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Management of Future Networks with Root Cause Analysis
Introduction

The digital era calls for an unprecedented need of real-time monitoring and Root
Cause Analysis (RCA) of complex systems deployed at a global network scale

RCA duality character: RCA is applied to methodically identify and correct the
root causes of events, as opposed to simply addressing their

RCA impact perspective: “Root cause” may be described as the point in a causal ~ Bxplain
chain where applying a corrective action or intervention would prevent the hidden causes
problem from occurring.

Model-based approach O \S) o N

» Model explains the occurrence, manifestation, and propagation 4 VISIbIe plane

fault situations
hldden plane
’.\;.ﬂ\ s

* Model learning techniques: tile1
interventional / observational / knowledge-based tile2

tile4
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RCA for Cloudified Networks

Perf. degradation

Response

App
Layer
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Hardware -
Resource
Layer

High volume of measurements and alarms to be handled at different layers
* Relevant alarm definitions and measurements not trivial to identify

Ambiguity in the interpretation of observations by the human operator
* Single fault may produce multiple alarms, a given alarm can be caused by different fault conditions
* Number of possible failures grows exponentially in the future (terminals - loT, network components - 5G)

Delayed understanding of faults leads to negative impact on businesses
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RCA for Cloudified Networks
Examp|e Of a W@b app App Delay alarm Host Bw alarm

Request rate alarm Host CPU alarm

DB Delay alarm
Host Bw alarm

Host CPU alarm Page /O rate alarm

App Extra demand

Host CPU
overloaded
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DB Extra demand

Host CPU
overloaded

Host NIC

Host NIC saturated
saturated Observable behavior : alarms Host B
Host A Hidden Behavior : root causes .

Secondary causes O
Symptoms: (web) application performance degradation - generation of infrastructure and application level alarms

Multiple possible underlying causes

- User request peak or permanent increase (App extra demand)

- Underlying resource overload by other tenants (host network interface, host CPU saturated)
- Remote fault propagation via app dependencies (e.g. BD delay)

- Remote host failures, etc.
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Fault model-based approach

Setting up the RCA design as a model-based fault
diagnosis using a “model inversion” approach

» Fault model replicates the fault behavior of the
network

- representation of initial faults, fault propagation, and alarm
generation

- different types of models representing the interplay
between observed variables and hidden states

* Labelled automata, Petri Nets, Pattern matching, Hidden Markov
models, Bayesian Networks, ...

« Diagnosis algorithms inverse the model

- without reconstructing the global state (to avoid state
space explosion)
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Framework : from model discovery to fault diagnosis

* Automated (fault) model discovery modes

Model discovery modes Model inversion
- Interventional learning: stimulus-based App Profiling
Sandbox Controlled Uncontrolled
environments environments

- Observational learning: lagged correlation analysis &

pattern learning ‘
Self-modeled

1

I

|

I

:

1

- Self-modelled data/systems, e.g. perf. logs allowing auto- !
extraction of a Bayesian Network structure Black-box i
I lsystems 1

1

v

* Model Inversion: from symptoms to causes liiErericn Observational e s
- Identification of possible causes - provides the most Learning learning Inference
likely explanations given the observed alarms. ¢ ¢ ¢ ¢
- Using Bayesian network inference, tile-based trajectory Intervention Correlation Causal Symptom
composition / Petri Net unfolding, Viterbi-like algorithms,  generation analysis modeling Explanations

etc.
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Interventional Learning
Stimulus-based App profiling

Intervention Correlation Causal Symptom
generation analysis modeling Explanations
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Stimulus-based App Profiling Sandbox

Goal: Automated fault model discovery
Aproach: Stimulus creation framework for virtualized distributed

apps

Interventional learning of causal Tiles via systematic resource perturbations
and their impact analysis

- Algorithm for causal chaining of fault trajectories

Intervention Generation

“Stimulus” creation: system-level fine-tuned control of available
computing resources on a given app node (CPU, RAM, Disk I/0, Ntwk 1/0)

Discovery of causalities: analysis of the reactions of other app nodes
to the current stimulus
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Stimulus-based modeling
Correlation analysis

