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Overview

Linear Algebra is an important foundation in data analytics.

Constrained low-rank approximations (CLRA) for modeling and
algorithm/software development for scalable data analytics
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PCA, SVD, LSI, pLSI, K-means
Topic/trend/video tracking
Community structure discovery

Recommendation system, ...

Lecture 2 Outline:
Introduction to Low Rank Approximation
Dimension Reduction
Clustering of data represented in a feature-object matrix
(attribute/content): data clustering, topic modeling, ...
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Constrained Low Rank Approximations for Scalable Data
Analytics

Objectives: Using CLRA,

Model text and graph
analytics problems
Design, verify, and deploy
scalable numerical alg.

Goal: Orders of magnitude
improvements over existing data
analytics methods and solutions
of higher quality

Why CLRA ?

Utilize advances in numerical
linear algebra and optimization
Exploit software such as BLAS
and LAPACK
Behavior of algorithms easier
to analyze
Adaptive algorithms for
streaming data
Facilitates design of MPI
based algorithms for scalable
solutions
Can easily be modified for
various problem demands
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Dimension Reduction

Goal: Represent high-dimensional data in a lower dimension in
order to visualize it or to make subsequent computation
manageable.
Input: Data X = {x1, x2, . . . , xn} ∈ Rm, reduced dimension k
Output: Reduced-dimensional representation of data
y1, y2 . . . , yn ∈ Rk

Local, Global
Linear, Nonlinear
Unsupervised, Semi-supervised, Supervised
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Curse of dimensionality

When dimensionality increases, data bacomes increasingly
sparse in the space that it occupies

Definitions of density and distance between points, which is
critical for clustering and outlier detection, become less
meaningful
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Purpose and Techniques

Purpose
Avoid curse of dimensionality
Reduce computational time and memory for algorithms
Allow data to be more easily visualized
May help to eliminate irrelevant features or reduce noise

Techniques
Feature selection: Finding a subset of the original variables, e.g.,
features or attributes, which represent the original data.
Feature extraction: Transforms the data to a space of fewer
dimensions. Different from feature selection, the features does
not have to be the features in the original data.

Multidimensional scaling (MDS)
Principal component analysis (PCA)
Latent semantic analysis (LSA)
Non-negative matrix factorization (NMF)
Linear discriminant analysis (LDA)
Isometric Feature Mapping (ISOMAP)
Locally Linear Embedding (LLE)
Laplacian Eigenmaps
T-SNE (T-Distributed Stochastic Neighborhood Embedding) ...
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Linear and Nonlinear Methods

PCA and SVD are mainly concerned with larger distances
Euclidian distance does not reflect similarity in high dim space
very well when considering the structure of the data
Need methods preserving local structure focusing more on small
pairwise distances

ISOMAP: Geodesic distance in the data space, embedding is a
little better

LLE: Similar to t-SNE, focuses more on small pairwise
distances, collapses many points to the center and lets outliers
to satisfy the constraints
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Focus: Linear Methods for Feature Extraction

PCA (Principal Component Analysis)

High level view

Seeks the most accurate data representation in a lower
dimensional space
Preserves as much varience as possible
Not suitable for clustered data
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Feature Extraction: PCA

Algorithm

Can solve it using SVD
Let X ∈ Rm×n be the data matrix where
m = # of features, n = # of data samples.
Mean centering: Substract the centroid from every column
SVD: Xc = UΣV T where U and V are orthogonal matrices and
Σ is a diagonal matrix containing singular values.
Here, the columns of U can be seen as eigenvector of the
empirical covarience matrix. (XcX

T
c = UΣ2UT )

Projection to k-dim. space: Y = UT
k Xc = ΣkV

T
k

(Uk ,Σk , and Vk are the first k columns of U,Σ, and V
respectively)
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Feature Extraction: LSA (Latent Semantic Analysis)

LSA exploits co-occurences of
terms in documents to produce a
mapping into a latent semantic
space

The new semantic space can find
similar documents and relations
between terms

Term-Document Matrix
Let’s assume we have three
documents as following

D1: “I like visual analytics”
D2: “Visual representations
and visual interactions”
D3: “Analytical reasoning and
visualization”

TF+IDF, stop list removal, ...
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Feature Extraction: LSA (continued)

Algorithm

Applies SVD on the term-document matrix X
X = UrSrV

T
r where X ∈ Rm×n,Ur ∈ Rm×r ,Sr ∈ Rr×r , and

Vr ∈ Rn×r (r is rank of X )

Pick the top k largest singular values (in matrix Sr ) and its
corresponding singular vectors (in matrices Ur and Vr )
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Feature Extraction: NMF (Non-negative Matrix
Factorization)

Given the a non-negative matrix X ∈ Rm×n and an integer
k � min{m, n}, find non-negative matrices W ∈ Rm×k and
H ∈ Rk×n, which minimizes ‖X −WH‖2F =

∑
i

∑
j(Xij − [WH]ij)

2.

