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Overview of Lectures, June 18-19

Introduction to Data Analytics. Linear Algebra in Data
Analytics (focus: Low Rank Approximation)

Constrained Low Rank Approximation (CLRA) and Data
Analytic Tasks (focus: Dimension Reduction and Clustering)

Constrained Low Rank Approximation:

Nonnegative Matrix Factorization (NMF) for dimension
reduction, clustering, and topic modeling
Symmetric NMF for graph clustering and community detection
JointNMF for clustering utilizing content/attributes and
connection information

Applications in text and social network analyses
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Overview of Lecture 1

Introduction to Data Analytics : Challenges

Role of Linear Algebra in Data Analytics, specifically, Low Rank
Approximation (LRA) : SVD and Rank

Park Intro to Data Analytics 3 / 45



Big Data

Volume: Large number of data items, High-dimensional, Complex relationships
Variety: Of heterogeneous formats, sources, reliability
Velocity: Time varying, dynamic,...
Veracity: Noisy, varying quality, errors and missing values are inevitable in real data set
... Vast majority of data is unstructured: Text

(Reproduction from a slide courtesy of IBM)
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The Challenge

Transform the data into knowledge (understanding, insight),
making it useful to people

Ways to get to Knowledge: Automated algorithms and
Visualization

Faster methods to solutions
Accurate solutions/less errors
Better understanding/interpretation
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DATA

Data is taken from some phenomena from the world

Data refers to qualitative or quantitative attributes of a
variable or set of variables

Data is the lowest level of abstraction from which information
and then knowledge are derived

Examples: Text data from news articles, image data from
satellites, video data from surveillance cameras, connection
data from social network

How to provide data to vector-space based algorithms:

Data Representation in matrices or tensors
Feature (attribute)-data relationship or data-data relationship
Dimension: often refers to the number of features/attributes
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Major Tasks in Data Analytics

Dimension Reduction

Clustering

Classification

Regression

Trend analysis

...
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Numerical Linear Algebra

Problems:

Linear systems
Least Squares
Eigenvalue problems

Methods:

Direct: often involves Decomposition (Factorization) of a
matrix, to transform the given problem into another problem
which is easeir to solve: LU, QR, SVD, EVD, ...
Iterative

Since the main topic is Constrained Low Rank Approximation,
we will first focus on Rank and SVD
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Singular Value Decomposition

For any matrix A ∈ Rm×n, there exist matrices U,V ,Σ such that
A = UΣV T ,
where U ∈ Rm×m,UTU = Im, V ∈ Rn×n,V TV = In,
Σ = diag(σ1, σ2, · · · ) ∈ Rm×n where

Σ =


σ1

. . .

σn
0

 when m ≥ n,

Σ =

 σ1
. . . 0

σn

 when m ≤ n,

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are singular values .
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Properties of SVD

Suppose for A ∈ Rm×n(m ≥ n), we have its SVD A = UΣV T .

ATA = V ΣTUTUΣV T = V ΣTΣV T where
ΣTΣ = diag(σ21, · · · , σ2n)

AAT = UΣV TV ΣTUT = UΣΣTUT where
ΣTΣ = diag(σ21, · · · , σ2n, 0, · · · , 0)

If Σ = diag(σ1, · · · , σn) = diag(σ1, · · · , σr , 0, · · · , 0), i.e.
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0, then rank(A) = r

With A = UΣV T =
[

U1 U2

] [ Σ1 0
0 0

] [
V1

V2

]
where

Σ1 = diag(σ1, · · · , σr ) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

Range(A) = span(U1), Null(A) = span(V2).

Range(AT ) = span(V1), Null(AT ) = span(U2).
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QR Decomposition

For any matrix A ∈ Rm×n, ∃ orthogonal matrix Q ∈ Rm×m

(QTQ = Im) and upper triangular matrix R ∈ Rn×n, s.t.

A = Q

[
R
0

]
.

