Root Cause Analysis (RCA) for Future Networks : Technology, Vision and Challenges

Armen Aghasaryan, Bell Labs, Paris-Saclay

Shonan Seminar on Causal Reasoning in Systems 24-27 June, 2019

Management of Future Networks with Root Cause Analysis Introduction

The digital era calls for an unprecedented need of real-time monitoring and Root Cause Analysis (RCA) of complex systems deployed at a global network scale

RCA duality character: RCA is applied to methodically identify and correct the *root causes* of events, as opposed to simply addressing their *symptomatic result*.

RCA impact perspective: "Root cause" may be described as the point in a causal chain where applying a corrective action or intervention would prevent the problem from occurring.

Explain hidden causes

Model-based approach

- Model explains the occurrence, manifestation, and propagation fault situations
- Model learning techniques: interventional / observational / knowledge-based

RCA for Cloudified Networks

High volume of measurements and alarms to be handled at different layers

• Relevant alarm definitions and measurements not trivial to identify

Ambiguity in the interpretation of observations by the human operator

- Single fault may produce multiple alarms, a given alarm can be caused by different fault conditions
- Number of possible failures grows exponentially in the future (terminals IoT, network components 5G)

Delayed understanding of faults leads to negative impact on businesses

RCA for Cloudified Networks Example of a Web app

Symptoms: (web) application performance degradation - generation of infrastructure and application level alarms

Multiple possible underlying causes

- User request peak or permanent increase (App extra demand)
- Underlying resource overload by other tenants (host network interface, host CPU saturated)
- Remote fault propagation via app dependencies (e.g. BD delay)
- Remote host failures, etc.

Fault model-based approach

Setting up the RCA design as a model-based fault diagnosis using a "model inversion" approach

- Fault model replicates the fault behavior of the network
 - representation of initial faults, fault propagation, and alarm generation
 - different types of models representing the interplay between observed variables and hidden states
 - Labelled automata, Petri Nets, Pattern matching, Hidden Markov models, Bayesian Networks, ...
- Diagnosis algorithms inverse the model
 - without reconstructing the global state (to avoid state space explosion)

A inverted model deployed online for run time RCA inference

Logical view of the RCA design process

Framework : from model discovery to fault diagnosis

Automated (fault) model discovery modes

- Interventional learning: stimulus-based App Profiling Sandbox
- Observational learning: lagged correlation analysis & pattern learning
- Self-modelled data/systems, e.g. perf. logs allowing autoextraction of a Bayesian Network structure
- Model Inversion: from symptoms to causes
 - Identification of possible causes provides the most likely explanations given the observed alarms.
 - Using *Bayesian network inference*, tile-based trajectory composition / Petri Net unfolding, Viterbi-like algorithms, etc.

NOKIA

Interventional Learning Stimulus-based App profiling

Stimulus-based App Profiling Sandbox

Goal: Automated fault model discovery

Aproach: Stimulus creation framework for virtualized distributed apps

- Interventional learning of causal Tiles via systematic resource perturbations and their impact analysis
- Algorithm for causal chaining of fault trajectories

Intervention Generation

"Stimulus" creation: system-level fine-tuned control of available computing resources on a given app node (CPU, RAM, Disk I/O, Ntwk I/O)

Discovery of causalities: analysis of the reactions of other app nodes to the current stimulus

Methodical elucidation of causal dependencies

NOKIA

Stimulus-based modeling Correlation analysis

One datasheet per stimulus

Stimulus-based modeling

Causal Modeling: Interpretation of correlations given the stimulus

Current stimulus is on DB : network Bw down

NOKIA

Stimulus-based modeling Tile extraction

Hidden faults (primary or propagated)

- we stimulate (and know) the ground truth
 - Network Bw, CPU, Memory, Disk I/O
 - Input Load

Hidden states – alert enablers

- enable alarm generation
- defined by OpenStack & proprietary meters

Visible events - alarms

- defined on the basis of the existing meters

Stimulus-based modeling Tile extraction : example of stimulus on DB network bandwidth down

resourceType	resourcelD	meterType	CorrCoeff	resourceType	resourceID	meterType		
DB	db_server_v2	network.outgoing.bytes.rate	0.87	WS	WebServer1	network.incoming.bytes.rate		
DB	db_server_v2	network.outgoing.bytes.rate	0.85	WS	WebServer1	cpu_util		

