
Causal Reasoning in 
SDNs (NetKAT)

Georgiana Caltais, University of Konstanz

Shonan Seminar -“Causal Reasoning in Systems”


          24-27 June, 2019

�1



Outline
1. NetKAT - the Language


2. Reasoning & Verification


3. Towards a Framework for Causality


Sources:


“Programming, Modeling & Reasoning about Networks” (online tutorial by S.Smolka)


“NetKAT: Semantic Foundation for Networks” [C.J.Anderson et. al.], POPL’14


“A Fast Complier for NetKAT” [S.Smolka et. al.], ICFP’15

!2



1. NetKAT - the Language

!3



NetKAT Program - Example

!4



NetKAT Syntax & Semantics



Encoding Switch 
Forwarding Tables

!6



Encoding Network 
Topologies (I)

!7



Encoding Network 
Topologies (II)

!8



Encoding Networks

!9



Encoding Networks

!10



Encoding Networks

!11



Encoding Networks

!12



Encoding Networks

!13



2. Reasoning & Verification

!14



Network Verification

!15

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]



Network Verification

!16

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]



Network Verification

!17

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]



Network Verification

!18

• Sound & Complete Axiomatisation [C.J.Anderson et. al.]


[[p]] = [[q]]  iff |— p = q  

• E.g., Reachability:


 “Does the network forward from ingress (in) to egress (out)”?


NO iff |— in . (switch.topology)* . out = 0


YES iff  |— in . (switch.topology)* . out =/= 0



Reasoning About Correctness 
of NetKAT Programs

• Programmer 1 has to implement a switch policy s.t.:


“H1 can only forward to H2”


• Correctness:


• H1 can forward to H2 (H1 —>> H2)


• H1 cannot forward to H3 or H4 (H1 -/->> H3,4)
!19



Reasoning About Correctness 
of NetKAT Programs

“H1 can only forward to H2”


• Policy p1 : (pt = 1 .  pt <— 5) + (pt = 6 . pt <— 2)


H1 can forward to H2 (H1 —>> H2)


• |— (pt = 1) . (p1 . t)* . (pt = 2) =/= 0


H1 cannot forward to H3 or H4 (H1 -/->> H3,4)


• |— (pt = 1) . (p1 . t)* . (pt = 3 + pt = 4) = 0
!20

H1 —>> H2 
H1 -/->> H3,4 

Proven correct based on the axioms!



Reasoning About Correctness 
of NetKAT Programs

• Programmer 2 has to implement a switch policy s.t.:


“H3 can only forward to H4”


• Correctness:


• H3 can forward to H4 (H3 —>> H4)


• H3 cannot forward to H1 or H2 (H3 -/->> H1,2)
!21

… shown in a similar fashion…



Reasoning About Correctness 
of NetKAT Programs

• Programmer 1: “H1 can only forward to H2” / switch policy p1


• Programmer 2: “H3 can only forward to H4” / switch policy p2


• Assume Programmer 3 implements p as the union of the two correct policies p1 and p2


p = p1 + p2


• Network becomes (p . t)* = ((p1 + p2) . t)*


• Does H1 -/->> H3,4 still hold?
!22



Reasoning About Correctness 
of NetKAT Programs

H1 -/->> H3,4 holds iff


|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff


                                                            (acc. to NetKAT axioms)


|— pt = 1 . pt <— 4  + P = 0   
!23

What is the cause?



3. Towards a Framework for Causality

!24



What Is the Cause? 
- Obvious Challenges -

H1 -/->> H3,4 holds iff


|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff


                                                            (acc. to NetKAT axioms)


|— pt = 1 . pt <— 4  + P = 0   

provides too 
 little information contains *

!25



What Is the Cause? 
- Obvious Challenges -

H1 -/->> H3,4 holds iff


|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff


                                                            (acc. to NetKAT axioms)


|— pt = 1 . pt <— 4  + P = 0   

provides too 
 little information

“Star Elimination” 
in [C.J.Anderson et. al] 

assumption: no dup, no sw <— 
uses all axioms to build the Normal Form of P, NF (P) 

|— P ~ NF(P)  
… provides too little information as well…

!26



What Is the Cause? 
- Possible Solution -

|— pt = 1 . ((p1 + p2) . t)* . (pt = 3 + pt = 4) = 0 iff (… axioms)


|— pt = 1 . pt <— 1 . pt <— 5 . pt <— 6 . pt <— 4  + Psf = 0   

Inhibit some of the axioms, e.g.: 
f <— n . f <— n’ = f <— n’ [PA-MOD-MOD] “Approximate” * 

(p.t)* = (1 + p.t)^n 
for some n… 

and remove *-unfolding 
axioms

!27



* “Approximation”

!28



Some Terminology…

!29



!30



Questions?
• Current & Future Work:


• Trace back the cause into the original code


• How does the counterfactual look like?


• Handling other interesting network properties


• E.g., waypointing…


• Responsibility, blame

!31


