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The digital era calls for an unprecedented need of real-time monitoring and Root 
Cause Analysis (RCA) of complex systems deployed at a global network scale

RCA duality character: RCA is applied to methodically identify and correct the 
root causes of events, as opposed to simply addressing their symptomatic result. 

RCA impact perspective: “Root cause” may be described as the point in a causal 
chain where applying a corrective action or intervention would prevent the 
problem from occurring. 

Management of Future Networks with Root Cause Analysis
Introduction

Explain 
hidden causes

hidden plane

visible  plane

Model-based approach

• Model explains the occurrence, manifestation, and propagation 
fault situations

tile1

tile2

tile3

tile4

Correlation is not Causation

• Model learning techniques: 
interventional / observational / knowledge-based
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RCA for Cloudified Networks
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High volume of measurements and alarms to be handled at different layers

• Relevant alarm definitions and measurements not trivial to identify 

Ambiguity in the interpretation of observations by the human operator

• Single fault may produce multiple alarms, a given alarm can be caused by different fault conditions

• Number of possible failures grows exponentially in the future (terminals – IoT, network components – 5G)

Delayed understanding of faults leads to negative impact on businesses
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Host B

Host A

Symptoms: (web) application performance degradation - generation of infrastructure and application level alarms

Multiple possible underlying causes

- User request peak or permanent increase (App extra demand)
- Underlying resource overload by other tenants (host network interface, host CPU saturated)
- Remote fault propagation via app dependencies (e.g. BD delay)
- Remote host failures, etc. 

Confidential

RCA for Cloudified Networks
Example of a Web app

DB Delay alarm

Page I/O rate alarm

DB Extra demand

Host NIC 
saturated

Host Bw alarm

Host CPU 
overloaded

Host CPU alarm

App Delay alarm

Request rate alarm
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VM-B-1

Observable behavior :                 alarms

Hidden Behavior :         root causes      

secondary causes

VM-A-1
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Setting up the RCA design as a model-based fault 
diagnosis using a “model inversion” approach

• Fault model replicates the fault behavior of the 
network

- representation of initial faults, fault propagation, and alarm 
generation

- different types of models representing the interplay 
between observed variables and hidden states

• Labelled automata, Petri Nets, Pattern matching, Hidden Markov 
models, Bayesian Networks, …

• Diagnosis algorithms inverse the model

- without reconstructing the global state (to avoid state 
space explosion)

Fault model-based approach

Fault
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fault 
scenarios

generated
alarms

Logical view of the RCA design process 

Diagnosis
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A inverted model deployed 
online for run time RCA 
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• Automated (fault) model discovery modes

- Interventional learning: stimulus-based App Profiling 
Sandbox

- Observational learning: lagged correlation analysis & 
pattern learning

- Self-modelled data/systems, e.g. perf. logs allowing auto-
extraction of a Bayesian Network structure

• Model Inversion: from symptoms to causes

- Identification of possible causes - provides the most 
likely explanations given the observed alarms. 

- Using Bayesian network inference, tile-based trajectory 
composition / Petri Net unfolding, Viterbi-like algorithms, 
etc.

Framework : from model discovery to fault diagnosis

Controlled 
environments

Uncontrolled 
environments

Environment
actionability

Self-modeled
systems

Parameter
Inference

Observational
learning

System
Description
availability

Black-box

Interventional
Learning

Intervention
generation

Correlation 
analysis

Causal 
modeling

Model discovery modes Model inversion

Symptom 
Explanations

Diagnosis
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Interventional Learning
Stimulus-based App profiling

Intervention 
generation

Correlation 
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Causal 
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Stimulus-based App Profiling Sandbox

Intervention Generation

input 

load

B
node

D
node

C
node

A
node

Methodical elucidation of causal dependencies
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“Stimulus” creation: system-level fine-tuned control of available 

computing resources on a given app node (CPU, RAM, Disk I/O, Ntwk I/O)

Discovery of causalities: analysis of the reactions of other app nodes 

to the current stimulus

Goal: Automated fault model discovery

Aproach: Stimulus creation framework for virtualized distributed 
apps

- Interventional learning of causal Tiles via systematic resource perturbations 
and their impact analysis 

- Algorithm for causal chaining of fault trajectories
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Stimulus-based modeling
Correlation analysis

DB     WS1    WS2    LB   hosts

WS1-CPU

LB-response-time

DB

WS1

WS2

LB

hosts

Positive correlations

Negative correlation

One datasheet per stimulus



11 © Nokia 2018 Confidential

Stimulus-based modeling
Causal Modeling: Interpretation of correlations given the stimulus
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Tile extraction

Hidden faults (primary or propagated)

- we stimulate (and know) the ground truth

• Network Bw, CPU, Memory, Disk I/O 
• Input Load

Hidden states – alert enablers

- enable alarm generation

- defined by OpenStack & proprietary meters

Visible events - alarms

- defined on the basis of the existing meters

NETW

CPU

MEM

DISK IO

NETW

CPU

MEM

DISK IO

LOAD

network.outgoing.bytes.rate

network.incoming.bytes.rate

cpu_util

network.outgoing…

network.incoming…

cpu_util

Alarm (network.outgoing.bytes.rate )