Primary Cause Occurrence: Insufficient CPU

Stimulus-based modeling Diagnosis

• Interventional learning of causal Tiles:

stimulus-reaction transitions (tiles) represent causal relationships between resource stimuli and the reactions at local & remote nodes

• Causality chaining via net unfolding:

the alarm flow guides the on-line composition of reusable tiles into hypothetical fault propagation trajectories

• Fault trajectory inference & diagnosis

Iterative selection of the best explanations (trajectories) using Max likelihood estimation algorithms (Viterbi algorithm variants)

Observational learning Correlation and Causality Analysis with CloudBand (CB) alerts

Causality inference from CB alert logs

Goal: automatic inference of correlation & causality rules from observed alert logs **Approach**:

- Optimized computation of type-based correlations
- Causality inference based on time lagged correlations

Implemented by OpenStack Vitrage

Intervention

generation

Correlation

analysis

Correlation threshold: 0.9
min: top:// resource/mini.pre// bio// resource/mini.pr

Causal

modeling

Symptom

Explanations

Inference of causal relationships

Data transformation pipeline

Causality inference from CB alert logs Correlation Analysis

Datasets from CB:

- e.g. Cloud platform @Naperville: ~ 14K alarms, 1,5K distinct resources

MODULE ERROR

Computing correlations between alert time series:

- identified by <ResType x ResId x AlertType>
- using co-occurence measures: Jaccard, Pearson,...
- filtering according to topological constraints

Corr(x,y) > threshold

, NOKIA

Causality inference from CB alert logs Correlation Analysis (cont.)

Identify frequent co-occurrence patterns in terms of Types

• using Spark computing

Group by Types Re Aggregation functions (counter, mean) Threshold constraints

Inferred set of co-occurrence rules

Sparse representation of the Correlation matrix

Causality inference from CB alert logs Causal analysis

Transform co-occurrence rules into causality rules

Symmetric co-occurrence rules

Lagged correlation Sensitivity tests

on Resource & Alert Type

semantics (if available)

Suggested causality rules

yuntur

Ø

Causality inference from CB alert logs

Causality analysis (examples)

Correlation threshold: 0.9

			reso	urceType	alert	Туре			resourceType	e	alertTyp	е	Co	ount	Mean	
Correlation threshold: 0.7			HOST	r HOST	Г_СЕРН_Р	ROBL	EM	\rightarrow	MACHINE	VM_STO	RAGE_SUBOP	TIMAL_PE	RF. 5	742	0.96	
			HOST	r HOST	r_high_c	PU_L	OAD	\rightarrow	MACHINE	VM_CPU	_SUBOPTIMAL	_PERF.		47	0.98	
		resourceType	HOST	г RESC	URCE_IN	VALID	STATE	~	MACHINE	VM_STO	RAGE_SUBOP	TIMAL_PE	RF.	45	0.95	
но ма но но но но но но но но но но но но но		ноѕт	HOST_	_CEPH_PROBLE	Μ	\rightarrow	MACHINE		VM_STORAG	E_SUBOP	TIMAL_PERF.	23490	0.86			
		MACHINE	FAILED	D_TO_GET_MET	RICS	~	MACHINE		VM_STORAG	E_SUBOP	TIMAL_PERF.	5953	0.72			
		ноѕт	RESOL	JRCE_INVALID_	STATE	~	MACHINE		VM_STORAG	E_SUBOP	TIMAL_PERF.	5525	0.77			
		ноѕт	HOST_	_CEPH_PROBLE	м	~	HOST		RESOURCE_	INVALID_S	TATE	232	0.77			
		ноѕт	HOST_	HIGH_CPU_LO	AD	\rightarrow	MACHINE		VM_CPU_SU	BOPTIMAL	_PERF.	47	0.98			
		ноѕт	RESOL	JRCE_INVALID_	STATE	~	MACHINE		FAILED_TO_	GET_MET	RICS	8	0.73			
	resourceType		CLOUD_NODE	RESOL	JRCE_INVALID_	STATE	~	COMPONE	NT	RESOURCE_	INVALID_S	TATE	6	0.82		
	MACHINE	FAILED_	CLOUD_NODE	METRI	CS_READING_E	RROR	~	MACHINE		FAILED_TO_	GET_MET	RICS	4	0.71		
	ноѕт	HOST_C	CLUSTER_INST.	MODU	LE_ERROR		\rightarrow	CLUSTER_	INST.	SYSTEM_ERF	ROR		1	0.85		
	ноѕт	RESOUR	CE_INVALID_STATE	~	MACHINE	VM_STO	RAGE		AL_PEF	RF. 6608	0.75					
	ноѕт	HOST_C	EPH_PROBLEM	~	HOST	RESOUR	CE_IN	VALID_STA	TE	232	0.77					
	ноѕт	RESOUR	CE_INVALID_STATE	~	MACHINE	FAILED_	_TO_G	ET_METRIC	S	60	0.64					
	HOST HOST_CEPH_PROBLEM HOST HOST_HIGH_CPU_LOAD		EPH_PROBLEM	~	MACHINE	FAILED_	TO_G	ET_METRIC	S	58	0.56					
			IGH_CPU_LOAD	\rightarrow	MACHINE	VM_CPU	SUB	OPTIMAL_P	ERF.	47	0.98					
	CLOUD_NODE	RESOUR	CE_INVALID_STATE	~	COMPONENT	RESOUR	CE_IN	VALID_STA	TE	6	0.82					
	CLOUD_NODE	METRIC	S_READING_ERROR	~	HOST	RESOUR	CE_IN	VALID_STA	TE	2	0.53					
20 © Nokia 2018	CLUSTER_INS.	MODULE	_ERROR	\rightarrow	CLUSTER_INS.	SYSTEM_	_ERRC	DR		2	0.69			N	OK	