One datasheet per stimulus

| P — p— H [r—
g | N i ™
g ]M‘.A Iy izlzlwl’)w‘yﬁ § 1 I ‘
g,‘:w:h g}m T | g:lmw o am ]

‘,’.um.u‘ M ol {
e NEEE -

LB-response-time

z WebServerl

L

]
09:40 09:41

WordPress_LB

ity

0
09:40 0941 nfidential

00

w
E
=
i 1000
(o]
Q
wv
e

X
)
b

w
o

10 © Nokia 2018

WS$1

WS2 LB hosts

DBserver-v2 DB
WebServerl

WebServer2
WordPress-LB
blacksabbath
deeppurple W51
pinkfloyd

WS2

LB

hosts

Positive correlations

Negative correlation

NOKIA



o =Ll
Stimulus-based modeling Y BB €

Causal Modeling: Interpretation of correlations given the stimulus
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Stimulus-based modeling
Tile extraction

Hidden faults (primary or propagated)

- we stimulate (and know) the ground truth

«  Network Bw, CPU, Memory, Disk I/0
* Input Load

Hidden states — alert enablers

- enable alarm generation
- defined by OpenStack & proprietary meters

Visible events - alarms

- defined on the basis of the existing meters
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O network.outgoing.bytes.rate
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Stimulus-based modeling
Tile extraction : example of stimulus on DB network bandwidth down

resourceType resourcelD meterType CorrCoeff resourceType resourcelD meterType
DB db_server v2 network.outgoing.bytes.rate 0.87 WS WebServer1 network.incoming.bytes.rate
DB db_server v2 network.outgoing.bytes.rate 0.85 WS WebServer1 cpu_util
Primary Cause Occurrence: Local Propagation: Alarm(out.bytes.rate W)
Network BW down Directly impacted meters

NETWN ' out.bytes.rate®

E m out.bytes.rate®

out.packet.rate®

- + - + ; *
Primary Cause Occurrence: Local Propagation:
Insufﬂoe_nt C_PU Directly observed meters
CPUN CPUN cpu_utilN
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Stimulus-based modeling
Diagnosis

Interventional learning of causal Tiles:

stimulus-reaction transitions (tiles) represent causal
relationships between resource stimuli and the reactions
at local & remote nodes

+ Causality chaining via net unfolding:

the alarm flow guides the on-line composition of reusable
tiles into hypothetical fault propagation trajectories

* Fault trajectory inference & diagnosis

Iterative selection of the best explanations (trajectories)
using Max likelihood estimation algorithms (Viterbi
algorithm variants)
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Observational learning
Correlation and Causality Analysis with CloudBand (CB) alerts

Intervention Correlation Causal Symptom
generation analysis modeling Explanations
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Intervention Correlation Causal Symptom
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Causality inference from CB alert logs 54 u)JiJ ard
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Goal: automatic inference of correlation & causality rules from observed alert logs

Approach:
- Optimized computation of type-based correlations
- Causality inference based on time lagged correlations

THE PLATFORM FOR NFV

CLOUDBAND™ e e —
Carrelation thresheld: 0.9 HOST_CEPH_FROKLEN b MACHIE VALSTORAGE SUCFTIMAL PERT. 5743
o, e B Emom TE mmEnn
Implemented by OpenStack Vitrage ,ﬁ ooy [ el v
2 e S et G
Presented at OpenStack Summit 2017, Boston P e R Mot e M
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Causality inference from CB alert logs |
Correlation Analysis

MODULE_ERROR
SYSTEM_ERROR
RESOURCE_INVALID_STATE
FAILED_TO_GET_METRICS
Datasets frO m CB: METRICS_READING_ERROR

CLUSTER_INSTANCE HOST_CEPH_PROBLEM
CLOUD_NODE

- e.g. Cloud platform @Naperville: ~ 14K alarms, 1,5K distinct resources OBJECT STORAGE NODE IS RIS @A)
T VM_STORAGE_SUBOPT_PERF
st VM_CPU_SUBOPTIMAL_PERF
EE VM_CPU_THRESHOLD
resourceType | resourceld alertType activeTimestamp| updateDate inactiveTimestamp
MACHINE 12345 VM_STORAGE_SUBOPTIMAL_PERF|05/08/2017 08:09 | 05/08/2017 08:20 | 05/08/2017 08:30

Corr(x,y) > threshold
1: P

Alert activation state
Computing correlations between alert time series: "
- identified by <ResType x Resld x AlertType>

- using co-occurence measures: Jaccard, Pearson,...

