
Introduction to Recommender Systems
(from the perspective of a numerical analyst)

Jack Poulson (Hodge Star Scientific Computing)
Aussois, France, June 20, 2019

1 / 16



From video sharing websites, to NLP, to search engines, to online
stores, one of the most fundamental questions to ask is: which
items are most similar to a given one?

2 / 16



How do we define similarity?

• We could determine locations on a manifold (e.g., Euclidean
space, a sphere, or hyperbolic space) for each item and define
similarity based upon their distance.

• Practitioners call this an embedding, but be aware that
differential topologists/geometers will object: there is no
guarantee of even injectivity, and, in fact, it is typically lost
(“folding”).

• But surely there are no good low-dimensional representations
of complex ideas?

• Millions of pages of analysis have been written based upon the
1D embedding of political opinion: “left-wing”, “left of
center”, “right-wing”, etc...

• Typical word/term embeddings (e.g., word2vec, GloVe,
fastText) use a 200-500 dimensional sphere with cosine
distance.

3 / 16



How do we define similarity?

• We could determine locations on a manifold (e.g., Euclidean
space, a sphere, or hyperbolic space) for each item and define
similarity based upon their distance.

• Practitioners call this an embedding, but be aware that
differential topologists/geometers will object: there is no
guarantee of even injectivity, and, in fact, it is typically lost
(“folding”).

• But surely there are no good low-dimensional representations
of complex ideas?

• Millions of pages of analysis have been written based upon the
1D embedding of political opinion: “left-wing”, “left of
center”, “right-wing”, etc...

• Typical word/term embeddings (e.g., word2vec, GloVe,
fastText) use a 200-500 dimensional sphere with cosine
distance.

3 / 16



How do we define similarity?

• We could determine locations on a manifold (e.g., Euclidean
space, a sphere, or hyperbolic space) for each item and define
similarity based upon their distance.

• Practitioners call this an embedding, but be aware that
differential topologists/geometers will object: there is no
guarantee of even injectivity, and, in fact, it is typically lost
(“folding”).

• But surely there are no good low-dimensional representations
of complex ideas?

• Millions of pages of analysis have been written based upon the
1D embedding of political opinion: “left-wing”, “left of
center”, “right-wing”, etc...

• Typical word/term embeddings (e.g., word2vec, GloVe,
fastText) use a 200-500 dimensional sphere with cosine
distance.

3 / 16



How do we define similarity?

• We could determine locations on a manifold (e.g., Euclidean
space, a sphere, or hyperbolic space) for each item and define
similarity based upon their distance.

• Practitioners call this an embedding, but be aware that
differential topologists/geometers will object: there is no
guarantee of even injectivity, and, in fact, it is typically lost
(“folding”).

• But surely there are no good low-dimensional representations
of complex ideas?

• Millions of pages of analysis have been written based upon the
1D embedding of political opinion: “left-wing”, “left of
center”, “right-wing”, etc...

• Typical word/term embeddings (e.g., word2vec, GloVe,
fastText) use a 200-500 dimensional sphere with cosine
distance.

3 / 16



How do we define similarity?

• We could determine locations on a manifold (e.g., Euclidean
space, a sphere, or hyperbolic space) for each item and define
similarity based upon their distance.

• Practitioners call this an embedding, but be aware that
differential topologists/geometers will object: there is no
guarantee of even injectivity, and, in fact, it is typically lost
(“folding”).

• But surely there are no good low-dimensional representations
of complex ideas?

• Millions of pages of analysis have been written based upon the
1D embedding of political opinion: “left-wing”, “left of
center”, “right-wing”, etc...

• Typical word/term embeddings (e.g., word2vec, GloVe,
fastText) use a 200-500 dimensional sphere with cosine
distance.

3 / 16



How do we compute embeddings of items?

• Goal is to map each item – word of English, user of website,
product in store, ... – (roughly) onto an (r − 1)-sphere
(r ≈ 200).

• There is an artform to determining the model, but, roughly
speaking, one finds a low-rank approximation of a very large
(possibly implicit) sparse matrix.1

• For word embeddings, entry (i , j) might be log(ci ,j + 1),
where ci ,j is the weighted sum of coocurrences of word i with
word j in Wikipedia (perhaps with k words of separation
leading to a contribution of 1/k).

• For video embeddings, entry (i , j) might be the squashed
count of the number of times video i was watched after video
j or by user j .

