Causal Reasoning in SDNs (NetKAT)

Georgiana Caltais, University of Konstanz Shonan Seminar -"Causal Reasoning in Systems" 24-27 June, 2019

Outline

- 1. NetKAT the Language
- 2. Reasoning & Verification
- 3. Towards a Framework for Causality

Sources:

"Programming, Modeling & Reasoning about Networks" (online tutorial by S.Smolka)

"NetKAT: Semantic Foundation for Networks" [C.J.Anderson et. al.], POPL'14

"A Fast Complier for NetKAT" [S.Smolka et. al.], ICFP'15

1. NetKAT - the Language

NetKAT Program - Example

"For all packets incoming on port 88 of switch 6, set the destination IP address to 10.0.0.1 and multicast the packet out of ports 50 and 51."

NetKAT Syntax & Semantics

Syntax

Fields $f ::= f_1 | \cdots | f_k$ Packets $pk ::= \{f_1 = v_1, \cdots, f_k = v_k\}$ Histories $h ::= pk::\langle\rangle | pk::h$ Predicates a, b ::= 1 Identity $\begin{vmatrix} 0 & Drop \\ | f = n & Test \\ | a + b & Disjunction \\ | a \cdot b & Conjunction \\ | \neg a & Negation \end{vmatrix}$ Policies p, q ::= a Filter $\begin{array}{cccc} f \leftarrow n & Modification \\ p + q & Union \\ p \cdot q & Sequential composition \\ p^* & Kleene star \\ down & D & diamondal \end{array}$ dup Duplication

Semantics

Encoding Switch Forwarding Tables

$\begin{array}{ c c c } \hline \mathbf{Pattern} & \mathbf{Action} \\ \hline \star & pt{\leftarrow}2 \end{array} pol_A \triangleq pt{\leftarrow}2 \end{array}$	Pattern dst=A *	Action true false	$pol_B \triangleq dst{=}A$	Pattern dst=A *	$\begin{array}{c} \textbf{Action} \\ \texttt{pt} \leftarrow 2 \\ false \end{array}$	$\textit{pol}_B \cdot \textit{pol}_A$	
(a) An atomic modification (b) An atomic predicate				(c) For	(c) Forwarding to a single host		
PatternActiondst=A $pt \leftarrow 1$ $mol = \Delta$	$pt \leftarrow 1 +$		PatternActiondst=A $pt \leftarrow 3$		(proto=ss	sh+)nt←3	

(d) Forwarding traffic to two hosts

(e) Monitoring SSH traffic and traffic to host A

Encoding Network Topologies (I)

Host 1

$$t = Sw = A \cdot pt = 5 \cdot Sw = B \cdot pt = 6 + Sw = B \cdot pt = 6 \cdot Sw = A \cdot pt = 5 + Sw = A \cdot pt = -5 + Sw = A \cdot (pt = A + pt = -3) + Sw = B \cdot (pt = A + pt = -4) + Sw = -6 \cdot (pt = -2 + pt = -4)$$

Encoding Network Topologies (II)

$$t = pt = 5. pt = 6 + pt = 6. pt = 5 + pt = 1 + pt = 2 + pt = 3 + pt = 4$$

2. Reasoning & Verification

Sound & Complete Axiomatisation [C.J.Anderson et. al.]

Kleene Algebra Axioms

 $p + (q+r) \equiv (p+q) + r$ $p+q \equiv q+p$ $p + 0 \equiv p$ $p + p \equiv p$ $p \cdot (q \cdot r) \equiv (p \cdot q) \cdot r$ $1 \cdot p \equiv p$ $p \cdot 1 \equiv p$ $p \cdot (q+r) \equiv p \cdot q + p \cdot r$ $(p+q) \cdot r \equiv p \cdot r + q \cdot r$ $\mathbf{0} \cdot p \equiv \mathbf{0}$ $p \cdot \mathbf{0} \equiv \mathbf{0}$ $1 + p \cdot p^* \equiv p^*$ $q + p \cdot r \leq r \Rightarrow p^* \cdot q \leq r$ $1 + p^* \cdot p \equiv p^*$ $p + q \cdot r < q \Rightarrow p \cdot r^* < q$

KA-PLUS-ASSOC **KA-PLUS-COMM KA-PLUS-ZERO KA-PLUS-IDEM KA-SEQ-ASSOC KA-ONE-SEQ** KA-SEQ-ONE KA-SEQ-DIST-L **KA-SEQ-DIST-R KA-ZERO-SEQ** KA-SEQ-ZERO **KA-UNROLL-L** KA-LFP-L **KA-UNROLL-R KA-LFP-R**

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]

Additional Boolean Algebra Axioms

$$a + (b \cdot c) \equiv (a + b) \cdot (a + c)$$

$$a + 1 \equiv 1$$

$$a + \neg a \equiv 1$$

$$a \cdot b \equiv b \cdot a$$

$$a \cdot \neg a \equiv 0$$

$$a \cdot a \equiv a$$

BA-PLUS-DIST BA-PLUS-ONE BA-EXCL-MID BA-SEQ-COMM BA-CONTRA BA-SEQ-IDEM

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]