30

40 b

50
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80

- filtering according to topological constraints

90 [

time

X
ResType x Resld x AlertType

0 20 a0 60 80

ResType x Resld x AlertType

y
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Causality inference from CB alert logs
Correlation Analysis (cont.)

Identify frequent co-occurrence patterns in terms of Types

* using Spark computing

ResourceResource Alert
Type Id Type

Corr.
Coeff..

ResourceResource Alert
Type

Id  Type Group by Types

Aggregation functions
(counter, mean)

+

Threshold constraints

X

Sparse representation of the Correlation matrix
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Causality inference from CB alert logs
Causal analysis

Transform co-occurrence rules into causality rules

Symmetric co-occurrence rules

R Alert Agg. R Alert . e .
Type . Type Vace Type  Tyee Lagged correlation Sensitivity
I tests

[ ] '

]

I +

expert knowledge
on Resource & Alert Type
semantics (if available)
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Suggested causality rules

Resourc Alert Resourc Alert Agg.
e Type e Type Value
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Maintain unresolved co-
occurrences without
causality
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Causality inference from CB alert logs

Causality analysis (examples)
Correlation threshold: 0.9

resourceType alertType resourceType alertType Count Mean
A . HOST HOST_CEPH_PROBLEM —>  MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 5742  0.96
Correlation threshold: 0.7 HOST HOST_HIGH_CPU_LOAD —>  MACHINE VM_CPU_SUBOPTIMAL_PERF. 47 0.98
resourceType __|HOST RESOURCE_INVALID_STATE ~ _ MACHINE VM_STORAGE_SUBOPTIMAL _PERF. 45  0.95
HOST HOST_CEPH_PROBLEM —> MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 23490 0.86
IMACHINE FAILED_TO_GET_METRICS ~  MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 5953 0.72
HOST RESOURCE_INVALID_STATE ~  MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 5525 0.77
HOST HOST_CEPH_PROBLEM ~ HOST RESOURCE_INVALID_STATE 232 0.77
Correlation threshold: 0.5 HOST HOST_HIGH_CPU_LOAD —> MACHINE VM_CPU_SUBOPTIMAL_PERF. 47 0.98
HOST RESOURCE_INVALID_STATE ~  MACHINE FAILED_TO_GET_METRICS 8 0.73
resourceType CLOUD_NODE RESOURCE_INVALID_STATE ~  COMPONENT RESOURCE_INVALID_STATE 6 0.82
IMACHINE FAILED_|CLOUD_NODE METRICS_READING_ERROR ~  MACHINE FAILED_TO_GET_METRICS 4 0.71
HOST HOST_C|CLUSTER_INST. MODULE_ERROR —> CLUSTER_INST.  SYSTEM_ERROR 1 0.85
HOST RESOURCE_INVALID_STATE ~ MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 6608 0.75
HOST HOST_CEPH_PROBLEM ~ HOST RESOURCE_INVALID_STATE 232 0.77
HOST RESOURCE_INVALID_STATE ~ MACHINE FAILED_TO_GET_METRICS 60 0.64
HOST HOST_CEPH_PROBLEM ~ MACHINE FAILED_TO_GET_METRICS 58 0.56
HOST HOST_HIGH_CPU_LOAD —> MACHINE VM_CPU_SUBOPTIMAL_PERF. 47 0.98
CLOUD_NODE RESOURCE_INVALID_STATE ~ COMPONENT RESOURCE_INVALID_STATE 6 0.82
CLOUD_NODE METRICS_READING_ERROR ~ HOST RESOURCE_INVALID_STATE 2 0.53
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Causality inference from CB alert logs .
Diagnosis

Topology based RCA templates [Nokia CloudBand / OpenStack Vitrage project]