W : basis for a k-dim space, the ith col of H: k-dim
representation of the ith col of X

Maintaining non-negativity prevents one factor from removing
content that another factor contributed. NMF can uncover
latent factors with better interpretability.

Algorithm

Nonconvex
The factors are not unique
(e.g., If we have a nonsingular matrix P, where WP ≥ 0 and
P−1H ≥ 0, then (W̃ = WP, H̃ = P−1H) is another solution,
e.g. P is a diagonal matrix with positive diagonal elts.
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Feature Extraction: LDA(Linear Discriminant Analysis)
P. Howland and HP, TPAMI 2004

A supervised dimension reduction method for clustered data

Maximizes between class separation while minimizing data
separation within each class
Algorithm

Want a linear transformation GT : x ∈ Rm×1 → y ∈ R l×1

assuming X is already clustered into k clusters
X = [X1, · · · ,Xk ]
Two scatter matrices:
Between-cluster scatter matrix
Sb =

∑k
j=1

∑
i∈Cj

(c(j) − c)(c(j) − c)T

Within-cluster scatter matrix
Sw =

∑k
j=1

∑
i∈Cj

(xi − c(j))(xi − c(j))T

c(j): centroid for the jth cluster, c : global centroid
Find G that
maximizes trace(GTSbG ) while minimzes trace(GTSwG )
Find G that maximizes trace((GTSwG )−1GTSbG )
Solved by a generalized eigenvalue problem
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Feature Extraction: LDA (continued)

Graphical Example of PCA vs. LDA

(Figure from http://stuff.ttoy.net/cs591o/)
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Generalized Singular Value Decomposition (GSVD)

GSVD: For KA ∈ Rm×n with m ≥ n and KB ∈ Rp×n,
there are U ∈ Rm×m and V ∈ Rp×p

with UTU = I and V TV = I ,
and a nonsingular X ∈ Rn×n such that
UTKAX = diag(α1, · · · , αn) and V TKBX = diag(β, · · · , βq)
where q = min(p, n), αi ≥ 0, and βi ≥ 0.

Through GSVD, we can solve generalized EVD:
β2i K

T
A KAxi = α2

i K
T
B KBxi

No nonsingularity condition on KT
B KB is needed
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LDA via GSVD

St = Sw + Sb: total scatter matrix = covariance matrix

PCA solves maximize trace(GTStG )

Letting

Hw = [X1 − c(1)e(1)
T
, · · · ,Xk − c(k)e(k)

T
] and

Hb = [(c(1) − c)e(1)
T
, · · · , (c(k) − c)e(k)

T
],

we have Sw = HwH
T
w and Sb = HbH

T
b

GEVD of β2Sbx = α2Swx can be solved via GSVD of HT
w and

HT
b , regardless of nonsingularity of Sw
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LDA for Undersampled Problems

LDA/GSVD algorithm
Another way to handle singular Sw : Regularized LDA

Used when the data is undersampled, i.e., when # of dim > #
of samples.
Regularized LDA max trace((GTSwG + γI )−1GTSbG ), where
GTSwG + γI is guaranteed to be nonsingular for γ > 0

Application of LDA for 2D vis of clustered data

γ = 100 γ = 101 γ = 102
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LDA/GSVD FOR 2D REPRESENTATION
OF HIGH DIMENSIONAL CLUSTERED DATA

2D representation of  700x1000 data with 7 clusters: LDA vs. SVD vs. PCA
Want to represent data/cluster/outlier info even after a severe dim. reduction

LDA+PCA (2) SVD (2) PCA (2)



Medline Data (Text)

LDA+PCA

PCA

Rank-2 LDA

PCA

Rank-2 LDA

PCA

Facial Data (Image) Spoken Letters (Audio)

2D VISUALIZATION (PCA VS LDA) OF  
CLUSTERED TEXT, IMAGE, AUDIO DATA

h : heart attack
c : colon cancer
o : oral cancer
d : diabetes
t  : tooth decay



Clustering

Given an unlabeled data set (no prior knowledge), how can we find
grouping structures/patterns hidden in the data?

Goal: Group similar objects together.

Input: Data X = [x1, x2, . . . , xn], number of clusters k

Output: Data partitioning X1,X2, . . . ,Xk

It provides an overview of large-scale data, dimension reduced
representations, makes subsequent data analytics tasks more
efficient.

Core problem: k basis vectors where each represents a cluster
well ? E.g. news articles:
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Clustering
(J. Kim and H. Park, SISC 11; J.Kim, Y. He, and H. Park, JOGO 14, D. Kuang, S. Yun, and H. Park, JOGO 15)

Vector space Text
(Topic

Modeling)

Graph
(Community
Detection)

Hybrid

min
1Tk H=1Tn

H∈{0,1}k×n

‖X−WH‖F
min

W≥0,H≥0
‖X −WH‖F min

H≥0
‖S − HTH‖F

min
W≥0,H≥0

‖X −WH‖2F

+α‖S − HTH‖2F
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Clustering

Two most commonly used methods:

For feature-data relationship: K-means

For data-data relatinship: Spectral clustering
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K-means algorithm for data matrix X = [x1, · · · , xn]
Given k initial clustering centroids, K-means iteratively:

Assigns each data point xi to the nearest centroid in terms of
Euclidean distance (or cosine value for spherical K-means)
Recomputes k centroids

There are many versions of K-means and other variants such as
K-median and K-medoids methods

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9
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Spectral Clustering for X = [x1, · · · , xn]

Given a notion of similarity sij ≥ 0 between all pairs of data points,
we form a similarity graph G = (V ,E ).