Theorem. If A = [a1 · · · an] ∈ Rm×n has rank(A) = n, and

A = Q

(
R
0

)
, where Q = ( Q1︸︷︷︸

n

Q2︸︷︷︸
m−n

) = [q1 · · · qn],

then A = Q1R and

span{a1 · · · ak} = span{q1 · · · qk}, for all k = 1, · · · , n.

Range(A) = Range(Q1) and Range⊥(A) = Range(Q2).

RT in the QRD of A is the Cholesky factor of ATA
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SVD and QRD

Main differences between SVD and QRD?

Park Intro to Data Analytics 12 / 45



Least Squares Problem - QRD

Linear System Ax = b where A : n × n nonsingular and b : n × 1
Least Squares Ax ≈ b where A : m × n with m ≥ n and b : m × 1
For solving least squares (LS) problem, we need orthogonalization
to reduce matrices to canonical forms : QR factorization
(decomposition) or SVD.
‖Ax − b‖2 = ‖QTAx − QTb‖2 for any orthogonal matrix Q
(QTQ = I )

Suppose there is an orthogonal matrix Q,QTA =

(
R
0

)
, then

‖QTAx − QTb‖2 = ‖
(

R
0

)
x −

(
c
d

)
‖2 = ‖

(
Rx − c
−d

)
‖2 where

QTb =

(
c
d

)
Solution x is obtained by solving Rx = c when rank(A) = n
(When rank(A) = n, rank(R) = n)
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Least Squares Problem – SVD

Solving LS
min
x
‖Ax − b‖2, A ∈ Rm×n, b ∈ Rm×1, m ≥ n.

Let the SVD of A be

A = UΣV T =
[

U1 U2

] [ Σ1 0
0 0

] [
V1 V2

]T
where U1 ∈ Rm×r , U2 ∈ Rm×(m−r), Σ1 = diag(σ1, · · · , σr ),
σ1 ≥ · · · ≥ σr > 0,
and V1 ∈ Rn×r , V2 ∈ Rn×(n−r),i.e. rank(A) = r .
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Least Squares Problem – SVD

‖Ax − b‖2 =
∥∥∥UΣV T x − b

∥∥∥
2

=
∥∥∥UT (UΣV T x − b)

∥∥∥
2

=
∥∥∥ΣV T x − UTb

∥∥∥
2

Letting V T x =

(
V T
1

V T
2

)
x =

(
y
z

)
} r
} n − r

UTb =

(
UT
1

UT
2

)
b =

(
c
d

)
} r
} m − r

=

∥∥∥∥[ Σ1 0
0 0

] [
y
z

]
−
[

c
d

]∥∥∥∥ =

∥∥∥∥[ Σ1y − c
−d

]∥∥∥∥
2
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Least Squares Problem – SVD

Since Σ1 ∈ R r×r , non-singular, we can find the unique solution for
Σ1y − c = 0⇐⇒ Σ1y = c ⇐⇒ y = Σ−11 c .

Letting r(x) = ‖Ax − b‖2, the residual r(xLS) = ‖d‖ where xLS is
the LS solution.

The solution is

xLS = V

[
y
z

]
where y = Σ−11 c and z can be anything. (if rank(A) = n, z is null).

xLS =
(

V1 V2

)( y
z

)
= V1y + V2z

Note V2z ∈ null(A).

When z = 0, xLS = V

[
Σ−11 c

0

]
is called minimum-norm

solution.
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Least Squares Problem – SVD

In some applications, just need to compute L2 norm of the residual
vector.

=⇒ Can be done WITHOUT computing the solution vector x .

r = AxLS − b
‖r‖2 = ‖AxLS − b‖2

r = UΣV T xLS − b

= U

(
Σ1 0
0 0

)(
y
z

)
− U

(
c
d

)
= U

(
Σ1y − c
−d

)
= U

(
0
−d

)
∴ ‖r‖2 = ‖U

(
0
−d

)
‖2 = ‖d‖2.
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Rank Decision in LS and SVD

A = UΣV T = U



1
0.5

10−14

10−16

V T

Depending on rank decision (2 or 3 or 4?), we obtain very different
solutions.
If we consider the tolerance ε s.t. 10−16 < ε, and rank(A) = 3,

Σ1 =

 1
0.5

10−14

,y =

 1
2

1014

 x
x
x

.

