Causal Reasoning in SDNs (NetKAT)

Georgiana Caltais, University of Konstanz
Shonan Seminar -"Causal Reasoning in Systems"
24-27 June, 2019

Outline

1. NetKAT - the Language
2. Reasoning \& Verification
3. Towards a Framework for Causality

Sources:
"Programming, Modeling \& Reasoning about Networks" (online tutorial by S.Smolka)
"NetKAT: Semantic Foundation for Networks" [C.J.Anderson et. al.], POPL'14
"A Fast Complier for NetKAT" [S.Smolka et. al.], ICFP'15

1. NetKAT - the Language

Regular Expressions

$$
+, ;, *
$$

Boolean Algebra true, false, $\mathrm{f}=\mathrm{n}$, a\&b, a|b, ᄀa

Network Primitives

$$
f:=n, A \rightarrow B
$$

NetKAT Program - Example

$$
\begin{aligned}
& \text { switch }=6 \text {; port }=88 \text {; dest }:=10.0 .0 .1 \text {; } \\
& (\text { port }:=50+\text { port }:=51)
\end{aligned}
$$

"For all packets incoming on port 88 of switch 6, set the destination IP address to 10.0.0.1 and multicast the packet out of ports 50 and 51."

NetKAT Syntax \& Semantics

Syntax

Fields $\quad f::=f_{1}|\cdots| f_{k}$
Packets $p k::=\left\{f_{1}=v_{1}, \cdots, f_{k}=v_{k}\right\}$
Histories $\quad h::=p k::\langle \rangle \mid p k:: h$
Predicates $a, b::=1 \quad$ Identity

0	Drop
$f=n$	Test

$a+b \quad$ Disjunction
$a \cdot b \quad$ Conjunction
$\neg a \quad$ Negation
Policies $p, q::=a$
$f \leftarrow n \quad$ Modification
$p+q \quad$ Union
$p \cdot q \quad$ Sequential composition
$p^{*} \quad$ Kleene star
dup Duplication

Semantics

$$
\begin{gathered}
\llbracket p \rrbracket \in \mathbf{H} \rightarrow \mathcal{P}(\mathbf{H}) \\
\llbracket 1 \rrbracket h \triangleq\{h\} \\
\llbracket 0 \rrbracket h \triangleq\} \\
\llbracket f=n \rrbracket(p k:: h) \triangleq\left\{\begin{array}{l}
\{p k:: h\} \quad \text { if } p k \cdot f=n \\
\llbracket\} \\
\llbracket \neg a \rrbracket h \triangleq\{h\} \backslash(\llbracket a \rrbracket h) \\
\text { otherwise }
\end{array}\right. \\
\llbracket f \leftarrow n \rrbracket(p k:: h) \triangleq\{p k[f:=n]: h\} \\
\llbracket p+q \rrbracket h \triangleq \llbracket p \rrbracket h \cup \llbracket q \rrbracket h \\
\llbracket p \cdot q \rrbracket h \triangleq(\llbracket p \rrbracket \bullet \llbracket q \rrbracket) h \\
\llbracket p^{*} \rrbracket h \triangleq \bigcup_{i \in \mathbb{N}} F^{i} h \\
\text { where } F^{0} h \triangleq\{h\} \text { and } F^{i+1} h \triangleq\left(\llbracket p \rrbracket \bullet F^{i}\right) h \\
\llbracket \text { dup』 }(p k:: h) \triangleq\{p k::(p k:: h)\}
\end{gathered}
$$

Encoding Switch Forwarding Tables

Pattern	Action
\star	$\mathrm{pt} \leftarrow 2$

(a) An atomic modification

Pattern	Action
$\mathrm{dst}=\mathrm{A}$ \star	true false

(b) An atomic predicate

Pattern	Action		
$\mathrm{dst}=\mathrm{A}$	$\mathrm{pt} \leftarrow 1$		
$\mathrm{dst}=\mathrm{B}$	$\mathrm{pt} \leftarrow 2$		
\star	false	\quad pol ${ }_{D} \triangleq$	$\mathrm{dst}=\mathrm{A} \cdot \mathrm{pt} \leftarrow 1+$
:---			
$\mathrm{dst}=\mathrm{B} \cdot \mathrm{pt} \leftarrow 2$			

