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Nonnegative Matrix Factorization (NMF)
(Lee&Seung 99, Paatero&Tapper 94)

Given A ∈ R+
m×n and a desired rank k << min(m,n),

find W ∈ R+
m×k and H ∈ R+

k×n s.t. A ≈WH.
minW≥0,H≥0 ‖A−WH‖F
Nonconvex
W and H not unique ( e.g. Ŵ = WD ≥ 0, Ĥ = D−1H ≥ 0)

Notation: R+: nonnegative real numbers
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Nonnegative Matrix Factorization (NMF)
(Lee&Seung 99, Paatero&Tapper 94)

Given A ∈ R+
m×n and a desired rank k << min(m,n),

find W ∈ R+
m×k and H ∈ R+

k×n s.t. A ≈WH.
minW≥0,H≥0 ‖A−WH‖F
NMF improves the approximation as k increases:
If rank+(A) > k ,

min
Wk+1≥0,Hk+1≥0

‖A−Wk+1Hk+1‖F < min
Wk≥0,Hk≥0

‖A−WkHk‖F ,

Wi ∈ R+
m×i and Hi ∈ R+

i×n

But SVD does better: if A = UΣV T , then
‖A− Uk ΣkV T

k ‖F ≤ min‖A−WH‖F , W ∈ R+
m×k and H ∈ R+

k×n

So Why NMF? Dimension Reduction with
Better Interpretation/Lower Dim. Representation for Nonnegative
Data.
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Nonnegative Rank of A ∈ R+
m×n

(J. Cohen and U. Rothblum, LAA, 93)

rank+(A), is the smallest integer k for which there exist
V ∈ R+

m×k and U ∈ R+
k×n such that A = VU.

Note: rank(A) ≤ rank+(A) ≤ min(m,n)
If rank(A) ≤ 2, then rank+(A) = rank(A).
If either m ∈ {1,2,3} or n ∈ {1,2,3}, then rank+(A) = rank(A).

(Perron-Frobenius) There are nonnegative left and right singular
vectors u1 and v1 of A associated with the largest singular value
σ1.
rank 1 SVD of A = best rank-one NMF of A
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Applications of NMF

Text mining
Topic model: NMF as an alternative way for PLSI ( Gaussier et al.,
05; Ding et al., 08)
Document clustering (Xu et al., 03; Shahnaz et al., 06)
Topic detection and trend tracking, email analysis (Berry et al., 05;
Keila et al., 05; Cao et al., 07)

Image analysis and computer vision
Feature representation, sparse coding (Lee et al., 99; Guillamet et
al., 01; Hoyer et al., 02; Li et al. 01)
Video tracking (Bucak et al., 07)

Social network
Community structure and trend detection ( Chi et al., 07; Wang et
al., 08)
Recommendation system (Zhang et al., 06)

Bioinformatics-microarray data analysis (Brunet et al., 04, H. Kim
and Park, 07)
Acoustic signal processing, blind source separating (Cichocki et al.,
04)
Financial data (Drakakis et al., 08)
Chemometrics (Andersson and Bro, 00)
and SO MANY MORE...
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Algorithms for NMF

Multiplicative update rules: Lee and Seung, 99
Alternating least squares (ALS): Berry et al 06
Alternating nonnegative least squares (ANLS)

Lin, 07, Projected gradient descent
D. Kim et al., 07, Quasi-Newton
H. Kim and Park, 08, Active-set
J. Kim and Park, 08, Block principal pivoting

Other algorithms and variants
Cichocki et al., 07, Hierarchical ALS (HALS)
Ho, 08, Rank-one Residue Iteration (RRI)
Zdunek, Cichocki, Amari 06, Quasi-Newton
Chu and Lin, 07, Low dim polytope approx.
Other rank-1 downdating based algorithms (Vavasis,..)
C. Ding, T. Li, tri-factor NMF, orthogonal NMF, ...
Cichocki, Zdunek, Phan, Amari: NMF and NTF: Applications to
Exploratory Multi-way Data Analysis and Blind Source Separation,
Wiley, 09
Andersson and Bro, Nonnegative Tensor Factorization, 00
And SO MANY MORE...
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Block Coordinate Descent (BCD) Method