Alarm (cpu_util)

Alarm (network.outgoing…)

Alarm (cpu_util )

Stimulus-based modeling
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Stimulus-based modeling
Tile extraction : example of stimulus on DB network bandwidth down

resourceType resourceID meterType CorrCoeff resourceType resourceID meterType

DB db_server_v2 network.outgoing.bytes.rate 0.87 WS WebServer1 network.incoming.bytes.rate

DB db_server_v2 network.outgoing.bytes.rate 0.85 WS WebServer1 cpu_util

DB

Primary Cause Occurrence:
Network BW down

- +

NETW

DB

Local Propagation:
Directly impacted meters

- +

NETW
out.bytes.rate

out.packet.rate

WS

Remote propagation:
DB -> WS

- +

NETW

NETW

[DB]

CPU

WS

Local Propagation:
Directly observed meters

- +

CPU cpu_util

DB

Alarm(out.bytes.rate)

- +

out.bytes.rate

WS

Alarm(cpu_util)

- +

cpu_util 

WS

Primary Cause Occurrence:
Insufficient CPU

- +

CPU
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• Interventional learning of causal Tiles: 

stimulus-reaction transitions (tiles) represent causal 
relationships between resource stimuli and the reactions 
at local & remote nodes

• Causality chaining via net unfolding: 

the alarm flow guides the on-line composition of reusable 
tiles into hypothetical fault propagation  trajectories

• Fault trajectory inference & diagnosis

Iterative selection of the best explanations (trajectories) 
using Max likelihood estimation algorithms (Viterbi 
algorithm variants)

Stimulus-based modeling
Diagnosis

T
il

e
s

Fault trajectoriesFault trajectories

Internal use © Nokia 2017
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Observational learning
Correlation and Causality Analysis with CloudBand (CB) alerts

Intervention 
generation

Correlation 
analysis

Causal 
modeling

Symptom 
Explanations
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Causality inference from CB alert logs

Goal: automatic inference of correlation & causality rules from observed alert logs

Approach: 

- Optimized computation of type-based correlations

- Causality inference based on time lagged correlations

Implemented by OpenStack Vitrage
Presented at OpenStack Summit 2017, Boston

Inference of causal relationships

Data transformation pipeline

Instance-based correlations

Alert time-series on 
distinct resources

Type-based correlations
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Causality inference from CB alert logs
Correlation Analysis

Datasets from CB: 

- e.g. Cloud platform @Naperville: ~ 14K alarms, 1,5K distinct resources
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Computing correlations between alert time series: 

- identified by <ResType x ResId x AlertType>

- using co-occurence measures: Jaccard, Pearson,…

- filtering according to topological constraints
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Causality inference from CB alert logs
Correlation Analysis (cont.)

Identify frequent co-occurrence patterns in terms of Types

• using Spark computing

Sparse representation of the Correlation matrix
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Causality inference from CB alert logs
Causal analysis

Transform co-occurrence rules into causality rules

Resource
Type

Alert
Type

Agg.
Value

Resource
Type

Alert
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…

Symmetric co-occurrence rules
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…

expert knowledge  

on Resource & Alert Type 

semantics (if available)

Suggested causality rules
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Causality inference from CB alert logs
Causality analysis (examples)

resourceType alertType resourceType alertType Count Mean

MACHINE FAILED_TO_GET_METRICS ~ MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 84109 0.60

HOST HOST_CEPH_PROBLEM → MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 23548 0.86

HOST RESOURCE_INVALID_STATE ~ MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 6608 0.75

HOST HOST_CEPH_PROBLEM ~ HOST RESOURCE_INVALID_STATE 232 0.77

HOST RESOURCE_INVALID_STATE ~ MACHINE FAILED_TO_GET_METRICS 60 0.64

HOST HOST_CEPH_PROBLEM ~ MACHINE FAILED_TO_GET_METRICS 58 0.56

HOST HOST_HIGH_CPU_LOAD → MACHINE VM_CPU_SUBOPTIMAL_PERF. 47 0.98

CLOUD_NODE RESOURCE_INVALID_STATE ~ COMPONENT RESOURCE_INVALID_STATE 6 0.82

CLOUD_NODE METRICS_READING_ERROR ~ HOST RESOURCE_INVALID_STATE 2 0.53

CLUSTER_INS. MODULE_ERROR → CLUSTER_INS. SYSTEM_ERROR 2 0.69

Correlation threshold: 0.5

Correlation threshold: 0.9

resourceType alertType resourceType alertType Count Mean

HOST HOST_CEPH_PROBLEM → MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 23490 0.86

MACHINE FAILED_TO_GET_METRICS ~ MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 5953 0.72

HOST RESOURCE_INVALID_STATE ~ MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 5525 0.77