Packet Algebra Axioms

$$\begin{array}{ll} f \leftarrow n \cdot f' \leftarrow n' \equiv f' \leftarrow n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-MOD-COMM} \\ f \leftarrow n \cdot f' = n' \equiv f' = n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-FILTER-COMM} \\ \text{dup} \cdot f = n \equiv f = n \cdot \text{dup} & \text{PA-DUP-FILTER-COMM} \\ f \leftarrow n \cdot f = n \equiv f \leftarrow n & \text{PA-MOD-FILTER} \\ f = n \cdot f \leftarrow n' \equiv f \leftarrow n' & \text{PA-MOD-FILTER-MOD} \\ f \leftarrow n \cdot f \leftarrow n' \equiv f \leftarrow n' & \text{PA-MOD-MOD} \\ f = n \cdot f = n' \equiv 0, \text{ if } n \neq n' & \text{PA-MOD-MOD} \\ \sum_{i} f = i \equiv 1 & \text{PA-CONTRA} \\ \end{array}$$

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]

[[p]] = [[q]] iff |-p = q

• E.g., Reachability:

"Does the network forward from ingress (in) to egress (out)"?

NO iff |- in . (switch.topology)* . out = 0

YES iff |- in . (switch.topology)* . out =/= 0

• Programmer 1 has to implement a switch policy s.t.:

"H1 can only forward to H2"

- Correctness:
 - H1 can forward to H2 (H1 \rightarrow H2)
 - H1 cannot forward to H3 or H4 (H1 -/->> H3,4)

"H1 can only forward to H2"

Proven correct based on the axioms!

H1 -/->> H3,4

Policy p1 : (pt = 1 . pt <− 5) + (pt = 6 . pt <− 2)

H1 can forward to H2 (H1 \rightarrow H2)

• $|-(pt = 1) \cdot (p1 \cdot t)^* \cdot (pt = 2) = /= 0$

H1 cannot forward to H3 or H4 (H1 -/->> H3,4)

• $|-(pt = 1) \cdot (p1 \cdot t)^* \cdot (pt = 3 + pt = 4) = 0$

• Programmer 2 has to implement a switch policy s.t.:

"H3 can only forward to H4"

• Correctness:

... shown in a similar fashion...

- H3 can forward to H4 (H3 \rightarrow >> H4)
- H3 cannot forward to H1 or H2 (H3 -/->> H1,2)

- Programmer 1: "H1 can only forward to H2" / switch policy p1
- Programmer 2: "H3 can only forward to H4" / switch policy p2
- Assume Programmer 3 implements p as the union of the two correct policies p1 and p2

p = p1 + p2

- Network becomes $(p \cdot t)^* = ((p1 + p2) \cdot t)^*$
- Does H1 -/->> H3,4 still hold?

H1 -/->> H3,4 holds iff

 $|-pt = 1 \cdot ((p1 + p2) \cdot t)^* \cdot (pt = 3 + pt = 4) = 0$ iff

|-pt = 1 . pt < -4 + P = 0

3. Towards a Framework for Causality

What Is the Cause? - Obvious Challenges -

H1 -/->> H3,4 holds iff

 $|-pt = 1 . ((p1 + p2) . t)^* . (pt = 3 + pt = 4) = 0$ iff

(acc. to NetKAT axioms)

What Is the Cause? - Obvious Challenges -

H1 -/->> H3,4 holds iff

 $|-pt = 1 . ((p1 + p2) . t)^* . (pt = 3 + pt = 4) = 0$ iff

(acc. to NetKAT axioms)

What Is the Cause? - Possible Solution -

 $|-pt = 1 . ((p1 + p2) . t)^* . (pt = 3 + pt = 4) = 0$ iff (... axioms)

|-pt = 1.pt < -1.pt < -5.pt < -6.pt < -4 + Psf = 0Inhibit some of the axioms, e.g.: f < -n.f < -n' = f < -n' [PA-MOD-MOD]"Approximate

"Approximate" *
(p.t)* = (1 + p.t)^n
for some n...

and remove *-unfolding axioms

* "Approximation"
A - the set of all tests
$$f=n$$

 π - the set of all assignments $f \in m$
Assume $p = \sum_{i=1}^{n} \alpha_i \cdot \pi_i$, with $\alpha_i \in A^*$, $\pi_i \in \pi^*$
 $t \cdot a$ topology
Observation: p entoils ~ loop-free path
from in to out crossing
 at most n switches
 $\int new axiom$
 $(p,t)^* = (i+p,t)^n$

Some Terminology...

Consider the SAFETY property :

$$F in.(p.t)^* \text{ out } \equiv 0 \quad (*)$$
The CAUSE w.n.t. the violation of (*) is
$$C = \frac{z}{g \in support(g')} \quad \text{where}$$

$$F_* in.(p.t)^*, \text{ out } \equiv 2, , 2 \neq 0$$

$$Q' = TF(Q)$$
Conjecture : $F = C \equiv NF(in.(p.t)^*, out)$

Questions?

- Current & Future Work:
 - Trace back the cause into the original code
 - How does the counterfactual look like?
 - Handling other interesting network properties
 - E.g., waypointing...
 - Responsibility, blame