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Outline
1. NetKAT - the Language


2. Reasoning & Verification


3. Towards a Framework for Causality


Sources:


“Programming, Modeling & Reasoning about Networks” (online tutorial by S.Smolka)


“NetKAT: Semantic Foundation for Networks” [C.J.Anderson et. al.], POPL’14


“A Fast Complier for NetKAT” [S.Smolka et. al.], ICFP’15
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1. NetKAT - the Language
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NetKAT Program - Example
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NetKAT Syntax & Semantics



Encoding Switch 
Forwarding Tables
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Encoding Network 
Topologies (I)
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Encoding Network 
Topologies (II)
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Encoding Networks
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Encoding Networks
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Encoding Networks
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Encoding Networks
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Encoding Networks
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2. Reasoning & Verification
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Network Verification
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• Sound & Complete Axiomatisation [C.J.Anderson et. al.]
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Network Verification

!17

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]



Network Verification
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• Sound & Complete Axiomatisation [C.J.Anderson et. al.]


[[p]] = [[q]]  iff |— p = q  

• E.g., Reachability:


 “Does the network forward from ingress (in) to egress (out)”?


NO iff |— in . (switch.topology)* . out = 0


YES iff  |— in . (switch.topology)* . out =/= 0



Reasoning About Correctness 
of NetKAT Programs

• Programmer 1 has to implement a switch policy s.t.:


“H1 can only forward to H2”


• Correctness:


• H1 can forward to H2 (H1 —>> H2)


• H1 cannot forward to H3 or H4 (H1 -/->> H3,4)
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Reasoning About Correctness 
of NetKAT Programs

“H1 can only forward to H2”


• Policy p1 : (pt = 1 .  pt <— 5) + (pt = 6 . pt <— 2)


H1 can forward to H2 (H1 —>> H2)


• |— (pt = 1) . (p1 . t)* . (pt = 2) =/= 0


H1 cannot forward to H3 or H4 (H1 -/->> H3,4)


• |— (pt = 1) . (p1 . t)* . (pt = 3 + pt = 4) = 0
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H1 —>> H2 
H1 -/->> H3,4 

Proven correct based on the axioms!



Reasoning About Correctness 
of NetKAT Programs

• Programmer 2 has to implement a switch policy s.t.:


“H3 can only forward to H4”


• Correctness:


• H3 can forward to H4 (H3 —>> H4)


• H3 cannot forward to H1 or H2 (H3 -/->> H1,2)
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… shown in a similar fashion…



Reasoning About Correctness 
of NetKAT Programs

• Programmer 1: “H1 can only forward to H2” / switch policy p1


• Programmer 2: “H3 can only forward to H4” / switch policy p2


• Assume Programmer 3 implements p as the union of the two correct policies p1 and p2


p = p1 + p2


• Network becomes (p . t)* = ((p1 + p2) . t)*


• Does H1 -/->> H3,4 still hold?
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Reasoning About Correctness 
of NetKAT Programs

H1 -/->> H3,4 holds iff


|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff


                                                            (acc. to NetKAT axioms)


|— pt = 1 . pt <— 4  + P = 0   
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What is the cause?



3. Towards a Framework for Causality
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What Is the Cause? 
- Obvious Challenges -

H1 -/->> H3,4 holds iff


|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff


                                                            (acc. to NetKAT axioms)


|— pt = 1 . pt <— 4  + P = 0   

provides too 
 little information contains *
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What Is the Cause? 
- Obvious Challenges -

H1 -/->> H3,4 holds iff


|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff


                                                            (acc. to NetKAT axioms)


|— pt = 1 . pt <— 4  + P = 0   

provides too 
 little information

“Star Elimination” 
in [C.J.Anderson et. al] 

assumption: no dup, no sw <— 
uses all axioms to build the Normal Form of P, NF (P) 

|— P ~ NF(P)  
… provides too little information as well…
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What Is the Cause? 
- Possible Solution -

|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff (… axioms)


|— pt = 1 . pt <— 1 . pt <— 5 . pt <— 6 . pt <— 4  + Psf = 0   

Inhibit some of the axioms, e.g.: 
f <— n . f <— n’ = f <— n’ [PA-MOD-MOD] “Approximate” * 

(p.t)* = (1 + p.t)^n 
for some n… 

and remove *-unfolding 
axioms
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* “Approximation”
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Some Terminology…
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Questions?
• Current & Future Work:


• Trace back the cause into the original code


• How does the counterfactual look like?


• Handling other interesting network properties


• E.g., waypointing…


• Responsibility, blame
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