If we consider the tolerance ε s.t. 10−14 < ε, and rank(A) = 2,

Σ1 =

[
1

0.5

]
,y =

[
1

2

] [
x
x

]
.
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Rank Decision in LS and SVD

Min-norm solution:

the first case, xLS = V


 1

2
1014

 x
x
x


0


the second case, xLS = V

 [ 1
2

] [
x
x

]
0


Determination of numerical rank can be difficult. Usually we find a

large gap.


1

10−1

10−2

10−3

. . .

 no gap?
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Condition Number and Numerical Rank

Ex.

A =


1 −1 −1 −1

1 −1 −1
1 −1

1

, det(A) = 1

A−1 =


1 2 2 4

1 2 2
1 2

1



In general A−1(1, n) = 2n−2 when A =


1 −1 −1 −1

1 −1 −1
1 −1

1


K1(A) = ‖A‖1

∥∥A−1
∥∥
1
≈ n · 2n−2

The reason of “bad” solution:

1 Algorithm is bad? (unstable)
2 Problem difficult? (ill-conditioned)
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Reduced Rank in Data Analytics

In data analytics, reduced rank k of interest is the reduced
dimension or the number of clusters, topics, communities

Often k is much smaller than the rank of the data matrix r

However, an optimal reduced rank k in data analytics is not
easy to determine either: the optimal number of clusters? the
optimal reduced dimension ?

Will assume k is given and k << r : often requres very severe
low rank approximation
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QRD vs SVD: Rank Revealing?

QRD with Column Pivoting can Reveal Rank
If A = QR and rank(A) = n, then
span {a1, · · · , ak} = span {q1, · · · , qk}, 1 ≤ k ≤ n where
A =

[
a1 · · · an

]
, Q =

[
q1 · · · qn

]
.

Why QRD with Column Pivoting?

E.g. A =

 1 1 1
1
1

.rank(A) = 2.

Consider QRD of A

A = QR =

 1
1

1

 1 1 1
1
1


Although rank(A) = 2, we don’t have Range(A) = span {qi , qj : i 6= j}. QRD
with C.P. can help us to maintain span {a1, · · · , ak} = span {q1, · · · , qk} in
rank deficient case.
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Least Squares Problem – Rank Deficient

For any A ∈ Rm×n, QRD with Column Pivoting computes

AΠ = Q

(
R
0

)
, where

R =

 R11 R12

0︸︷︷︸ 0︸︷︷︸
(n − r)× r (n − r)× (n − r)


where R11 ∈ Rr×r is upper triangular, R12 ∈ Rr×n−r ,
r = rank(A) = rank(R) = rank(R11).

Q ∈ Rm×m, orthogonal; Π ∈ Rn×n, permutation.
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Least Squares Problem – Rank Deficient

AΠ = Q

[
R
0

]
= Q

 R11 R12

0 0
0 0

⇐⇒ A =

Q

 R11 R12

0 0
0 0

ΠT .

‖Ax − b‖2 =

∥∥∥∥Q

[
R11 R12

]
ΠT x − b

∥∥∥∥
2

=∥∥∥∥[ R11 R12

]
ΠT x − QTb

∥∥∥∥
2

Letting ΠT x =

[
y
z

]
} r
} n − r

, QTb =

[
c
d

]
} r
} m − r

,

‖Ax − b‖2 =

∥∥∥∥∥∥
 R11 R12

0 0
0 0

[ y
z

]
−
[

c
d

]∥∥∥∥∥∥
2

=∥∥∥∥( R11y + R12z − c
−d

)∥∥∥∥
2

‖Ax − b‖22 = ‖R11y + R12z − c‖22 + ‖d‖22
We can choose

(
y
z

)
so that

R11y + R12z − c = 0⇐⇒ R11y = c − R12z
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Least Squares Problem – Rank Deficient

z can be anything, and y can be chosen so that R11y = c − R12z .
Can set z = 0, then y satisfies R11y = c .

x = Π

[
R−111 (c − R12z)

z

]
where z is free.