HOST HOST_CEPH_PROBLEM ~ HOST RESOURCE_INVALID_STATE 232 0.77

HOST HOST_HIGH_CPU_LOAD → MACHINE VM_CPU_SUBOPTIMAL_PERF. 47 0.98

HOST RESOURCE_INVALID_STATE ~ MACHINE FAILED_TO_GET_METRICS 8 0.73

CLOUD_NODE RESOURCE_INVALID_STATE ~ COMPONENT RESOURCE_INVALID_STATE 6 0.82

CLOUD_NODE METRICS_READING_ERROR ~ MACHINE FAILED_TO_GET_METRICS 4 0.71

CLUSTER_INST. MODULE_ERROR → CLUSTER_INST. SYSTEM_ERROR 1 0.85

Correlation threshold: 0.7

resourceType alertType resourceType alertType Count Mean

HOST HOST_CEPH_PROBLEM → MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 5742 0.96

HOST HOST_HIGH_CPU_LOAD → MACHINE VM_CPU_SUBOPTIMAL_PERF. 47 0.98

HOST RESOURCE_INVALID_STATE ~ MACHINE VM_STORAGE_SUBOPTIMAL_PERF. 45 0.95
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Topology based RCA templates [Nokia CloudBand / OpenStack Vitrage project]

- Expert rules + Inferred Rules + dynamic instantiation of RCA templates => root causes

Dynamic instantiation of RCA templates

Causality inference from CB alert logs
Diagnosis
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Inferring propagation scenarios from alarm logs (Radio Acess Network)

Complexity reduction and automated causal analysis

Goal: Reducing the time to dispatch KPI (time to resolve an incident)

Approach: Structural and Causal analysis of the alarm “chaos”
- Using  statistical causal inference techniques enforced with exogeneous knowledge, 

e.g. physical/logical topology, or expertise

Impact: Number of possible explanations reduced by 10K

Alarm chaos Reduced space Zooming on an alert  propagation scenario

Presented at Global Analyst Forum 2018

NSW DI demonstrator on a 
smartphone
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Dataset: large radio access network

- 200K network elements,  1 Million alarms every day (40 000 alarms/ hour), several 
hours per incident, up to 24 hours in some cases

Structural and Causal analysis of the alarm “chaos”

Using  statistical causal inference techniques enforced with exogeneous 
knowledge injection (e.g. physical/logical topology, or expertise)

- Dynamic correlation graphs based on local/vertical/remote resource relations

- Graph summarization

- Number of possible explanations reduced by 10k

Inferring propagation scenarios from alarm logs (2)
Complexity reduction and automated causal analysis

Local

vertical

remote
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Model-based approaches are challenges by the fact that in real systems models are often unknown!

• Fault injection and interventional approaches to causality discovery – completeness, combinatorics

• Observational analysis / statistical causal inference - missing sufficient fault data volumes

• Observational analysis assisted by some structural /topological knowledge - partial topology knowledge

Problem translation into the event space : adequate anomaly detection mechanisms

• Not specified in complex cloud-based environments

• Need for methods coupling anomaly detection and fault diagnosis

Challenges for Model Learning and Diagnosis

• High-dimensionality

• Dynamically reconfigurable systems, dynamically tracking the changes in the model

• Partially specified and partially observed models (controlled environments)

• Non-causal observation

• High-responsiveness : self-healing control loops

Root Cause Analysis of Future Networks
Summary of important challenges
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Fault model-based approach
Tile-based fault model

Tile-based model 

elementary fault behaviors of various node types:
<pre-conditions, alarm/event, post-conditions>

Petri Net semantics

distributed state / local conditions
concurrency

Uncertainty representation
unobserved tiles
likelihood measure

hidden plane

visible  plane

tile1
tile2

tile3

Model execution : fault trajectory building & diagnosis

Max likelihood estimation / Viterbi algorithm variants

Stream-based puzzle assembling using tiles (Spark Streaming)



27 © Nokia 2018

Trajectory building
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WS1

Alarm(cpu_util)
Web server 1
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(WSn)

Database
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28 © Nokia 2018

Verification & testing of derived tiles

• Model properties, coverage of real system faults and behaviors

Automatic learning of “complex” behaviors

• Forward propagation “Conflict” behaviors, 

• “Synchronization” behaviors induced by the co-occurrence of multiple faults

Diagnosis algorithms under non-causal ordering of observed events

• On-line vs batch processing with sliding window, distribution vs stream analytics

Dealing with dynamically reconfigurable systems, e.g. auto-scaling resources

• Relevance of the tile model learned in the Sanbox => asymptotic analysis of correlations, parametric tile model ?

• (distributed) diagnosis algorithms for reconfigurable models (changing the number of resources)

Dealing with partially modeled systems, e.g. unknown types of resources (not covered by the model)

• On-line micro-stimulus approach, …? 

Confidential

Model discovery in controlled environments
Stimulus-based modeling for Cloud : Open questions 


