.228.227) -> s2;
let [Ss1. S2] -> rep;
let FaultGraph(rep) -> ft;
ooa let FailProb(ft, NET) -> prob;
Core Router1) (Core Router2 print(prob);

(Core1) (Core2)

75.142.33.98 i i 75.142.33.99

Server1 (S1)
172.28.228.21

Server3 (S3)
172.28.228.23

Agg Switch1

Model Counter Example

Redundancy Deployment

v

Y

v

Data Source E1

Data Source E2

o

L]

A

v

Y
A1

A2

(A1VA2)A(A2VA3)

v

A3

If we assume the
fallure probability of
each leaf node is 0.5

fl> [Model CounterJ fl> 5

Failure probability =5 /(273) = 5/8

Model Counter Example

Redundancy Deployment

v

Y

v

Data Source E1

Data Source E2

o

L]

A

Y Y

Y
A1

A2

A3

(A1VA2)A(A2VA3)

The probability of Leaf
nodes is not 0.5
In practice.

fl> [Model CounterJ fl> 5

Failure probability =5 /(273) = 5/8

Model Counter Example

Redundant deployment fails

{ A !
S1 fails S2 fails
A A
v ¥
Agg1 fails | | Caredfails| | Agg2 fails

172 “ 172

Model Counter Example

Redundant deployment fails

=)

{ A !
S1 fails S2 fails
A A
v ¥
Agg1 fails | | Core1 fails| | Agg2 fails
1/2 1/8 1/2

Redundant deployment fails

Y

S1 fails

v

y

S2 fails

Y

A

y

Agg1 fails

Core1 fails

Agg2 fails

1/2

“a

!

1/2

v

m

v

Core1a fails

Core1b fails

Core1c fails

1/2

1/2

1/2

Model Counter Example

Redundant deployment fails

{ A !
S1 fails S2 fails
A A
v ¥
Agg1 fails | | Core1 fails| | Agg2 fails
1/2 1/8 1/2

¥ y ¥ ¥
:: > ails | [Core1 fails \@
| !

Redundant deployment fails
v

{ . }
S1 fails S2 fails

Model Counter Example

Redundant deployment fails

{ A !
S1 fails S2 fails
A A
v ¥
Agg1 fails | |C Is| | Agg2 fails

1/2 1/2

Model Counter Example

Redundant deployment fails

{ A !
S1 fails S2 fails
A A
y v ¥
Agg1 fails | |C Is| | Agg2 fails

We use an approximate
algorithm
1/7 =~ 1/8 + 1/64 + 1/512

1/2

1/2

Proposed Solution: RepAudit

* Hard to express diverse auditing tasks

- A new domain-specific auditing language

* Fault graph analysis does not support auditing in
runtime

- Much faster analysis based on SAT solver variants

Proposed Solution: RepAudit

* Cannot be used to fix the cascading failure problem
- Automatically generate improvement plans

HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24

Server2 (S2)
172.28.228.22

G
(Agg2)

Server1 (S1)
172.28.228.21

Agg Switch1

Server3 (S3)
172.28.228.23

Agg Switch3

10.0.0.3

(Agg1) (Agg3)
10.0.0.1 10.0.0.2
Core Router1 Core Router2
(Core1) (Core2)

75. 142 33.98 i i 75.142.33.99

Repalr

Repalr

L] L]

HBase HBase

Server4 (S4)

HDFS HDFS 172.28.228.24 S e C | fl C a t | O n :
i g P

Server2 (S2)
172.28.228.22

Server1 (S1)
172.28.228.21

Server3 (S3)
172.28.228.23

$Server -> 172.28.228.21, 172.28.228.22

Agg Switchi Agg SWREh3), goal(failProb(ft)<0.08 | ChNode | Agg3)
10.0.0.1
Core Router1 (Core Router2
(Core1) (Core2)

75. 142 33.98 i i 75.142.33.99

Repalr

L] L]

HBase HBase

Server4 (S4)

= Specification:

Server2 (S2)
172.28.228.22

Server1 (S1) Server3 (S3)

bServer -> 172.28.228.21,172.28.228.22

172.28.228.21 172.28.228.23
Agg S Agg Switch3), . goal(failProb(ft)<0.08 | ChNode | Agg3)

10.0.0.1 10.0.0.2

Core Router1 Core Router2
(Core1) (Core2)

75. 142 33.98 i i 75.142.33.99

Repalr

L] L]

HBase HBase

Server4 (S4)