A constrained nonlinear problem:

min f (x)(e.g., f (W ,H) = ‖A−WH‖F )

subject to x ∈ X = X1 × X2 × · · · × Xp,

where x = (x1, x2, . . . , xp), xi ∈ Xi ⊂ Rni , i = 1, . . . ,p.
Block Coordinate Descent method generates
x (k+1) = (x (k+1)

1 , . . . , x (k+1)
p ) by

x (k+1)
i = arg min

ξ∈Xi

f (x (k+1)
1 , . . . , x (k+1)

i−1 , ξ, x (k)
i+1, . . . , x

(k)
p ).

Th. (Bertsekas, 99): Suppose f is continuously differentiable over the
Cartesian product of closed, convex sets X1,X2, . . . ,Xp and suppose for
each i and x ∈ X , the minimum for

min
ξ∈Xi

f (x (k+1)
1 , . . . , x (k+1)

i−1 , ξ, x (k)
i+1, . . . , x

(k)
p )

is uniquely attained. Then every limit point of the sequence generated
by the BCD method {x (k)} is a stationary point.
NOTE: Uniqueness not required when p = 2 (Grippo and Sciandrone, 00).
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BCD with k(m + n) Scalar Blocks

W

H

A

Minimize functions of wij or hij while all other components in W
and H are fixed:

wij ← arg min
wij≥0

‖(rT
i −

∑
k 6=j

wikhT
k )− wijhT

j ‖2

hij ← arg min
hij≥0
‖(aj −

∑
k 6=i

wkhkj)− wihij‖2

where W =
(

w1 · · · wk
)
, H =

 hT
1
...

hT
k

 and

A =
(

a1 · · · an
)

=

 rT
1
...

rT
m


Scalar quadratic function, closed form solution.

Park NMF 9 / 53



BCD with k(m + n) Scalar Blocks

Lee and Seung (01)’s multiplicative updating (MU) rule

wij ← wij
(AHT )ij

(WHHT )ij
, hij ← hij

(W T A)ij

(W T WH)ij

Derivation based on gradient-descent form:

wij ← wij +
wij

(WHHT )ij

[
(AHT )ij − (WHHT )ij

]
hij ← hij +

hij

(W T WH)ij

[
(W T A)ij − (W T WH)ij

]
Rewriting of the solution of coordinate descent:

wij ←
[
wij +

1
(HHT )jj

(
(AHT )ij − (WHHT )ij

)]
+

hij ←
[
hij +

1
(W T W )ii

(
(W T A)ij − (W T WH)ij

)]
+

In MU, conservative steps are taken to ensure nonnegativity.
Bertsekas’ Th. on convergence is not applicable to MU.
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BCD with 2k Vector Blocks

W

H

A

Minimize functions of wi or hi while all other components in W
and H are fixed:

‖A−
k∑

j=1

wjhT
j ‖F = ‖(A−

k∑
j=1
j 6=i

wjhT
j )− wihT

i ‖F = ‖R(i) − wihT
i ‖F

wi ← arg min
wi≥0
‖R(i) − wihT

i ‖F

hi ← arg min
hi≥0
‖R(i) − wihT

i ‖F

Each subproblem has the form minx≥0 ‖cxT −G‖F and
has a closed form solution x = [GT c

cT c ]+ !
Hierarchical Alternating Least Squares (HALS) (Cichocki et al, 07, 09),
(actually HA-NLS)
Rank-one Residue Iteration (RRI) (Ho, 08)
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BCD with Scalar Blocks vs. 2k Vector Blocks

W

H

A

W

H

A

In scalar BCD, w1j ,w2j , · · · ,wmj can be computed independently.
Also, hi1,hi2, · · · ,hin can be computed independently.
→ scalar BCD⇔ 2k vector BCD in NMF
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Successive Rank-1 Deflation in SVD and NMF