(d) Forwarding traffic to two hosts

(e) Monitoring SSH traffic and traffic to host A

Encoding Network Topologies (I)

$$
\begin{aligned}
& \text { topalogy, e.g. } \\
& t \equiv s w=A \cdot p t=5 . \quad s w \leftarrow B \cdot p t \in 6+ \\
& s w=B \cdot p t=6 \cdot s w \leftarrow A \cdot p t \leftarrow 5+ \\
& s w=A \cdot(p t=1+p t=3)+ \\
& s w=b \cdot(p t=2+p t=4)
\end{aligned}
$$

Encoding Network Topologies (II)

Host 1

$$
\begin{aligned}
& \text { topology (assuming all pots different): } \\
& t=\begin{array}{c}
p t=5 \cdot p t<6+p t=6 \cdot p t \leftarrow 5+ \\
p t=1+p t=2+p t=3+p t=4
\end{array}
\end{aligned}
$$

Encoding Networks

A network can be encoded in NetKAT by interleaving steps of processing by switches and topology

(topology; switch)*

Encoding Networks

A network can be encoded in NetKAT by interleaving steps of processing by switches and topology

(topology; switch)*

Encoding Networks

A network can be encoded in NetKAT by interleaving steps of processing by switches and topology

(topology; switch)*

Encoding Networks

A network can be encoded in NetKAT by interleaving steps of processing by switches and topology

(topology; switch)*

Encoding Networks

A network can be encoded in NetKAT by interleaving steps of processing by switches and topology

(topology; switch)*

2. Reasoning \& Verification

Network Verification

- Sound \& Complete Axiomatisation [C.J.Anderson et. al.]

Kleene Algebra Axioms

$$
\begin{aligned}
p+(q+r) & \equiv(p+q)+r \\
p+q & \equiv q+p \\
p+0 & \equiv p \\
p+p & \equiv p \\
p \cdot(q \cdot r) & \equiv(p \cdot q) \cdot r \\
1 \cdot p & \equiv p \\
p \cdot 1 & \equiv p \\
p \cdot(q+r) & \equiv p \cdot q+p \cdot r \\
(p+q) \cdot r & \equiv p \cdot r+q \cdot r \\
0 \cdot p & \equiv 0 \\
p \cdot 0 & \equiv 0 \\
1+p \cdot p^{*} & \equiv p^{*} \\
q+p \cdot r \leq r & \nRightarrow p^{*} \cdot q \leq r \\
1+p^{*} \cdot p & \equiv p^{*} \\
p+q \cdot r \leq q & \not p p \cdot r^{*} \leq q
\end{aligned}
$$

Network Verification

- Sound \& Complete Axiomatisation [C.J.Anderson et. al.]

Additional Boolean Algebra Axioms

$$
\begin{aligned}
a+(b \cdot c) & \equiv(a+b) \cdot(a+c) & & \text { BA-PLUs-DIST } \\
a+1 & \equiv 1 & & \text { BA-PLUS-ONE } \\
a+\neg a & \equiv 1 & & \text { BA-EXCL-MID } \\
a \cdot b & \equiv b \cdot a & & \text { BA-SEQ-COMM } \\
a \cdot \neg a & \equiv 0 & & \text { BA-CONTRA } \\
a \cdot a & \equiv a & & \text { BA-SEQ-IDEM }
\end{aligned}
$$

Network Verification

- Sound \& Complete Axiomatisation [C.J.Anderson et. al.]