1In the nonlinear context, one speaks of building an autoencoder.
4 / 16



How do we compute embeddings of items?

• Goal is to map each item – word of English, user of website,
product in store, ... – (roughly) onto an (r − 1)-sphere
(r ≈ 200).

• There is an artform to determining the model, but, roughly
speaking, one finds a low-rank approximation of a very large
(possibly implicit) sparse matrix.1

• For word embeddings, entry (i , j) might be log(ci ,j + 1),
where ci ,j is the weighted sum of coocurrences of word i with
word j in Wikipedia (perhaps with k words of separation
leading to a contribution of 1/k).

• For video embeddings, entry (i , j) might be the squashed
count of the number of times video i was watched after video
j or by user j .

1In the nonlinear context, one speaks of building an autoencoder.
4 / 16



How do we compute embeddings of items?

• Goal is to map each item – word of English, user of website,
product in store, ... – (roughly) onto an (r − 1)-sphere
(r ≈ 200).

• There is an artform to determining the model, but, roughly
speaking, one finds a low-rank approximation of a very large
(possibly implicit) sparse matrix.1

• For word embeddings, entry (i , j) might be log(ci ,j + 1),
where ci ,j is the weighted sum of coocurrences of word i with
word j in Wikipedia (perhaps with k words of separation
leading to a contribution of 1/k).

• For video embeddings, entry (i , j) might be the squashed
count of the number of times video i was watched after video
j or by user j .

1In the nonlinear context, one speaks of building an autoencoder.
4 / 16



How do we compute embeddings of items?

• Goal is to map each item – word of English, user of website,
product in store, ... – (roughly) onto an (r − 1)-sphere
(r ≈ 200).

• There is an artform to determining the model, but, roughly
speaking, one finds a low-rank approximation of a very large
(possibly implicit) sparse matrix.1

• For word embeddings, entry (i , j) might be log(ci ,j + 1),
where ci ,j is the weighted sum of coocurrences of word i with
word j in Wikipedia (perhaps with k words of separation
leading to a contribution of 1/k).

• For video embeddings, entry (i , j) might be the squashed
count of the number of times video i was watched after video
j or by user j .

1In the nonlinear context, one speaks of building an autoencoder.
4 / 16



Nearest neighbors from GloVe embeddings

https://nlp.stanford.edu/projects/glove/

• The typical training set is Wikipedia (historically, also non-free
Gigaword 5).

• Main example from website is nearest neighbors of frog:
frogs, toad, litoria, leptodactylidae, rana, lizard,
eleutherodactylus

• Presence of much rarer synonyms is an example of why
practitioners may embed near the sphere, with slight
incorporation of popularity into norm, and penalize niche
recommendations.

5 / 16

https://nlp.stanford.edu/projects/glove/
https://dumps.wikimedia.org/enwiki/latest/
https://catalog.ldc.upenn.edu/LDC2011T07


Nearest neighbors from GloVe embeddings

https://nlp.stanford.edu/projects/glove/

• The typical training set is Wikipedia (historically, also non-free
Gigaword 5).

• Main example from website is nearest neighbors of frog:
frogs, toad, litoria, leptodactylidae, rana, lizard,
eleutherodactylus

• Presence of much rarer synonyms is an example of why
practitioners may embed near the sphere, with slight
incorporation of popularity into norm, and penalize niche
recommendations.

5 / 16

https://nlp.stanford.edu/projects/glove/
https://dumps.wikimedia.org/enwiki/latest/
https://catalog.ldc.upenn.edu/LDC2011T07


Nearest neighbors from GloVe embeddings

https://nlp.stanford.edu/projects/glove/

• The typical training set is Wikipedia (historically, also non-free
Gigaword 5).

• Main example from website is nearest neighbors of frog:
frogs, toad, litoria, leptodactylidae, rana, lizard,
eleutherodactylus

• Presence of much rarer synonyms is an example of why
practitioners may embed near the sphere, with slight
incorporation of popularity into norm, and penalize niche
recommendations.

5 / 16

https://nlp.stanford.edu/projects/glove/
https://dumps.wikimedia.org/enwiki/latest/
https://catalog.ldc.upenn.edu/LDC2011T07


Stages of a typical recommender

1 Retrieval: Return ∼ 300 nearest neighbors using cosine
similarity or its analogue.

2 Reranking: Fine-tune the ordering of the retrieved list using a
classifier which approximately provides a < operator for pairs.