If we set z = 0, we get basic solution x = Π

[
R−111 c

0

]
.

When rank(A) = n, AΠ = Q

[
R11

0

]
and R11 = R.
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Least Squares Problem – Rank Deficient

QRD with Column Pivoting

A can be nearly rank deficient without any fl(R
(k)
22 ) being very

small.

From V. Kahan

Tn(c) = diag(1, s, s2, · · · sn−1)


1 −c · · · −c

1
. . .

...
. . . −c

1
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Least Squares Problem – Rank Deficient

T5(c) =


1 −c −c −c −c

s −cs −cs −cs
s2 −cs2 −cs2

s3 −cs3

s4


k = 1: all columns have norm 1 −→ no permutation, no
annihilation.
k = 2: c2s2 + s4 = s2(c2 + s2) = s2 all columns have same norm
−→ no permutation, no annihilation.

For any k ,
∥∥∥R

(k+1)
22

∥∥∥
F
≥ sn−1.

T100(0.2) has no very small trailing principal submatrix since∥∥∥R
(k+1)
22

∥∥∥
F
≥ s99 ≈ 0.13, but σ100 ≈ 10−8.

QRD with column pivoting is not completely reliable for detecting
near rank deficiency.
However in practice, QRD with column pivoting works well.
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Eigenvalue Problem

Given a matrix A ∈ Cn×n, ∃ n scalars λi (eigenvalues), n vectors
vi 6= 0(eigenvectors), s.t. Avi = λivi .

Set of eigen values of A: λ {A}
Eigenvalues are the roots of characteristic polynomial
PA(λ) = det(λI − A) or det(A− λI )

e.g. A =

[
1 2
3 4

]
, λI − A =

[
λ− 1 −2
−3 λ− 4

]
,

det(λI − A) = (λ− 1)(λ− 4)− 6 = 0

Eigenvalues of a diagonal matrix are the diagonal elements.
Eigenvalues of a triangular matrix are the diagonal elements.
p(λ) = det(λI − A) has n roots.
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Eigenvalue Problem

Definition: Two matrices A and B are similar, if B = X−1AX for a
nonsingular matrix X . X is called similarity transformation.

Theorem. If A and B are similar, i.e. ∃X is nonsingular, s.t.
B = X−1AX , then λ{A} = λ{B}.

Note that here X is not necessarily unitary.

Proof: PA(λ) = det(λI − A),
PB(λ) = det(λI − X−1AX ) = det(X−1(λI − A)X ) =
det(X−1) det(λI − A) det(X ) = det(λI − A) as
1 = det(I ) = det(X−1X ) = det(X−1) det(X )

To preserve eigen values, we have to use similarity transformations.
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Symmetric Eigenvalue Decomposition and SVD

Schur Decomposition: For any B ∈ Cn×n, there exists a unitary
matrix Q ∈ Cn×n s.t. QHBQ = T where T ∈ Cn×n is upper
triangular and the diagonal elements of T are the eigenvalues of B.
Symmetric EVD: For any B ∈ Rn×n with BT = B , there exists an
orthogonal matrix Q =

[
q1 · · · qn

]
s.t.

QTBQ = Λ = diag(λ1, · · · , λn), where λi are eigenvalues and qi

are eigenvectors.

QTBQ = Λ⇐⇒ BQ = QΛ⇐⇒

B
[

q1 · · · qn

]
=
[

q1 · · · qn

]  λ1
. . .