Successive rank-1 deflation works for SVD but not for NMF
A− σ1u1vT

1 ≈ σ2u2vT
2 ? A− w1hT

1 ≈ w2hT
2 ? 4 6 0

6 4 0
0 0 1

 =


1√
2
− 1√

2
0

1√
2

1√
2

0
0 0 1


 10 0 0

0 2 0
0 0 1




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1


The sum of two successive best rank-1 nonnegative approx. is 4 6 0

6 4 0
0 0 1

 ≈
 5 5 0

5 5 0
0 0 0

+

 0 0 0
0 0 0
0 0 1


The best rank-2 nonnegative approx. is

WH =

 4 6 0
6 4 0
0 0 0

 =

 4 6
6 4
0 0

( 1 0 0
0 1 0

)
NOTE: 2k vector BCD 6= successive rank-1 deflation for NMF
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BCD with 2 Matrix Blocks

W

H

A

Minimize functions of W or H while the other is fixed:

W ← arg min
W≥0
‖HT W T − AT‖F

H ← arg min
H≥0
‖WH − A‖F

Alternating Nonnegativity-constrained Least Squares (ANLS)
No closed form solution.

Projected gradient method (Lin, 07)

Projected quasi-Newton method (D. Kim et al., 07)

Active-set method (H. Kim and Park, 08)

Block principal pivoting method (J. Kim and Park, 08)

ALS (M. Berry et al. 06) ??
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NLS : minX≥0 ‖CX − B‖2
F =

∑
minxi ‖Cxi − bi‖2

2

Nonnegativity-constrained Least Squares (NLS) problem
Projected Gradient method (Lin, 07) x (k+1) ← P+(x (k) − αk∇f (x (k)))
* P+(·): Projection operator to the nonnegative orthant
* Back-tracking selection of step αk
Projected Quasi-Newton method (Kim et al., 07)

x (k+1) ←
[

y
zk

]
=

[
P+

[
y (k) − αD(k)∇f (y (k))

]
0

]
* Gradient scaling only for nonzero variables
These do not fully exploit the structues of the NLS problems in
NMF
Active Set method (H. Kim and Park, (08)

Lawson and Hanson (74), Bro and De Jong (97), Van Benthem and Keenan (04) )

Block principal pivoting method (J. Kim and Park, 08)

linear complementarity problems (LCP) (Judice and Pires, 94)

Park NMF 15 / 53



Active-set type Algorithms for
minx≥0 ‖Cx − b‖2,C : m × k

KKT conditions: y = CT Cx − CT b
y ≥ 0, x ≥ 0, xiyi = 0, i = 1, · · · , k
If we know P = {i |xi > 0} in the solution in advance
then we only need to solve min ‖CPxP − b‖2, and the rest of
xi = 0, where CP : columns of C with the indices in P

C x b

+

+

0

0

+

*
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Active-set type Algorithms for
minx≥0 ‖Cx − b‖2,C : m × k

KKT conditions: y = CT Cx − CT b
y ≥ 0, x ≥ 0, xiyi = 0, i = 1, · · · , k
Active set method (Lawson and Hanson 74)

E = {1, · · · , k} (i.e. x = 0 initially), P = null
Repeat while E not null and yi < 0 for some i

Exchange indices between E and P while keeping feasibility and
reducing the objective function value

Block Principal Pivoting method (Portugal et al. 94 MathComp):
Lacks any monotonicity or feasibility but finds a correct
active-passive set partitioning.
Guess two index sets P and E that partition {1, · · · , k}
Repeat

Let xE = 0 and xP = argminxP ‖CPxP − b‖2
2

Then yE = CT
E (CPxP − b) and yP = 0

If xP ≥ 0 and yE ≥ 0, then optimal values are found.
Otherwise, update P and E .
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How block principal pivoting works

k = 10, Initially P = {1,2,3,4,5}, E = {6,7,8,9,10}
Update by CT

P CPxP = CT
P b, and yE = CT

E (CPxP − b)

P

P

P

P

P

E

E

E

E

E

0

0

0

0

0

0

0

0

0

0

yx
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P

P
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E

E
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-

+

-
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Refined Exchange Rules

Active set algorithm is a special instance of single principal
pivoting algorithm (H. Kim and Park, SIMAX 08)

Block exchange rule without modification does not always work.