Packet Algebra Axioms

$$
\begin{array}{ll}
f \leftarrow n \cdot f^{\prime} \leftarrow n^{\prime} \equiv f^{\prime} \leftarrow n^{\prime} \cdot f \leftarrow n, \text { if } f \neq f^{\prime} \text { PA-MOD-MOD-COMM } \\
f \leftarrow n \cdot f^{\prime}=n^{\prime} \equiv f^{\prime}=n^{\prime} \cdot f \leftarrow n, \text { if } f \neq f^{\prime} & \text { PA-MOD-FILTER-COMM } \\
\text { dup } \cdot f=n \equiv f=n \cdot \operatorname{dup} & \text { PA-DUP-FILTER-COMM } \\
f \leftarrow n \cdot f=n \equiv f \leftarrow n & \text { PA-MOD-FILTER } \\
f=n \cdot f \leftarrow n \equiv f=n & \text { PA-FILTER-MOD } \\
f \leftarrow n \cdot f \leftarrow n^{\prime} \equiv f \leftarrow n^{\prime} & \text { PA-MOD-MOD } \\
f=n \cdot f=n^{\prime} \equiv 0, \text { if } n \neq n^{\prime} & \text { PA-CONTRA } \\
\sum_{i} f=i \equiv 1 & \text { PA-MATCH-ALL }
\end{array}
$$

Network Verification

- Sound \& Complete Axiomatisation [C.J.Anderson et. al.]

$$
[[p]]=[[q]] \text { iff } \mid-p=q
$$

- E.g., Reachability:
"Does the network forward from ingress (in) to egress (out)"?

NO iff |- in . (switch.topology)* . out $=0$

YES iff |- in. (switch.topology)* . out =/= 0

Reasoning About Correctness of NetKAT Programs

- Programmer 1 has to implement a switch policy s.t.:
"H1 can only forward to H2"
- Correctness:
- H1 can forward to $\mathrm{H} 2(\mathrm{H} 1-\gg \mathrm{H} 2)$
- H1 cannot forward to H3 or H4 (H1 -/->> H3,4)

Reasoning About Correctness of NetKAT Programs

$$
\mathrm{H} 1-\gg \mathrm{H} 2
$$

H1-/->> H3,4
Proven correct based on the axioms!

- Policy p1 : $(\mathrm{pt}=1 . \mathrm{pt}<-5)+(\mathrm{pt}=6 . \mathrm{pt}<-2)$

H1 can forward to $\mathrm{H} 2(\mathrm{H} 1-\gg \mathrm{H} 2)$

$$
\text { - } \mid-(p t=1) \cdot(p 1 \cdot t)^{*} \cdot(p t=2)=/=0
$$

H1 cannot forward to H3 or H4 (H1-/->> H3,4)

$$
\text { - } \mid-(p t=1) \cdot(p 1 \cdot t)^{\star} \cdot(p t=3+\underset{20}{ }=4)=0
$$

Reasoning About Correctness of NetKAT Programs

- Programmer 2 has to implement a switch policy s.t.:

"H3 can only forward to H4"

- Correctness:
... shown in a similar fashion...
- H3 can forward to H4 (H3 ->> H4)
- H3 cannot forward to H1 or H2 (H3 -/->> H1,2)

Reasoning About Correctness of NetKAT Programs

- Programmer 1: "H1 can only forward to H2" / switch policy p1
- Programmer 2: "H3 can only forward to H4" / switch policy p2
- Assume Programmer 3 implements p as the union of the two correct policies p1 and p2

$$
\mathrm{p}=\mathrm{p} 1+\mathrm{p} 2
$$

- Network becomes (p.t) $)^{\star}=((p 1+p 2) \cdot t)^{\star}$
- Does H 1 -/->> H3,4 still hold?

Reasoning About Correctness of NetKAT Programs

H1 -/->> H3,4 holds iff
$\mid-p t=1 \cdot((p 1+p 2) \cdot t)^{*} \cdot(p t=3+p t=4)=0 i f f$
(acc. to NetKAT axioms)
$\mid-\mathrm{pt}=1 . \mathrm{pt}<-4+\mathrm{P}=0$
What is the cause?