3 Diversification: Return a list of, say, 10 results which
balances relevance with diversity (e.g., via greedily sampling a
Determinantal Point Process).

Today and tomorrow, we will be talking about solvers related to
the retrieval and diversification phases. Reranking is now
typically a DNN (though, so to is map from items to embeddings).

6 / 16



Stages of a typical recommender

1 Retrieval: Return ∼ 300 nearest neighbors using cosine
similarity or its analogue.

2 Reranking: Fine-tune the ordering of the retrieved list using a
classifier which approximately provides a < operator for pairs.

3 Diversification: Return a list of, say, 10 results which
balances relevance with diversity (e.g., via greedily sampling a
Determinantal Point Process).

Today and tomorrow, we will be talking about solvers related to
the retrieval and diversification phases. Reranking is now
typically a DNN (though, so to is map from items to embeddings).

6 / 16



Stages of a typical recommender

1 Retrieval: Return ∼ 300 nearest neighbors using cosine
similarity or its analogue.

2 Reranking: Fine-tune the ordering of the retrieved list using a
classifier which approximately provides a < operator for pairs.

3 Diversification: Return a list of, say, 10 results which
balances relevance with diversity (e.g., via greedily sampling a
Determinantal Point Process).

Today and tomorrow, we will be talking about solvers related to
the retrieval and diversification phases. Reranking is now
typically a DNN (though, so to is map from items to embeddings).

6 / 16



Stages of a typical recommender

1 Retrieval: Return ∼ 300 nearest neighbors using cosine
similarity or its analogue.

2 Reranking: Fine-tune the ordering of the retrieved list using a
classifier which approximately provides a < operator for pairs.

3 Diversification: Return a list of, say, 10 results which
balances relevance with diversity (e.g., via greedily sampling a
Determinantal Point Process).

Today and tomorrow, we will be talking about solvers related to
the retrieval and diversification phases. Reranking is now
typically a DNN (though, so to is map from items to embeddings).

6 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Overview of lectures

Today:

• Lecture: Intro to Recommender Systems

• Lecture: Intro to Determinantal Point Processes

• Lab: Dense Determinantal Point Processes

• Lecture: Sparse-direct Factorization and DPPs

Tomorrow:

• Lecture: Solvers for Gaussian Low-Rank Inference

• Lab: Word embeddings via alternating weighted least squares

• Lecture: Conic automorphisms and equilibration of
alternating WLS

• Lab: Implementing an equilibrated AWLS recommender with
diversification

7 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Intro to Determinantal Point Processes

• Definition as distribution over subsets of a ground set.

• Aztec diamond domino tilings

• Star space and Uniform Spanning Tree processes

• (Sampling from) Determinantal Projection Processes

• Classical sampling algorithm for Hermitian DPPs

• Equivalence classes of DPPs and non-Hermitian DPPs

• Schur complements and conditional DPPs

• High-performance DPP sampling via modified matrix
factorization

8 / 16



Lab: Dense DPPs

We will implement (in Python):

• A Hermitian DPP sampler, and

• An elementary DPP sampler,

then apply them to uniformly sampling spanning trees from a box
in Z2 (by constructing the Gramian of an orthonormal basis for the
graph’s star space).

9 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Sparse-direct Factorization and DPPs

• Introduction to sparse-direct methods

• Approximate Minimum Degree reorderings

• Nested Dissection reorderings

• Formation of the elimination forest

• Formation of fundamental supernodes

• Supernode relaxation

• Numerical factorization/sampling

• Parallelization

10 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Solvers for Gaussian Low-Rank Inference

• Bayesian interpretation of SVD objective function

• Bayesian interpretation of SVD on just the observed entries

• Bayesian interpretation of Gap SVD

• (Block) coordinate descent solver

• Fast alternating weighted least squares with constant
background

• Column rescalings

• Generalizations of cosine similarity and relaxing off sphere

• Background on correspondence between symmetric cones and
formally real Jordan algebras.

11 / 16



Lab: Word embeddings via
alternating WLS

We will construct an alternating weighted least squares solver in python to
train word embeddings from a subset of Wikipedia.

https://github.com/attardi/wikiextractor takes several hours but
generates 13 GB of plain text from Wikipedia.

Hotelwork: Either run this script overnight on https://dumps.wikimedia.

org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 or download
a bzip2 of 10 percent of the results posted at: https://send.firefox.com/

download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q or
https://bit.ly/31ACQ8i.