Similarity Graph
The ε-neighborhood graph

Connect points whose pairwise distance are smaller than ε.

k-nearest neighbor graph (KNN graph)

Connect node xi and xj if xj is among the kn-nearest neighbors
of xi .

Mutual k-nearest neighbor graph (mutual KNN graph)

Connect node xi and xj if xj is among the kn-nearest neighbors
of xi and xi is among the k-nearest neighbors of xj .

Fully connected graph

Connect all points with an edge and assign the weight as
pairwise positive similarity value.

[Von Luxburg, 2007]
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Spectral Clustering

A self-tuned way to define edge weight: [Zelnik-Manor and Penora, NIPS, 2004]

sij = exp(−
‖xi − xj‖22

2σiσj
)

where the local scale σi is the distance between xi and its k̂-th
neighbor.
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Spectral Clustering

Which similarity graph to choose? How to choose parameters in the
similarity graph?

A safe way is to build a connected graph.

Choose ε, kn, etc. so that the graph is connected.

KNN graph is often a good starting point.

The edge weight can be defined as the RBF kernel:

sij = exp(−
‖xi − xj‖22

2σ2
)

But how to choose σ?

Note: There is no theoretically principled way to choose the
type of graph and parameters. And the clustering result is very
sensitive to k and σ.

[Von Luxburg, 2007]
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Spectral Clustering

Which eigenvalues to compute?

Ratio cut: min
∑k

p=1

∑
i∈Vp ,j∈V−Vp

Wij

|Vp |
k smallest eigenvalues of L

Ratio association: max
∑k

p=1

∑
i∈Vp ,j∈Vp Wij

|Vp |
k largest eigenvalues of W

Normalized cut: min
∑k

p=1

∑
i∈Vp ,j∈V−Vp

Wij∑
i∈Vp ,j∈V Wij

⇔ max
∑k

p=1

∑
i∈Vp ,j∈Vp Wij∑
i∈Vp ,j∈V Wij

k smallest eigenvalues of D−1/2LD−1/2

⇔ k largest eigenvalues of D−1/2WD−1/2
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Spectral Clustering

The main tool for spectral clustering is the affinity matrix S and the
graph Laplacian matrix L (n: number of nodes in graph)

S ∈ Rn×n contains edge weights between all connected pairs

D ∈ Rn×n is a diagonal matrix with degrees d1, d2, . . . , dn on
the diagonal: di =

∑n
j=1 sij

L is the graph Laplacian matrix: L = D − S

Symmetric Positive Semi-definite
For every vector f ∈ Rn, f TLf = 1

2

∑n
i,j=1 sij(fi − fj)

2

The smallest eigenvalue is 0 and its eigenvector has all ones ~1
All eigenvalues are real and nonnegative
0 = λ1 ≤ λ2 ≤ . . . ≤ λn
The multiplicity of the eigenvalue 0 is equal to the number of

connected components in graph. Ex. L =

L1 0 0
0 L2 0
0 0 L3
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Spectral Clustering

(One possible) Algorithm:

1 Input: Data points x1, · · · , xn, number of clusters k

2 Construct a similarity graph and compute matrices S and L.

3 Compute the smallest k eigenvectors u1, u2, . . . , uk of L.

4 Let U =
[
u1 u2 . . . uk

]
∈ Rn×k .

5 For i = 1, 2, . . . , n, let yi ∈ Rk be the vector corresponding to
the i-th row of U.

6 Cluster the points (yi )i=1,2,...,n with the k-means algorithms to
clusters C1,C2, . . . ,Ck .

7 Output: Partitioned data Xj = {i : yi ∈ Cj}.
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Spectral Clustering

From objective functions to eigenvalues: Spectral relaxation

Normalized cut objective: min
∑k

p=1

∑
i∈Vp ,j∈V−Vp

Sij∑
i∈Vp ,j∈V Sij

Define cluster indicator vector:
hp = D1/2[0, · · · , 0, 1, · · · , 1, 0, · · · , 0]T with np 1’s

Define normalized indicator yp = hp/‖hp‖2, and rewrite J:

J =
k∑

p=1

yTp Lyp = trace(Y TD−1/2LD−1/2Y )

where Y = [y1, · · · , yk ]

Relax the constraints of Y to be Y TY = I :

min
Y TY=I

trace(Y TD−1/2LD−1/2Y )

By Ky Fan theorem, the optimal Y is the eigenvectors
corresponding to the smallest eigenvalues of D−1/2LD−1/2
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