3. Towards a Framework for Causality

What Is the Cause? - Obvious Challenges -

H1 -/->> H3,4 holds iff
$\mid-p t=1 \cdot((p 1+p 2) \cdot t)^{*} \cdot(p t=3+p t=4)=0 i f f$
(acc. to NetKAT axioms)
$\mid-\mathrm{pt}=1 \cdot \mathrm{pt}<-4+\mathrm{P}=0$
provides too
little information

What Is the Cause? - Obvious Challenges -

H1 -/->> H3,4 holds iff
$\mid-p t=1 \cdot((p 1+p 2) \cdot t)^{*} \cdot(p t=3+p t=4)=0 i f f$
(acc. to NetKAT axioms)
$\mid-\mathrm{pt}=1 . \mathrm{pt}<-4+\mathrm{P}=0$
provides too
little information

in [C.J.Anderson et. al]
assumption: no dup, no sw <-
uses all axioms to build the Normal Form of P, NF (P)

$$
\mid-P \sim N F(P)
$$

... provides too little information as well...

What Is the Cause? - Possible Solution -

$\mid-p t=1 \cdot((\mathrm{p} 1+\mathrm{p} 2) \cdot \mathrm{t})^{\star} \cdot(\mathrm{pt}=3+\mathrm{pt}=4)=0$ iff $(\ldots$ axioms $)$
$\mid-\mathrm{pt}=1 . \mathrm{pt}<-1 . \mathrm{pt}<-5 . \mathrm{pt}<-6 . \mathrm{pt}<-4+\mathrm{Psf}=0$

Inhibit some of the axioms, e.g.:
$\mathrm{f}<-\mathrm{n} . \mathrm{f}<-\mathrm{n}^{\prime}=\mathrm{f}<-\mathrm{n}^{\prime}$ [PA-MOD-MOD]

"Approximate" * $(p . t)^{*}=(1+p . t)^{\wedge} n$ for some n ...
and remove *-unfolding axioms

* "Approximation"

A - the set of all tests $f=n$
π - the set of al assignments $f \in m$
Assume $p=\sum_{i=1}^{n} \alpha_{i} \cdot \pi_{i}$, with $\alpha_{i} \in A^{*}, \pi_{i} \in \pi^{*}$
t - a topology
Observation: pintails r. loop-free path from in to out crossing at most on switches

II new axiom

$$
(p \cdot t)^{*} \equiv(1+p \cdot t)^{n}
$$

Some Terminology...

Let F_{*} be the emtectment relation our the - new axionotizotion
p in Tree-Fom if $p=\sum_{i=1}^{m} p_{i} ; p_{i} \in\left(A^{*} \cdot \pi^{*}\right)^{*}$ notation: $p_{i} \in P, T \neq(p)$

$$
\text { support }(\underline{g})=\left\{\bar{g} \pm 2 \mid y \tilde{o}_{\mathcal{L}} \in 2 \cdot \tilde{\alpha}_{\alpha} \subset \overline{\mathcal{L}}\right\}, \text { in True Fri }
$$

Consider the SAFCTY property:

$$
\begin{equation*}
\vdash \text { in. }(p, t)^{*} \text {. out } \equiv 0 \tag{*}
\end{equation*}
$$

The CAUSE w.n.t. the violation of (t) is

$$
\begin{aligned}
& \quad C=\sum_{\overline{2} \in \operatorname{suppot}\left(g_{2}^{\prime}\right)} \overline{2} \text { where } \\
& F_{*} \text { in. }(p \cdot t)^{*} \cdot \text { out } \equiv 2,2 \neq 0 \\
& \mathcal{L}^{\prime}=T F(g)
\end{aligned}
$$

Conjecture: $t c \equiv N F\left(\right.$ in. $(p . t)^{*}$. out $)$

Questions?

- Current \& Future Work:
- Trace back the cause into the original code
- How does the counterfactual look like?
- Handling other interesting network properties
- E.g., waypointing...
- Responsibility, blame

