
Causality	Inference	for	Attack	Investigation
Ashish	Gehani,	SRI

Shonan 139

See:

Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang,
Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, Ashish Gehani, and Vinod Yegneswaran

MCI: Modeling-based Causality Inference in Audit Logging for Attack Investigation

25th Annual Network and Distributed System Security Symposium (NDSS), 2018

• Advanced	Persistent	Threat	(APT)

Targeted: Targets	specific	organizations	to	exfiltrate
information	or	disrupt	the	systems.

Cyberattacks	are	becoming	more	sophisticated

Infrastructure
(Nuclear	plants)

Business
(Target®	Data	Breach)

Government	
(OPM:	Office	of	

Personnel	Management)

Politics
(DNC	email	hack)

$18	million
40	million	customers

18	million
employees

2016201520132010

Multiple	stages of	APTs

1.	Reconnaissance:	Learn	the	target	organization	

2.	Infiltration:	Enter	into	the	victim	via	social-engineering	
(e.g.,	phishing)	or	vulnerabilities	(e.g.,	zero-day)

3.	Discovery	and	capture:	Stay	low	and	operate	slowly	
to	avoid	detection	while	discovering	critical	machines	
and/or	information

4.	Exfiltration/Disruption: Send	the	captured	secret	
information	to	attackers	or	destroy	the	systems

Combatting	APTs	is	challenging

3.	Discovery	and	capture:	Stay	low and	operate	slowly
to	avoid	detection	while	discovering	critical	machines	
and/or	information.	

Low	and	slow	(Stealthy)
Incidents	are	often	detected	after	a	few	months.

(Whitelisted)	benign	built-in	software
APT	attackers	often	leverage	benign	built-in	software	

(e.g.,	web-browsers	and	email	clients	that	are	
already	whitelisted)	to	avoid	detection.

Steps of	the	attack

Example	APT:	Data	exfiltration
(exerted	from	real-world	APTs)

Secret
Encrypted

Secret
Decrypted

Secret

1.	Phishing	email
2.	Phishing	webpage
3.	Compromising	systems
4.	Obtaining	secret	data
5.	Data	exfiltration

1.	Phishing	email
2.	Phishing	webpage
3.	Compromising	systems
4.	Obtaining	secret	data
5.	Data	exfiltration

FTP	

program

Weaponized	
PDF	file

Steps of	the	attack

Phishing	
email

Malicious	
website

Malware	
file

Secret	doc.	file
(Encrypted)

Secret	doc.	
file

Obtaining	the	ideal	causal	graph
from	the	symptom	to	the	origin	of	attack	(email)

FTP	
process

GPG	process
(decryption)

Malware	
process

Web	browser
process

Email	client
process

Subject
(e.g.,	process)

Legend

Object
(e.g.,	file/network	addr.)

1.	Phishing	email
2.	Phishing	webpage
3.	Compromising	systems
4.	Obtaining	secret	data
5.	Data	exfiltration

1.	Phishing	email
2.	Phishing	webpage
3.	Compromising	systems
4.	Obtaining	secret	data
5.	Data	exfiltration

Symptom:

File	leak

Accurately	identifying	
dependencies	is	important

Existing	attack	investigation	technique	
Type	1: Audit-logging

• Record	system	calls	(e.g.,	socket	read	and	file	write)	
and	detect	dependencies	between	them
– Coarse-grained	assumptions:

1.	System	calls	operate	on	the	same	file	are	related.
2.	Within	the	same	process,	output	system	calls	are	
dependent	on	all	preceding	input	system	calls.

Coarse-grained	assumptions cause	
false	dependencies

Malware

Dependency	Explosion in	Audit-logging

Email	
Client

Web	
browser

… …

… …

Malware

Dependency	Explosion in	Audit-logging

Email	
Client

Web	
browser

… …

… …

… …

… …

A	causal	graph	consisting	of
55 processes,	41 files,	and	415 network	addresses.
(only	5	processes,	5	files,	12	network	addresses	are	relevant)

False dependencies	cause	
Dependency	Explosion!

(Taking	from	days	to	weeks	to	examine)

Existing attack	investigation	technique
Type	2: Taint	analysis

• Track	dependency	(e.g.,	data	dependency)	by	
monitoring	the	data	propagation	of	individual	
operations	(e.g.,	assignment	and	calculation)

1. x =	input();
2. y =	x +	1;

Data-dependency	
(y is	data	dependent	on	x)

Significant	overhead	caused	by	
monitoring	every	instruction

Taint	analysis	techniques	have	difficulty	handling	
Control	Dependency

Taint-analysis	fails to	track	dependencies

Steps of	the	attack
1.	Phishing	email
2.	Phishing	webpage
3.	Compromising	systems
4.	Obtaining	secret	data
5.	Data	exfiltration5.	Data	exfiltration

Phishing	
email

Malicious	
website

Malware	
file

Secret	doc.	file
(Encrypted)

Secret	doc.	
file

FTP	
process

GPG	process
(decryption)