The residual is not guaranteed to monotonically decrease.
Block exchange rule may cycle (although rarely).
Modification: if the block exchange rule fails to decrease the
number of infeasible variables, use a backup exchange rule
With this modification, block principal pivoting algorithm finds the
solution of NLS in a finite number of iterations.
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Structure of NLS problems in NMF

Matrix is long and thin, solutions vectors short, many right hand
side vectors.
minH≥0 ‖WH − A‖2F

minW≥0
∥∥HT W T − AT

∥∥2
F
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Efficient Algorithm for minX≥0 ‖CX − B‖2
F

[Bro and de Jong, 97, Van Benthem and Keenan, 04]

Precompute CT C and CT B
Update xP and yE by CT

P CPxP = CT
P b and yE = CT

E CPxP − CT
E b

All coefficients can be retrieved from CT C and CT B
CT C and CT B is small. Storage is not a problem.

→
Exploit common P and E sets among col. in B in each iteration.
X is flat and wide. → More common cases of P and E sets.

Proposed algorithm for NMF (ANLS/BPP):
ANLS framework + Block principal pivoting algorithm for NLS with
improvements for multiple right-hand sides
(J. Kim and H. Park, ICDM 08)
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Rank Deficient NLS

What happens when C is rank deficient?
Active set method: if the first matrix with passive set is of full rank,
the method never runs into rank deficient subproblems
[Drake et.al., Info Fusion 10]

Block principal pivoting: subproblems may become rank deficient
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Sparse NMF and Regularized NMF

Sparse NMF (for sparse H) (H. Kim and Park, Bioinformatics, 07)

min
W ,H

‖A−WH‖2F + η ‖W‖2F + β

n∑
j=1

‖H(:, j)‖21

 ,∀ij ,Wij ,Hij ≥ 0

ANLS reformulation (H. Kim and Park, 07) : alternate the following

min
H≥0

∥∥∥∥( W√
βe1×k

)
H −

(
A

01×n

)∥∥∥∥2

F

min
W≥0

∥∥∥∥( HT
√
ηIk

)
W T −

(
AT

0k×m

)∥∥∥∥2

F

Regularized NMF (Pauca, et al. 06):

min
W ,H

{
‖A−WH‖2F + η ‖W‖2F + β ‖H‖2F

}
, ∀ij ,Wij ,Hij ≥ 0.

ANLS reformulation : alternate the following

min
H≥0

∥∥∥∥( W√
βIk

)
H −

(
A

0k×n

)∥∥∥∥2

F

min
W≥0

∥∥∥∥( HT
√
ηIk

)
W T −

(
AT

0k×m

)∥∥∥∥2

F
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Nonnegative PARAFAC

Consider a 3-way Nonnegative Tensor T ∈ Rm×n×p
+ and

its PARAFAC minA,B,C≥0 ‖T− [[ABC]]‖2F
where A ∈ Rm×k

+ , B ∈ Rn×k
+ , C ∈ Rp×k

+ .
The loading matrices (A,B, and C) can be iteratively estimated by
an NLS algorithm such as block principal pivoting method.
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Nonnegative PARAFAC

Iterate until a stopping criteria is satisfied:
minA≥0

∥∥YBCAT − T(1)

∥∥
F

minB≥0
∥∥YACBT − T(2)

∥∥
F

minC≥0
∥∥YABCT − T(3)

∥∥
F where

YBC = B � C ∈ R(np)×k , T(1) ∈ R(np)×m,
YAC = A� C ∈ R(mp)×k , T(2) ∈ R(mp)×n,
YAB = A� B ∈ R(mn)×k , T(3) ∈ R(mn)×p unfolded matrices,
and F �G(mn)×(k) = [f1 ⊗ g1 f2 ⊗ g2 · · · fk ⊗ gk ] is the
Khatri-Rao product of F ∈ Rm×k and G ∈ Rn×k .