λn
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Conditional Number and SVD

For a matrix A, ‖A‖2 = σ1(A) where A = UΣV T ∈ Rm×n,
UTU = V TV = I , Σ = diag(σ1, · · · , σn), σ1 ≥ · · · ≥ σn > 0

ATA = V ΣTΣV T . Largest eigenvalue of ATA = σ21,
‖A‖2 =

√
(largest eigen value of ATA)

Consider Ax = b, A ∈ Rn×n. Condp(A) = ‖A‖p
∥∥A−1

∥∥
p
,

Cond2(A) = ‖A‖2
∥∥A−1

∥∥
2

= σ1×?

Assume rank(A) = n, A = UΣV T , A−1 = V Σ−1UT , hence∥∥A−1
∥∥
2

= 1
σn

,
Cond2(A) = σ1/σn

.
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Pseudo-Inverse from SVD

Assume A ∈ Rm×nhas its SVD

A = UΣV T =
[

U1 U2

] 
Σ1 0
0 0
0 0

 [ V1 V2

]T
where

Σ1 = diag(σ1, · · · , σr ), σ1 ≥ · · · ≥ σr > 0

The pseudo-inverse is A+ = V

[
Σ−11

]
UT

which is the unique minimal Frobenius norm solution to
minX∈Rn×m ‖AX − Im‖F .
If rank(A) = n, A+ = (ATA)−1AT

If rank(A) = n = m, A+ = A−1

Moore-Penrose pseudo-inverse A+ for A ∈ Rm×n is a unique
matrix X that satisfies:
1. AXA = A 2. XAX = X 3. (AX )T = AX 4. (XA)T = XA
Note: LS solution for min ‖Ax − b‖2: xLS = A+b
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SVD and Lower Rank Approximation

For any matrix A ∈ Rm×n, ∃ matrices U,V ,Σ such that

A = UΣV T

where U ∈ Rm×m,UTU = Im; V ∈ Rn×n,V TV = In, Σ ∈ Rm×n

such that

Σ =


σ1

. . .

σn
0

 when m ≥ n, Σ =

 σ1
. . . 0

σm


when m ≤ n

Let UΣV T =
[

Uk Ûk

] [ Σk 0

0 Σ̂k

] [
Vk V̂k

]T
and

Ak = UkΣkV T
k : Truncated SVD

Then minrank(B)=k ‖A− B‖F = ‖A− Ak‖F for k ≤ rank(A)
Image Compression, Text Analysis (LSI), Signal Processing, ...
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Principal Component Analysis (PCA)

Consider data points in a two-dimensional space:

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

How can we use one variable to describe these data points?
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Principal Component Analysis

Input: Data matrix Am×n (m features, n data items)
Method 1 to compute PCA

1 Center the data matrix, and obtain Ã = A− 1
nAeeT where

e = ones(n, 1)

2 Compute SVD: Ã = UΣV T

3 Use UT to transform centered data: Ã→ UT Ã

Method 2 to compute PCA

1 Compute covariance matrix Ω from centered data: Ω = ÃÃT

2 Compute SymEVD of Ω = UΛUT

3 Use UT to transform centered data: Ã→ UT Ã

Dimension reduction by SVD computes SVD of A, not Ã
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Avoid Squaring Matrices if possible!

Example: A =

 1 1
10−3

10−3

, b =

 2
10−3

10−3


xLS =

[
1
1

]
, K2(A) ≈ 1.4× 103.

Assume β = 10, t = 6, chopped arithmetic.

fl(ATA) =

[
1 1
1 1

]
, rank(A) = 2, rank(fl(ATA)) = 1.

Assume β = 10, t = 7, fl(ATA) =

[
1 + 10−6 1

1 1 + 10−6

]
,

x̂ =

[
2.00001

0

]
where x̂ is solution for fl(ATA)x = fl(ATb).