Malware	
process

Web	browser
process

Email	client
process

Taint-analysis	fails	to	track	dependencies

Steps of	the	attack
1.	Phishing	email
2.	Phishing	webpage
3.	Compromising	systems
4.	Obtaining	secret	data
5.	Data	exfiltration5.	Data	exfiltration

Phishing	
email

Malicious	
website

Malware	
file

Secret	doc.	file
(Encrypted)

Secret	doc.	
file

FTP	
process

GPG	process
(decryption)

Malware	
process

Web	browser
process

Email	client
process

LDX:	Lightweight	dual	execution	
for	causality	inference	[ASPLOS’16]

• The	original	concept	of	counter-factual	causality

Preceding	
Event

Later	Event

Preceding	
Event’

Later	Event

Changes

State	Differences

Causally	
Dependent

Given	two	events	(e.g.,	system	calls),	
a	later	event	is	causally	dependent	on	a	preceding	event,	
if	changes	at	the	preceding	event	lead	to	state	differences	
in	the	later	event.

Cause

Effect

LDX	is	significantly	faster	and	more	accurate	
than	state-of-the-art	taint-analysis	techniques

6.08% average	runtime	overhead	on	12	SPEC	CPU2006	
and	12	real-world	applications

3 times	more	accurate	than	the	state-of-art	taint	
analysis	techniques	(i.e.,	Taintgrind and	Libdft)

Requires	instrumentation	of	target	programs

Toward	practical	causality	inference	
in	the	enterprise	environment

• Changing	end-user	systems	is	not	allowed
– Modifications	to	commercial	programs	are	not	
allowed.

– Organizations	do	not	allow	modified	programs	and/or	
kernel	to	be	used.

Instrumentation	free	
causality	inference	technique	is	required

MCI:	Model-based	Causality	Inference	
1.	Acquire	causal	models	(Offline)
For	each	program,	it	uses	LDX	(in	offline) to	acquire	causal	models	for	primitive	
operations	(e.g.,	opening	a	file,	copy	and	paste,	and	edit	a	file).

Program Input	for	
Primitive	Op.

LDX:	Dual	Exec.	for	
Causality	Inference

openFILE readFILE sendSOC close FILE

Causal	Model:	
A	sequence	of	system	calls	with	inter-dependencies

Primitive	Operation:

Read	file	content	and	
send	out the	content	
through	a	socket

Dependencies	

obtained	by	LDX

File	handleSyscall name

MCI:	Model-based	Causality	Inference	
2. Parse	audit-logs	with	the	causal	models

MCI	parses	audit-logs	into	concrete	model	instances	

Production	audit-log	(system	call	trace):	Circles	represent	system	calls	and	arrows	
mean	the	orders.	No	dependency	information	between	system	calls.

… OF OF CF RF RF SS OF RF SS CF OA CA RS OF WF CF OS CS …OF RF SS CF OF RF SS CFRS OF WF CF RS OF WF CF

openFILE readFILE sendSOC closeFILE recvSOC openFILE writeFILE closeFILE

Dep.

Derived	dependencies	
from	models

Causal	models:	Causal	model	1	(Red)	and	Causal	model	2	(Blue)

Use	only	system	call	
sequences	to	parse

1.	Language	complexity	to	describe	syscall sequences
– Complex	system	call	subsequences	of	causal	models	requires	

expressive	language
• Context-free:	Rrnwn (e.g.,	Rrw,	Rrrww,	Rrrrwww,	…)

• Context-sensitive:	Rrnwmcncm (e.g.,	Rrrwccc,	Rrrwwcccc,	…)

Challenges in	
model-based	causality	inference

attach[...] = parse(recv(...)); // recv
for (i = 0; i < n; i++) // (read)n

read(attach[i], buf, ...);
for (i = 0; i < n; i++) // (write)n

write(fout[i], buf, ...);

attach[...] = parse(recv(...)); // recv
for (i = 0; i < n; i++) // (read)n
read(attach[i], buf, ...);

for (j = 0; j < m; j++) // (write)m
write(fout[j], compress(buf));

for (i = 0; i < n; i++) // (close)n
close(attach[i]);

for (j = 0; j < m; j++) // (close)m
close(fout[j]);

1.	Language	complexity	to	describe	syscall sequences
– Complex	system	call	subsequences	of	causal	models	requires	

expressive	language
• Context-free:	Rrnwn (e.g.,	Rrw,	Rrrww,	Rrrrwww,	…)

• Context-sensitive:	Rrnwmcncm (e.g.,	Rrrwccc,	Rrrwwcccc,	…)

Challenges in	
model-based	causality	inference

attach[...] = parse(recv(...)); // recv
for (i = 0; i < n; i++) // (read)n

read(attach[i], buf, ...);
for (i = 0; i < n; i++) // (write)n

write(fout[i], buf, ...);

attach[...] = parse(recv(...)); // recv
for (i = 0; i < n; i++) // (read)n
read(attach[i], buf, ...);

for (j = 0; j < m; j++) // (write)m
write(fout[j], compress(buf));

for (i = 0; i < n; i++) // (close)n
close(attach[i]);

for (j = 0; j < m; j++) // (close)m
close(fout[j]);