Matrices are longer and thinner, ideal for ANLS/BPP.
Can be similarly extended to higher order tensors.
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Experimental Results (NMF)

NMF Algorithms Compared
Name Description Author
ANLS-BPP ANLS / block principal pivoting J. Kim and HP 08
ANLS-AS ANLS / active set H. Kim and HP 08
ANLS-PGRAD ANLS / projected gradient Lin 07
ANLS-PQN ANLS / projected quasi-Newton D. Kim et al. 07
HALS Hierarchical ALS Cichocki et al. 07
MU Multiplicative updating Lee and Seung 01
ALS Alternating least squares Berry et al. 06
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Residual vs. Execution time
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Residual vs. Execution time
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20 Newsgroups text data: 26, 214× 11, 314, k = 160
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Residual vs. Execution time
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PIE 64 image data: 4, 096× 11, 554, k = 80 and k = 160

Park NMF 35 / 53



Adaptive NMF for Varying Reduced Rank k → k̃

Given (W ,H) with k , how to compute (W̃ , H̃) with k̃ fast?
E.g., model selection for NMF clustering

AdaNMF
Initialize W̃ and H̃ using W and H

If k̃ > k , compute NMF for A−WH ≈ ∆W ∆H. Set W̃ = [W ∆W ]
and H̃ = [H; ∆H]
If k̃ < k , initialize W̃ and H̃ with k̃ pairs of (wi ,hi ) with largest
‖wihT

i ‖F = ‖wi‖2‖hi‖2

Update W̃ and H̃ using HALS algorithm.
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Model Selection in NMF Clustering

Consensus matrix based on A ≈WH:

Ct
ij =

{
0 max(H(:, i)) = max(H(:, j))

1 max(H(:, i)) 6= max(H(:, j))
, t = 1, . . . , l

Dispersion coefficient ρ(k) = 1
n2

∑n
i=1
∑n

j=1 4(Cij − 1
2)2, where

C = 1
l
∑

Ct

Reordered Consensus Matrix, k=3
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Reordered Consensus Matrix, k=5
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Clustering results on MNIST digit images (784× 2000) by AdaNMF
with k = 3,4,5 and 6. Averaged consensus matrices, dispersion
coefficient, execution time
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Adaptive NMF for Varying Reduced Rank
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Relative error vs. exec. time of AdaNMF and “recompute”. Given an
NMF of 600× 600 synthetic matrix with k = 60, compute NMF with
k̃ = 50,80.

Park NMF 38 / 53



Adaptive NMF for Varying Reduced Rank

Theorem: For A ∈ Rm×n
+ , If rank+(A) > k , then

min ‖A−W (k+1)H(k+1)‖F < min ‖A−W (k)H(k)‖F ,
where W (i) ∈ Rm×i

+ and H(i) ∈ Ri×n
+ .
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Training error

Testing error

Rank path on synthetic data set: relative residual vs. k
ORL Face image (10304× 400) classification errors (by LMNN) on training
and testing set vs. k .
k -dim rep. HT of training data T by BPP minHT≥0 ‖WHT − T‖F
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NMF for Dynamic Data (DynNMF)

Given an NMF (W ,H) for A = [δA Â], how to compute NMF
(W̃ , H̃) for Ã = [Â ∆A] fast ?
(Updating and Downdating)

DynNMF (Sliding Window NMF)
Initialize H̃ as follows:

Let Ĥ be the remaining columns of H.
Solve min∆H≥0 ‖W ∆H −∆A‖2

F using block principal pivoting
Set H̃ = [Ĥ ∆H]

Run HALS on Ã with initial factors W̃ = W and H̃
Park NMF 40 / 53



DynNMF for Dynamic Data

PET2001 data with 3064 images from a surveillance video.
DynNMF on 110,592× 400 data matrix each time, with 100 new
columns and 100 obsolete columns. The residual images track the
moving vehicle in the video.
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NMF for Clustering and Topic Modeling

Find k clusters (topics) in a text corpus represented in X

≈ ×

X W

H

xi
w1w2w3

h3i
h2i
h1i

xi ≈ w1h1i + w2h2i + w3h3i

computer
music
Turing
Mozart

...
vegetable



0.8
0.05
0.1

0.05
...
0


≈ 0.8



0.9
0

0.1
0
...
0


+ 0.1



0
0.5
0

0.3
...
0


+ ..