= Specification:

Server2 (S2)
172.28.228.22

Server1 (S1) Server3 (S3)

$Server -> 172.28.228.21, 172.28.228.22

172.28.228.21 172.28.228.23
Agg Switch? Agg SWitch3)., goal(failProb(ft)<0.08 | ChNode | Agg3)

10.0.0.1
Core Router1 Core Router2
(Core1) (Core2)
75. 142 33.98 ; ; 75.142.33.99

[Repair EngineJ

v

Plan 1: Move replica from S1 -> S4
Plan 2: Move replica from S2 -> S4

Repalr

L] L]

HBase HBase

Server4 (S4)

= Specification:

Server2 (S2)
172.28.228.22

Server1 (S1)
172.28.228.21

Agg Switch1
(Agg1)

Server3 (S3)
172.28.228.23

Agg Switch3
(Agg3)

$Server -> 172.28.228.21, 172.28.228.22
wo0s goal(failProb(ft)<0.08 | ChNode | Agg3)

10.0.0.1

Core Router1 Core Router2 *
sl i i (_,C501T22:)33 99
4 : \/ : :
Synthesis [Repalr EnglneJ

v

\ \ Plan 1: Move replica from S1 -> S4
Plan 2: Move replica from S2 -> S4

Evaluation

* Realistic case studies

* Evaluating expressiveness of our
language

* Comparing fault graph analysis
algorithms

* Evaluating efficiency of repair engine

Evaluation

* Evaluating expressiveness of our
language

* Comparing fault graph analysis
algorithms

Expressiveness Evaluation

sampling

Modeling underlying topologies 4 213 224
Extracting and ranking RCGs 5 244 433
Computing failure probability 9 287 562
. No
Ranking components 10 289
support

Recommending the most
Independent deployments

16 562 1395

Fault Graph Analysis

opology A | Topology B | Topology C
of Core Routers 144 576 1,024
of Agg Switches 288 1,152 2,048
of ToR Switches 288 1,152 2,048
of Servers 3,456 217,648 65,536
Total # of devices 4,176 30,528 /0,656

Fault Graph Analysis

opology A Topology C
of Core Routers 144 1,024
of Agg Switches 288 2,048
of ToR Switches 288 2,048
of Servers 3,456 65,536

Total # of devices

4,176

70,656

Topology C: 70,656 Nodes

100
90
80
70
60
50
40
30
20
10

Accuracy

T e e U Ut

""

__

1 2 4 8 18 32 64 128256 1024

Computational time (minutes)

4096

Topology C: 70,656 Nodes

Accuracy

100
90
80
70
60
50
40
30
20
10

Minimal Cut Set Algorithm

———

..

1 2 4 8 16 32 64 128256 1024 4096
Computational time (minutes)

Topology C: 70,656 Nodes

Minimal Cut Set Algorithm

f00f T T — éa

o s :
e S . :
B 7O :
S B0 [:
S B0 :
R R S At St Nt N NN A A A

30 [j """""""" T """]

Q0 | g :

10 '

16 32 64 128256 1024| 4096
utational timg¢ (minutes)

1 2 4 8
Co

INDaaS (10° rounds) INDaaS (107 rounds)

INDaaS (10° rounds)

Topology C: 70,656 Nodes

RepAudit Minimal Cut Set Algorithm
100\‘>< ----- T é)
%) ERN S A S SN S O -

AP S S O S S -

B 7Ot -

S 60} .. -

QO : : : : : : : :

Q DO i :

L 40 oo A
LIt IOt O | O e e
20|t :

10

1 2 4 8/16 32 64 1282568 1024 4096
Computational timg (minutes)

INDaaS (10° rounds) INDaaS (107 rounds)

INDaaS (10° rounds)

Topology C: 70,656 Nodes

RepAudit Minimal Cut Set Algorithm
100\”x ----- N R A S— é} :
00| -

S S OO0 O O O O N N D -

Our approach is 300x faster than INDaas,
and offers 100% accurate results.

Computational timg (minutes)

INDaaS (10° rounds) INDaaS (107 rounds)

INDaaS (10° rounds)

Conclusion

* RepAudit is a language framework for auditing
correlated failures in system runtime:

-Flexible to express diverse auditing tasks
-Accurate and rapid auditing capabillities
-Useful to build new applications (e.qg., repair)

* Source code publicly available at:
- http://github.com/ennanzhai/repaudit

http://github.com/ennanzhai/repaudit

