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From video sharing websites, to NLP, to search engines, to online
stores, one of the most fundamental questions to ask is: which

items are most similar to a given one?
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How do we define similarity?

e We could determine locations on a manifold (e.g., Euclidean
space, a sphere, or hyperbolic space) for each item and define
similarity based upon their distance.
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similarity based upon their distance.

Practitioners call this an embedding, but be aware that
differential topologists/geometers will object: there is no
guarantee of even injectivity, and, in fact, it is typically lost
(“folding”).

But surely there are no good low-dimensional representations
of complex ideas?

Millions of pages of analysis have been written based upon the
1D embedding of political opinion: “left-wing", “left of
center”, “right-wing", etc...

Typical word/term embeddings (e.g., word2vec, GloVe,
fastText) use a 200-500 dimensional sphere with cosine
distance.
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(r = 200).

e There is an artform to determining the model, but, roughly
speaking, one finds a low-rank approximation of a very large
(possibly implicit) sparse matrix.?

e For word embeddings, entry (i, j) might be log(cjj+ 1),
where ¢;; is the weighted sum of coocurrences of word i with
word j in Wikipedia (perhaps with k words of separation
leading to a contribution of 1/k).

e For video embeddings, entry (7, ) might be the squashed
count of the number of times video i was watched after video
j or by user j.

!In the nonlinear context, one speaks of building an autoencoder.
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Nearest neighbors from GloVe embeddings

https://nlp.stanford.edu/projects/glove/

e The typical training set is Wikipedia (historically, also non-free
Gigaword 5).
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Nearest neighbors from GloVe embeddings

https://nlp.stanford.edu/projects/glove/

e The typical training set is Wikipedia (historically, also non-free
Gigaword 5).

e Main example from website is nearest neighbors of frog:
frogs, toad, litoria, leptodactylidae, rana, lizard,
eleutherodactylus

e Presence of much rarer synonyms is an example of why
practitioners may embed near the sphere, with slight
incorporation of popularity into norm, and penalize niche
recommendations.
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Stages of a typical recommender

@ Retrieval: Return ~ 300 nearest neighbors using cosine
similarity or its analogue.

® Reranking: Fine-tune the ordering of the retrieved list using a
classifier which approximately provides a < operator for pairs.

© Diversification: Return a list of, say, 10 results which
balances relevance with diversity (e.g., via greedily sampling a
Determinantal Point Process).

Today and tomorrow, we will be talking about solvers related to
the retrieval and diversification phases. Reranking is now
typically a DNN (though, so to is map from items to embeddings).
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Lecture: Intro to Recommender Systems

Lecture: Intro to Determinantal Point Processes

e Lab: Dense Determinantal Point Processes

Lecture: Sparse-direct Factorization and DPPs
Tomorrow:
e Lecture: Solvers for Gaussian Low-Rank Inference
e Lab: Word embeddings via alternating weighted least squares

e Lecture: Conic automorphisms and equilibration of
alternating WLS

e Lab: Implementing an equilibrated AWLS recommender with
diversification
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Intro to Determinantal Point Processes

Definition as distribution over subsets of a ground set.
Aztec diamond domino tilings

Star space and Uniform Spanning Tree processes
(Sampling from) Determinantal Projection Processes
Classical sampling algorithm for Hermitian DPPs
Equivalence classes of DPPs and non-Hermitian DPPs
Schur complements and conditional DPPs

High-performance DPP sampling via modified matrix
factorization
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Lab: Dense DPPs

We will implement (in Python):
e A Hermitian DPP sampler, and
e An elementary DPP sampler,

then apply them to uniformly sampling spanning trees from a box
in Z? (by constructing the Gramian of an orthonormal basis for the
graph's star space).
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Sparse-direct Factorization and DPPs

Introduction to sparse-direct methods
Approximate Minimum Degree reorderings
Nested Dissection reorderings

Formation of the elimination forest
Formation of fundamental supernodes
Supernode relaxation

Numerical factorization/sampling

Parallelization
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Solvers for Gaussian Low-Rank Inference

Bayesian interpretation of SVD objective function

Bayesian interpretation of SVD on just the observed entries
Bayesian interpretation of Gap SVD

(Block) coordinate descent solver

Fast alternating weighted least squares with constant
background

Column rescalings
Generalizations of cosine similarity and relaxing off sphere

Background on correspondence between symmetric cones and
formally real Jordan algebras.
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Lab: Word embeddings via
alternating WLS

We will construct an alternating weighted least squares solver in python to
train word embeddings from a subset of Wikipedia.

https://github.com/attardi/wikiextractor takes several hours but
generates 13 GB of plain text from Wikipedia.
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Lab: Word embeddings via
alternating WLS

We will construct an alternating weighted least squares solver in python to
train word embeddings from a subset of Wikipedia.

https://github.com/attardi/wikiextractor takes several hours but
generates 13 GB of plain text from Wikipedia.

Hotelwork: Either run this script overnight on https://dumps.wikimedia.
org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 or download
a bzip2 of 10 percent of the results posted at: https://send.firefox.com/
download/a33e163f35fcb5d4/#0T9goiJ1iiWINK1kHVHL_Q or
https://bit.1ly/31ACQ84.

Further, write a python function for traversing this hierarchy of plain text files
with a given window size to produce a dictionary of cooccurrence scores (keyed
on the source terms with the value being the array of target/cooccurrence
pairs).

Then write a separate routine to return a filtered dictionary which drops
coocurrences with sufficiently small scores and keeps only the dominant n

words. (Bonus: Also incorporate bigrams.)
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Conic automorphisms and equilibration of
alternating WLS

Why Gramians of optimal solutions are equal
Equilibrating the factors via conic automorphisms
Relationship to conic Interior Point Methods
Handling ill-conditioned /singular Gramians

A Jordan-algebraic interpretation
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Lab: Synonyms via equilibrated AWLS and
diversification

We will incorporate a Determinantal Point Process diversification
process and Nesterov Todd equilibration into our AWLS method
for word embeddings.
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Some readings
Determinantal Point Processes:

e Kulesza and Taskar, Determinantal point processes for
machine learning, arXiv:1207.6083.
e Hough, Krishnapur, Peres, and Virag, Determinantal
Processes and Independence, arXiv:math/0503110.
e Poulson, High-performance sampling of generic Determinantal
Point Processes, arxiv:1905.00165.
Background weights for recommenders:
e Pan and Scholz, Mind the gaps: weighting the unknowns in
large-scale one-class collaborative filtering, KDD, 2009.
Jordan algebras and conic IPMs:
e Alizadeh and Goldfarb, Second-Order Cone Programming,
2001.

http://rutcor.rutgers.edu/~alizadeh/CLASSES/
03sprNLP/Papers/allSurvey.pdf
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Discussion

Slides are available at:
hodgestar.com/G2S3/

Chatroom at:
https://gitter.im/hodge_star/G2S3
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