Nonnegative w1,w2,w3:
cluster representatives or topics: dist. of keywords
Nonnegative h1i ,h2i ,h3i – soft clustering assignment of xi

In NMF, wi ’s have equal roles among them unlike in SVD.
Successive rank-1 deflation does not work in NMF.

Paatero&Tapper 94, Lee & Seung/Nature 99, Kim & Park/SIMAX 08, Xu et al. SIGIR 03, Kim & Park/SISC 11, Kim, He,
Park/JOGO 14...
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NMF and K-means

Clustering and Lower Rank Approximation are related.
NMF for Clustering: Document (Xu et al. SIGIR 03), Image (Cai et al. ICDM 08), Microarray (Kim & Park, Bio 07), etc.

Objective functions for K-means and NMF may look the same:∑
i ‖xi −wσi‖22 = ‖X −WH‖2F (Ding et al. SDM 05; Kim & Park, TR 08)

σi = j when i-th point is assigned to j-th cluster (j ∈ {1, · · · , k}). However, constraints are
different:

K-means: H ∈ {0,1}k×n,1T
k H = 1T

n
NMF: W ≥ 0,H ≥ 0

Paths to solution:
K-means: Expectation-Maximization
NMF: Relax the condition on H to H ≥ 0 with orthogonal rows or
H ≥ 0 with sparse columns - soft clustering
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NMF vs K-means

K-means: W : k cluster centroids, hi : cluster membership indicator
NMF: W : basis vectors for rank-k approx., H: k-dim rep. of X
Sparse NMF (SNMF) (H. Kim & H. Park, Bioinformatics, 07)

Clustering accuracy on TDT2 text data: (aver. among 100 runs)
# clusters 2 6 10 14 18
K-means 0.8099 0.7295 0.7015 0.6675 0.6675

NMF/ANLS 0.9990 0.8717 0.7436 0.7021 0.7160
SNMF/ANLS 0.9991 0.8770 0.7512 0.7269 0.7278

Sparsity constraint improves clustering result (J. Kim and Park, 08):
minW≥0,H≥0 ‖A−WH‖2F + η‖W‖2F + β

∑n
j=1 ‖H(:, j)‖21

# of times achieving optimal assignment
(a synthetic data set, with a clear cluster structure ):

k 3 6 9 12 15
NMF 69 65 74 68 44

SNMF 100 100 100 100 97

NMF and SNMF much better than k-means in general.
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NMF and Spherical K-means

Equivalence of objective functions is not enough to explain the
clustering capability of NMF:

Ex. k = 2
K-means NMF
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NMF is more related to spherical k-means, than to k-means
→ NMF shown to work well in text data clustering
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Symmetirc NMF and Spectral Clustering
Symmetric NMF: minS≥0 ‖A− SST‖F , A ∈ R+

n×n : affinity matrix

Spectral clustering→ Eigenvectors (Ng et al. 01), A normalized if needed, Laplacian,...

Symmetric NMF (Ding et al.)→ can handle nonlinear structure, and S ≥ 0
natually captures a cluster structure in S (a new PGD based Alg.)

Ex. Well separated, one loose and the
other tight clusters, with
exp(−‖xi − xj‖2

2/2σ
2)

Eigenvalues of similarity matrix:
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Targeted Topic Modeling

Large text collections such as Wikipedia and Twitter data contain
many topics of very wide range
Only a subset of data items is related to a specific question and
interest, e.g. documents related to particular event, subject such
as sustainability, brand, or product
Direct keyword match or keyword filtering does not work well
Want high recall than precision:
retrieving as many relevant documents vs. a small number of
most relevant documents

How to find the relevant parts of the
documents?
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Targeted Topic Modeling

Iterative application of NMF with topic refinement each step
1 Apply initial NMF to find k clusters.
2 Check top keywords of each cluster and determine relevant topics.

Assume first k1 topics are relevant and denote the first k1 columns
of matrix W as W1.

