



# Causality and Hyperproperties

Norine Coenen

Shonan Meeting No. 139 Causal Reasoning in Systems

### Meltdown and Spectre



Many processors (Intel, Arm, ...) are

vulnerable although proven correct

Trace properties



Side channel attacks

Attacks compare multiple executions



### Hyperproperties and Properties

Hyperproperty (Clarkson and Schneider)

Set of sets of traces  $H \subset 2^{\Sigma^{\omega}}$ 

$$T \models H \Leftrightarrow T \in H$$

#### **Compare multiple traces**

Ex: Require at least two different traces:

$$\{T \subseteq \Sigma^{\omega} \mid \exists t, t' \in T. \ t \neq t'\}$$

Trace property

Set of traces  $P \subseteq \Sigma^{\omega}$ 

$$T \vDash P \Leftrightarrow T \subseteq P$$

No trace comparison possible

Ex: Cannot require two different traces



### Information-Flow Control



Public output should only depend on public input

Typical information-flow property: Noninterference

$$\{T \subseteq \Sigma^{\omega} \mid \forall t, t' \in T : t =_{I_{\text{public}}} t' \Rightarrow t =_{O_{\text{public}}} t'\}$$



### Other Hyperproperties

#### Cleanliness (software doping)

Do traces with similar inputs also have similar outputs?

#### Symmetry in protocols

Are clients treated symmetrically?

#### **Error-resistant codes**

Do codes for distinct inputs have at least Hamming distance *d*?

#### **Promptness**

Is there a common bound on the number of steps until a requirement is satisfied?



### Causality

### Counterfactual dependence

Hume: "We may define a cause to be an object followed by another ...

where, if the first object had not been, the second never had existed."

Compare actual world with a different possible world

Cause and effect both occur

Cause and effect both do not occur



### Causality

### **Contingencies**

#### **Halpern and Pearl:**

Restrict possible alternate worlds to those satisfying the contingencies

### **Transition systems**

#### **Leitner-Fischer and Leue:**

Restrict possible alternate worlds to the traces of a transition system



### Causality Definition

Let  $\psi$  range over Z and  $A \setminus Z = W$ .  $\psi$  causes  $\varphi$  iff

AC1: 
$$\exists t. \ t \vDash \psi \land t \vDash \varphi$$
  
AC2(1):  $\exists t'. \ t' \not\vDash \psi \land t' \not\vDash \varphi \land$   
 $(val_Z(t) \neq val_Z(t') \lor$   
 $val_W(t) \neq val_W(t'))$   
AC2(2):  $\forall t''. \ t'' \vDash \psi \land val_Z(t) = val_Z(t'')$   
 $\land val_{W'}(t) \neq val_{W'}(t'') \rightarrow t'' \vDash \varphi$ 

AC3: Minimality of  $\psi$ 



## Temporal Logics for Hyperproperties

Noninterference

$$\{T \subseteq \Sigma^{\omega} \mid \forall t, t' \in T : t =_{I_{\text{public}}} t' \Rightarrow t =_{O_{\text{public}}} t'\}$$

Is there an appropriate logic for the expression of hyperproperties?



"All executions have the light on at the same time."



"All executions have the light on at the same time."

LTL: Specifies computations

Syntax:

$$\varphi ::= a$$







 $\varphi ::= a \mid \bigcirc \psi \mid \square \psi \mid \Diamond \psi \mid \psi \mathcal{U} \psi \mid \ldots$ 







### CTL\*



"All executions have the light on at the same time."

 $AA \varphi$ ?

CTL\*: Specifies computation trees

Syntax:

$$\varphi ::= a \mid \mathsf{A}\varphi \mid \mathsf{E}\varphi \mid \mathsf{O}\varphi \mid \mathsf{\Box}\varphi \mid \varphi \mathcal{U}\varphi \mid \dots$$





### HyperLTL

Add trace quantifiers:  $\forall \pi. \varphi \quad \exists \pi. \varphi$ 

Syntax: 
$$\varphi::= \forall \pi. \varphi \mid \exists \pi. \varphi \mid \psi$$
 
$$\psi::= a_\pi \mid \bigcirc \psi \mid \Box \psi \mid \Diamond \psi \mid \psi \mathcal{U} \psi \mid \ldots$$

"All executions have the light on at the same time."

$$\forall \pi. \forall \pi'. \quad \Box (\mathsf{on}_{\pi} \leftrightarrow \mathsf{on}_{\pi'})$$







### HyperLTL

Require at least two different traces in a system:

$$\{T \subseteq \Sigma^{\omega} \mid \exists t, t' \in T. \ t \neq t'\}$$

In HyperLTL: 
$$\exists \pi. \exists \pi'. \ \pi \neq \pi'$$

$$\pi = \pi' := \square(\bigwedge_{a \in AP} a_{\pi} \leftrightarrow a_{\pi'})$$

#### Semantics:

trace assignment  $\Pi: Vars \rightarrow T$ 

$$\Pi \models_T a_{\pi}$$
 iff  $a \in \Pi(\pi)(0)$ 

$$\Pi \models_T \Box \varphi \quad \text{iff} \quad \forall i \geq 0 : \ \Pi[i, \infty] \models_T \varphi$$

$$\Pi \models_T \forall \pi. \ \varphi \quad \text{iff} \quad \forall t \in T: \ \Pi[\pi \mapsto t] \models_T \varphi$$

### HyperCTL\*

Add **path variables** to path quantifiers:

Syntax:  $\varphi := a_{\pi} \mid \forall \pi. \varphi \mid \exists \pi. \varphi \mid \bigcirc \varphi \mid \Box \varphi \mid \varphi \mathcal{U} \varphi \mid \ldots$ 





### Causality in HyperLTL

Let  $\psi$  range over Z and  $A \setminus Z = W$ .  $\psi$  causes  $\varphi$  iff

AC1: 
$$\exists t. \ t \vDash \psi \land t \vDash \varphi$$
  
AC2(1):  $\exists t'. \ t' \not\vDash \psi \land t' \not\vDash \varphi \land$   
 $(val_Z(t) \neq val_Z(t') \lor$   
 $val_W(t) \neq val_W(t'))$   
AC2(2):  $\forall t''. \ t'' \vDash \psi \land val_Z(t) = val_Z(t'')$   
 $\land val_{W'}(t) \neq val_{W'}(t'') \rightarrow t'' \vDash \varphi$ 

$$\exists \pi. \exists \pi'. \forall \pi''.$$

$$\psi_{\pi} \wedge \varphi_{\pi} \wedge \\
\neg \psi_{\pi'} \wedge \neg \varphi_{\pi'} \wedge \pi \neq \pi' \wedge \\
\psi_{\pi''} \wedge \pi =_{Z} \pi'' \rightarrow \varphi_{\pi''}$$

$$\pi =_{Z} \pi' := \Box (\bigwedge_{z \in Z} z_{\pi} \leftrightarrow z_{\pi'})$$



### **Results and Tools**

#### Satisfiability

- Decidability results for HyperLTL, HyperCTL\*, HyperQPTL
- EAHyper
- MGHyper

#### **Model Checking**

- Automata-based algorithm for HyperCTL\*
- MCHyper: Alternation-free fragment of HyperLTL
   Recently extended to one quantifier alternation
- MCQHyper: Model checking of quantitative hyperproperties — Responsibility

#### **Synthesis**

- Decidability results
- BoSyHyper

#### Runtime Monitoring

RVHyper

How can we use hyperproperties for causality checking?