Causality inference from CB alert logs Diagnosis

Topology based RCA templates [Nokia CloudBand / OpenStack Vitrage project]

- Expert rules + Inferred Rules + dynamic instantiation of RCA templates => root causes

Inferring propagation scenarios from alarm logs (Radio Acess Network)

Complexity reduction and automated causal analysis

Goal: Reducing the time to dispatch KPI (time to resolve an incident)

Approach: Structural and Causal analysis of the alarm "chaos"

- Using statistical causal inference techniques enforced with exogeneous knowledge, e.g. physical/logical topology, or expertise

Impact: Number of possible explanations reduced by 10K

NSW DI demonstrator on a smartphone

Zooming on an alert propagation scenario

Dataset: large radio access network

- 200K network elements, 1 Million alarms every day (40 000 alarms/ hour), several hours per incident, up to 24 hours in some cases

Structural and Causal analysis of the alarm "chaos"

Using statistical causal inference techniques enforced with exogeneous knowledge injection (e.g. physical/logical topology, or expertise)

- Dynamic correlation graphs based on local/vertical/remote resource relations
- Graph summarization
- Number of possible explanations reduced by 10k

Root Cause Analysis of Future Networks Summary of important challenges

Model-based approaches are challenges by the fact that in real systems models are often unknown!

- Fault injection and interventional approaches to causality discovery *completeness, combinatorics*
- Observational analysis / statistical causal inference *missing sufficient fault data volumes*
- Observational analysis assisted by some structural /topological knowledge *partial topology knowledge*

Problem translation into the event space : adequate anomaly detection mechanisms

- Not specified in complex cloud-based environments
- Need for methods coupling anomaly detection and fault diagnosis

Challenges for Model Learning and Diagnosis

- High-dimensionality
- Dynamically reconfigurable systems, dynamically tracking the changes in the model
- Partially specified and partially observed models (controlled environments)
- Non-causal observation
- High-responsiveness : self-healing control loops

Fault model-based approach Tile-based fault model

Tile-based model

elementary fault behaviors of various node types: conditions, alarm/event, post-conditions>

Petri Net semantics

distributed state / local conditions concurrency

Uncertainty representation

unobserved tiles likelihood measure

Model execution : fault trajectory building & diagnosis

Max likelihood estimation / Viterbi algorithm variants Stream-based puzzle assembling using tiles (Spark Streaming)

Trajectory building

Model discovery in controlled environments Stimulus-based modeling for Cloud : Open questions

Verification & testing of derived tiles

• Model properties, coverage of real system faults and behaviors

Automatic learning of "complex" behaviors

- Forward propagation "Conflict" behaviors,
- "Synchronization" behaviors induced by the co-occurrence of multiple faults

Diagnosis algorithms under non-causal ordering of observed events

• On-line vs batch processing with sliding window, distribution vs stream analytics

Dealing with dynamically reconfigurable systems, e.g. auto-scaling resources

- Relevance of the tile model learned in the Sanbox => asymptotic analysis of correlations, parametric tile model ?
- (distributed) diagnosis algorithms for reconfigurable models (changing the number of resources)

Dealing with partially modeled systems, e.g. unknown types of resources (not covered by the model)

• On-line micro-stimulus approach, ...?