3 Refine W1 by setting its small components to zero.
4 Solve the following NMF

min
W2≥0,H≥0

f (W2,H) = ‖(W1 W2)H − X‖F

5 Find more relevant topics and attach their corresponding columns
to W1.

6 Repeat from Step 3 until getting satisfactory results.
7 Delete unrelated topics and docs, and redo topic modeling.

Advantage: easy to interprete the result and adjust intermediate
results for interactive computing
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Targeted Topic Modeling for Event Detection in
Document Data
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Targeted Topic Modeling: Ex. Yemen Ceasefire
Violation Detection in Arabic Text

Interface for selecting clusters to remove from the dataset

Key documents identified within the clusters (using a threshold parameter)

Reapplication of SmallK to produce refined clustering results
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Case Study for Sustainability in Twitter: Keyword
Expansion and Retrieval of Relevant Data Items

Direct match on Twitter with 50 specialized keywords related to
sustainability such as new urbanism, rain water harvesting, green roof,
walkable community, and decentralized energy, retrieved only a very
small number of tweets.

Discover the casual terms that are used to express
sustainability-related topics in social networks in addition to
specialized keywords
Extract the data items that have relevance to sustainability. These
data items may not contain technical or specialized keywords.
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Result on Wikipedia

Applying targeted topic modeling to the 60K Wikipedia pages obtained
by keyword refinement, we obtained 5,387 pages that are clearly
relevant to sustainability. Applying HierNMF2, we discovered 20 topics
such as solar energy, water energy, efficient electricity usage,
sustainable development, renewable energy, and sustainable
manufacturing. A subset of the results is illustrated:

Wiki (5387)

(4412)
‘development’

‘public’
‘government’
‘international’
‘environmental’

(1349)
‘railway’
‘station’
‘transit’
‘rail’
‘route’

(997)
‘railway’
‘trains’
‘built’
‘station’
‘opened’

(719)
‘village’
‘located’
‘area’
‘road’

‘district’

Label: 31 (208)
‘village’
‘school’
‘district’
‘town’
‘mixed’

(511)
‘built’
‘river’
‘north’
‘port’
‘ship’

(413)
‘river’
‘built’
‘north’
‘site’
‘road’

Label: 111 (41)
‘fm’

‘radio’
‘broadcast’
‘station’

‘broadcasting’

(372)
‘built’
‘river’
‘north’
‘site’
‘road’

Label: 175 (188)
‘castle’
‘london’
‘died’

‘building’
‘mixed’

Label: 47 (184)
‘bridge’
‘river’
‘north’
‘mine’
‘water’

Label: 15 (53)
‘season’
‘midwest’

‘asa’
‘tour’

‘championship’

Label: 7 (278)
‘railway’
‘trains’
‘station’

‘passenger’
‘rail’

Label: 3 (352)
‘transit’
‘bus’

‘routes’
‘buses’
‘city’

(3063)
‘development’
‘environmental’
‘international’
‘government’

‘policy’

(1415)
‘development’
‘environmental’
‘sustainable’

‘global’
‘environment’

(787)
‘environmental’

‘water’
‘waste’

‘emissions’
‘products’

(269)
‘water’
‘soil’

‘species’
‘land’

‘climate’

Label: 61 (43)
‘protein’
‘proteins’
‘domain’
‘function’
‘bacteria’

Label: 29 (226)
‘water’

‘environmental’
‘soil’

‘climate’
‘natural’

(518)
‘products’

‘environmental’
‘energy’

‘efficiency’
‘waste’

Label: 45 (199)
‘emissions’
‘nuclear’
‘waste’

‘renewable’
‘carbon’

Label: 13 (319)
‘products’
‘product’

‘environmental’
‘sustainable’
‘sustainability’

Label: 5 (628)
‘international’
‘development’
‘sustainable’

‘global’
‘countries’

(1648)
‘court’
‘law’

‘rights’
‘born’
‘case’

(1222)
‘born’
‘net’

‘mixed’
‘music’
‘book’

(981)
‘mixed’
‘book’
‘music’
‘series’
‘net’

Label: 57 (350)
‘book’
‘game’

‘reception’
‘series’

‘characters’

Label: 25 (631)
‘music’

‘language’
‘mixed’
‘net’

‘album’

Label: 9 (241)
‘born’

‘politician’
‘futsal’