‖x̂−xLS‖2
‖xLS‖2

≈ µK2(ATA) = µ(1.4× 103)2.
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PCA and SVD

The previous example on two-dimensional data:
After PCA:

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

After SVD directly applied to A (instead of Ā):

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
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PCA and SVD for Image Compression

In a face data set, we have n = 575 images, each with
m = 56× 46 = 2576 pixels.
We want to find lower rank approximation of the data matrix
A2576×575 with k = 2, 4, · · · , 20.
One of the original images:

0 10 20 30 40

0

10

20

30

40

50

After PCA (rank-k approximation of the covariance matrix):

0 50 100 150 200 250 300 350 400 450

0

50

After SVD (rank-k approximation of the data matrix):

0 50 100 150 200 250 300 350 400 450

0

50
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SVD for Image Compression (of one image)

Use a matrix A56×46 to represent one image.
Again, we use SVD to find the best rank-k approximation of A.
The images corresponding to best rank-k approximations
(k = 1, 2, · · · , 10):

0 50 100 150 200 250 300 350 400 450

0

50
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Latent Semantic Indexing

Apply SVD to the term-document
matrix.
An example of term-document
matrix: (from Wikipedia)

1 D1: “I like databases”

2 D2: “I hate hate databases”

3 ...

D1 D2 ...

I 1 1 ...

like 1 0 ...

hate 0 2 ...

databases 1 1 ...
...

...
...

. . .

LSI extracts k latent semantics
represented by k orthogonal basis
vectors: [Xu et al, 2003]

where E1,E2,E3 are the first 3
columns of U in the SVD of
term-document matrix A.
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Orthogonal Procrustes Problem

min
Q,QTQ=I

‖AQ − B‖F , A,B ∈ Rm×n.

Solution is obtained from the Polar Decomposition of ATB.

Polar Decomposition of a matrix A ∈ Rm×n is:
A = UP
where U ∈ Rm×n has orthonormal columns and
P ∈ Rn×n is symmetric positive semidefinite.

Polar Decomposition can be computed from SVD:
A = UΣV T = (UV T )(V ΣV T )
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QR Algorithm for Symmetric EVD

Reduce A (A = AT ) to a tridiagonal matrix T : UTAU = T ,
where U is an orthogonal matrix.

Repeat:

Choose λ as an approximate eigenvalue of T
Compute QRD of T − λI : T − λI = QR,
Tnew := RQ + λI

Tnew is similar to T

QRD of T is very fast: apply Givens rotations to make
sub-diagonal entries of T zero

Shift possibilities: λ = Tnn or λ = µ where µ is the eigenvalue
of T (n− 1 : n, n− 1 : n) that is closer to Tnn (Wilkinson shift).

Complexity of QR algorithm for Sym. EVD: O(n2) without
eigenvectors and O(n3) with eigenvectors.
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Jacobi Algorithm for Symmetric EVD

A ∈ Rn×n, AT = A, QTAQ = D = diag(λ1, · · · , λn)

1 QR algorithm, faster

2 Jacobi algorithm, easy to parallelize

After each step, the matrix becomes “more diagonal”.

A =

[
x y
y z

]
∈ R2×2,

[
c −s
s c

] [
x y
y z

] [
c s
−s c

]
=[

? 0
0 ?

]
⇒ y(c2 − s2) + (x − z)cs = 0.
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Jacobi Algorithm

A measure to check how close a matrix is to a diagonal form:

off (A) =

√
n∑

j=1

n∑
i=1,i 6=j

a2ij = ‖A‖2F −
n∑

i=1
a2ii

Jacobi algorithm decreases off (A)?

Let B = JTAJ, where J = J(p, q, θ). Off 2(B) = ‖B‖2F −
n∑

i=1
b2
ii =

‖A‖2F −
(

n∑
i=1

a2ii + 2a2pq

)
= off 2(A)− 2a2pq, where (p, q) is two

entries zeroed out.
Given that apq 6= 0, we have off 2(B) ≤ off 2(A) after 1 step.
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Algorithms for SVD: Discussion

How do you use the ideas of QR algorithm or Jacobi algorithm
for SymEVD to compute SVD?
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