More	expressive	languages	lead	to	higher	costs	in	parsing

2.	Ambiguity in	parsing
– Some	system	calls	in	audit-logs	can	be	parsed	to	multiple	
causal	model	instances.

Challenges in	
model-based	causality	inference

RF1 WF2
R:	read,	
W:	write

Production	audit-log

… R1 W2 W3 R4 R4 W4 W5 R6 W6
…R1

W2R1
W3R1 W4R1 W5R1

W6

Causal	model

Different	causalities	are	derived	from	different	model	instances,	
causing	incorrect	causality

Overcoming	challenges	by	
leveraging	dependencies	in	audit-logs

RF1 WF1

Production	audit-log

System	calls	on	the	same	file	(F1):	

Explicit	Dependency

… …

Problem

Treating	an	audit-log	as	a	plain	sequence	of	system	calls	without	
dependencies

Observation

Certain	dependencies	can	be	extracted	by	preprocessing	audit-logs
to	reduce language	complexity	and	ambiguity	

Segmented	Parsing by	
leveraging	explicit dependencies

• Causal	models	have	explicit	and	implicit	dependencies

RS1
WS2

• Idea:	Identify	corresponding	explicit	dependencies and	parse	
segments	to	derive	implicit	dependencies	from	causal	models

RF1 WF1

Corresponding	explicit	dependency

Causal	model

Explicit dependencies
(System	calls	on	the	same	file)

Implicit	dependencies
(Memory	operation)

… R1 R2 W3 W3 R3 W4 W2 W3 W4
…

Boundary Boundary

Production	audit-log

Explicit dep.

Derived	implicit	dependency

R2 W2

RS1
WS2

RS1
WS2

Practical	instrumentation	free	causality	
inference: Scalable	to	real-world	workloads

• A	week	long	system-wide	experiments
– Large	size	programs:	Web	browser	(Firefox),	web	servers
(Apache	and	nginx),	P2P	program	(Torrent),	…

• 3	months of	Purdue	web	server	workload	and	
2	months of	NASA	web	server	workload
– 9	million	requests	(4.2	million	unique	requests)

0.8%	FP	and	0.6%	FN
(ground-truth	is	obtained	by	LDX)

2.5%	FP	and	0.15%	FN

Accurate	Causality	Inference:	
More	accurate	than	BEEP	

(state-of-the-art	audit-logging	tech.	based	on	execution	partition)

• Graph	by	MCI	is	accurate	and	concise	
– Randomly	select	100	system	objects	(e.g.,	files/network	addresses)	and	

build	causal	graphs

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

BEEP

MCI
FN FP

0 10 20 30 40 50 60 70 80

System	subjects

System	objects

Edges

MCI BEEP

Accurate

Concise

A	graph	generated	by	state-of-art	audit-logging	based	technique
(19	files,	33	network	addrs.,	8	processes	+	@)

APT	attack	constructed	by	professionals
Phishing	email	+	Backdoored FTP	+	Data	exfiltration

Process

Legend

Network	addr.

File

sendmail

x.x.x.x:53935

x.x.x.x:113

sendmail

sendmail

sendmail

/var/mail/…/94368.5221

pine firefox

/home/…/proftpd

bash

y.y.y.y:80

proftpd

/home/…/doc

…
…

…

…

… …
……

Unix	socket
/tmp/.X11-unix

~/Download/… … …

…

…

…

… … …

… z.z.z.z:31337

…

…

…

…

…
…

…

…

…

…

…

…

…

…

… … … …

…

… … … …

…

…

A	graph	generated	by	MCI

(3	files,	4	network	addrs.,	8	processes)

APT	attack	constructed	by	professionals
Phishing	email	+	Backdoored FTP	+	Data	exfiltration

Process

Legend

Network	addr.

File

sendmail

x.x.x.x:53935

x.x.x.x:113

sendmail

sendmail

sendmail

/var/mail/…/94368.5221

pine firefox

/home/…/proftpd

bash y.y.y.y:80

proftpd

/home/…/doc

z.z.z.z:31337

Concise	and	precise	causal	graph	including	
all	and	only	attack	relevant	subjects	and	objects

Conclusion

1.MCI	directly	works	on	production	audit-logs	without	
requiring	any	change	on	end-user	systems	(e.g.,	
instrumentation	and	modified	kernels)

2.MCI	is	scalable	to	cope	with	large	scale	log	from	long-
running	applications	(e.g.,	A	week	long	experiment	with	
Firefox)

3.MCI	precisely	infers	causality	with	negligible	FP	(<	2.5%)	
and	FN	(<	1%)

Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu
Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, Ashish Gehani, and Vinod Yegneswaran

MCI: Modeling-based Causality Inference in Audit Logging for Attack Investigation
25th Annual Network and Distributed System Security Symposium (NDSS), 2018