‘minister’
‘player’

(426)
‘court’
‘law’

‘rights’
‘case’

‘supreme’

(282)
‘bill’

‘government’
‘law’

‘committee’
‘states’

(121)
‘rights’

‘political’
‘government’

‘police’
‘protests’

Label: 113 (85)
‘police’
‘rights’
‘protests’
‘protest’
‘activists’

Label: 49 (36)
‘resolution’
‘peace’
‘nations’
‘council’
‘secretary’

Label: 17 (161)
‘bill’
‘law’

‘legislation’
‘federal’
‘states’

Label: 1 (144)
‘court’
‘case’
‘law’

‘appeal’
‘supreme’

Label: 0 (975)
‘solar’
‘power’
‘mw’
‘plant’

‘electricity’

Solar Energy Sustainable
Development

Sustainable 
Manufacturing

and
Low Carbon Energy

Sustainable 
Manufacturing
sustainable
environmental
technology
performance

products
efficiency
quality

Sustainable 
Development
international
development
sustainable
global

countries
policy
economic

Solar 
Energy

solar
power
plant

electricity
rooftop
panels

(975 articles)

Low Carbon
Energy

emissions
nuclear
waste
renewable

carbon
electricity
gas
oil

(199 articles) (319 articles)

(628 articles)
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DoDIIS 2016 

DARPA XDATA Challenge Problem: Tracking IED Drop 
 Visualizing our analysis results 

Visualization of our analytics fused with GPS and 
communications data can “guide” an analyst to 
important “events” and “actors” 

 Track messages of common topics occurring 
within a time window 

 Find areas of interest when perpetrators within the 
same cluster often converge 

 Flag persons of interest by detecting messages 
that occur within a topic of interest 

NMF Application: Radar + SMS 



DoDIIS 2016 

Associate device movement with classes of 
communication activity 

Topic	2,	9,	10:	
The	majority	of	the	
conversa:ons	were	
about	planning,	
mee:ng,	observing,	
and	exchanging.	
	
Topic	3:	
Suspicious	mee:ngs	
mixed	with	civilian	
chaFer	
	
Topic	7:	
Interes:ng.	Could	be	
code	for	organizing	
the	simula:on?	
	
Other	Topics:	
Separate	out	civilian	
conversa:ons	

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 
like picture get think just good line creative text video 
really took did know want answer green full terrorist took 
better ied time haha say sing red text pic sent 
sounds sending back getting got hey jabal little call snd 
say script need got see did medina data sending sim 
music site call better guess new ghazi collection script wait 
feel hole see car send morning amber did back package 
sure denver? thanks ready wait years send long sent checkpoint 
done taken days dont day name vehicles step ied sending 
did moving able need life music phone house site area 
people drop contact want going man time thing please convoy 
gaga frame meeting lol make tell life maybe meet send 
haha police report really lot songs chapter addicted phone mcc 
paul province ready days time hear guess gonna day king 
does end sir start things job blue sons short got 

Topic	Modeling	Results	(NMF)	

 
•  Pictures taken for 

planning and observing 
IED bomb site and for the 
aftermath. 

 

•  Videos taken of checkpoints 
and convoy areas. 

•  Package exchange and drop 
off confirmations. 

NMF Application: Radar + SMS 
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DoDIIS 2016 

Scene 1 of 4 

NMF Application: Radar + SMS 

Georgia Tech-Kitware Visualization 

1. Package dropped 



DoDIIS 2016 

Scene 2 of 4 

NMF Application: Radar + SMS 

2. Left area 



DoDIIS 2016 

Scene 3 of 4 

NMF Application: Radar + SMS 

3. Nice fireworks 



DoDIIS 2016 

Scene 4 of 4 

NMF Application: Radar + SMS 

4. Leader identified 



Summary/Discussions

Overview of NMF with Frobenius norm and algorithms
Fast algorithms and convergence via BCD framework
Adaptive NMF algorithms
Variations/Extensions of NMF : nonnegative PARAFAC and
sparse NMF
NMF for clustering
Computational comparisons

NMF Matlab codes and papers available at
http://www.cc.gatech.edu/∼hpark and
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