- Expert rules + Inferred Rules + dynamic instantiation of RCA templates => root causes

20044
AlertX,

10048
Machine

attached

causes

Dynamic instantiation of RCA templates
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Inferring propagation scenarios from alarm logs (Radio Acess Network)

Complexity reduction and automated causal analysis ‘

Goal: Reducing the time to dispatch KPI (time to resolve an incident)

Approach: Structural and Causal analysis of the alarm “chaos” :
- Using statistical causal inference techniques enforced with exogeneous knowledge, !
e.g. physical/logical topology, or expertise :

Y

Impact: Number of possible explanations reduced by 10K
NSW DI demonstrator on a
. smartphone ¥
Alarm chaos

Reduced space Zooming on an alert propagation scenario

“Alarm indication signal received”
“User plane failure”




Intervention Correlation Causal Symptom

generation analysis modeling Explanations
Y N

Inferring propagation scenarios from alarmlogs (2) 2 -5 0 - s
S Oe O
Complexity reduction and automated causal analysis
Dataset: large radio access network
- 200K network elements, 1 Million alarms every day (40 000 alarms/ hour), several remote

hours per incident, up to 24 hours in some cases

i J
@

BTS-PQ6

§ 'X Local
BCF-D NN
w/vertl cal

BCF-lwD

BCF-4vE

Structural and Causal analysis of the alarm “chaos”

Using statistical causal inference techniques enforced with exogeneous
knowledge injection (e.g. physical/logical topology, or expertise)

- Dynamic correlation graphs based on local/vertical/remote resource relations
- Graph summarization

- Number of possible explanations reduced by 10k
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Root Cause Analysis of Future Networks
Summary of important challenges

Model-based approaches are challenges by the fact that in real systems models are often unknown!
*  Fault injection and interventional approaches to causality discovery - completeness, combinatorics
+  Observational analysis / statistical causal inference - missing sufficient fault data volumes

*  Observational analysis assisted by some structural /topological knowledge - partial topology knowledge

Problem translation into the event space : adequate anomaly detection mechanisms
*  Not specified in complex cloud-based environments

*  Need for methods coupling anomaly detection and fault diagnosis

Challenges for Model Learning and Diagnosis

*  High-dimensionality

*  Dynamically reconfigurable systems, dynamically tracking the changes in the model
«  Partially specified and partially observed models (controlled environments)

*  Non-causal observation

*  High-responsiveness : self-healing control loops
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Fault model-based approach
Tile-based fault model

Tile-based model

elementary fault behaviors of various node types:
<pre-conditions, alarm/event, post-conditions>

Petri Net semantics

distributed state / local conditions
concurrency

Uncertainty representation
unobserved tiles
likelihood measure

Model execution : fault trajectory building & diagnosis
Max likelihood estimation / Viterbi algorithm variants
Stream-based puzzle assembling using tiles (Spark Streaming)
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Trajectory building
( ™
Trajectory 1 Alarm(out.bytes.rate W)

Alarm(cpu_util W)

Primary Cause :

Network BW down out.bytes.rate®

Alarm(cpu_util W)

O

NETWS

Web server 1
(WS1)

Alarm(cpu_util W) A

k(Trajectory 2

Primary Cause : Database
Insufficient CPU CPUN cpu_utila (DB)
M Web server n

(WSn)




Model discovery in controlled environments
Stimulus-based modeling for Cloud : Open questions

Verification & testing of derived tiles

*  Model properties, coverage of real system faults and behaviors

Automatic learning of “complex” behaviors
*  Forward propagation “Conflict” behaviors,

*  “Synchronization” behaviors induced by the co-occurrence of multiple faults

Diagnosis algorithms under non-causal ordering of observed events

*  On-line vs batch processing with sliding window, distribution vs stream analytics

Dealing with dynamically reconfigurable systems, e.g. auto-scaling resources
*  Relevance of the tile model learned in the Sanbox => asymptotic analysis of correlations, parametric tile model ?

+  (distributed) diagnosis algorithms for reconfigurable models (changing the number of resources)

Dealing with partially modeled systems, e.g. unknown types of resources (not covered by the model)

*  On-line micro-stimulus approach, ...?
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