Further, write a python function for traversing this hierarchy of plain text files
with a given window size to produce a dictionary of cooccurrence scores (keyed
on the source terms with the value being the array of target/cooccurrence
pairs).

Then write a separate routine to return a filtered dictionary which drops

coocurrences with sufficiently small scores and keeps only the dominant n

words. (Bonus: Also incorporate bigrams.)
12 / 16

https://github.com/attardi/wikiextractor
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://bit.ly/31ACQ8i


Lab: Word embeddings via
alternating WLS

We will construct an alternating weighted least squares solver in python to
train word embeddings from a subset of Wikipedia.

https://github.com/attardi/wikiextractor takes several hours but
generates 13 GB of plain text from Wikipedia.

Hotelwork: Either run this script overnight on https://dumps.wikimedia.

org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 or download
a bzip2 of 10 percent of the results posted at: https://send.firefox.com/

download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q or
https://bit.ly/31ACQ8i.

Further, write a python function for traversing this hierarchy of plain text files
with a given window size to produce a dictionary of cooccurrence scores (keyed
on the source terms with the value being the array of target/cooccurrence
pairs).

Then write a separate routine to return a filtered dictionary which drops

coocurrences with sufficiently small scores and keeps only the dominant n

words. (Bonus: Also incorporate bigrams.)
12 / 16

https://github.com/attardi/wikiextractor
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://bit.ly/31ACQ8i


Lab: Word embeddings via
alternating WLS

We will construct an alternating weighted least squares solver in python to
train word embeddings from a subset of Wikipedia.

https://github.com/attardi/wikiextractor takes several hours but
generates 13 GB of plain text from Wikipedia.

Hotelwork: Either run this script overnight on https://dumps.wikimedia.

org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 or download
a bzip2 of 10 percent of the results posted at: https://send.firefox.com/

download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q or
https://bit.ly/31ACQ8i.

Further, write a python function for traversing this hierarchy of plain text files
with a given window size to produce a dictionary of cooccurrence scores (keyed
on the source terms with the value being the array of target/cooccurrence
pairs).

Then write a separate routine to return a filtered dictionary which drops

coocurrences with sufficiently small scores and keeps only the dominant n

words. (Bonus: Also incorporate bigrams.)
12 / 16

https://github.com/attardi/wikiextractor
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://bit.ly/31ACQ8i


Lab: Word embeddings via
alternating WLS

We will construct an alternating weighted least squares solver in python to
train word embeddings from a subset of Wikipedia.

https://github.com/attardi/wikiextractor takes several hours but
generates 13 GB of plain text from Wikipedia.

Hotelwork: Either run this script overnight on https://dumps.wikimedia.

org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 or download
a bzip2 of 10 percent of the results posted at: https://send.firefox.com/

download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q or
https://bit.ly/31ACQ8i.

Further, write a python function for traversing this hierarchy of plain text files
with a given window size to produce a dictionary of cooccurrence scores (keyed
on the source terms with the value being the array of target/cooccurrence
pairs).

Then write a separate routine to return a filtered dictionary which drops

coocurrences with sufficiently small scores and keeps only the dominant n

words. (Bonus: Also incorporate bigrams.)
12 / 16

https://github.com/attardi/wikiextractor
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://send.firefox.com/download/a33e163f35fcb5d4/#0T9goiJliiWlNKlkHVHL_Q
https://bit.ly/31ACQ8i


Conic automorphisms and equilibration of
alternating WLS

• Why Gramians of optimal solutions are equal

• Equilibrating the factors via conic automorphisms

• Relationship to conic Interior Point Methods

• Handling ill-conditioned/singular Gramians

• A Jordan-algebraic interpretation

13 / 16



Conic automorphisms and equilibration of
alternating WLS

• Why Gramians of optimal solutions are equal

• Equilibrating the factors via conic automorphisms

• Relationship to conic Interior Point Methods

• Handling ill-conditioned/singular Gramians

• A Jordan-algebraic interpretation

13 / 16



Conic automorphisms and equilibration of
alternating WLS

• Why Gramians of optimal solutions are equal

• Equilibrating the factors via conic automorphisms

• Relationship to conic Interior Point Methods

• Handling ill-conditioned/singular Gramians

• A Jordan-algebraic interpretation

13 / 16



Conic automorphisms and equilibration of
alternating WLS

• Why Gramians of optimal solutions are equal

• Equilibrating the factors via conic automorphisms

• Relationship to conic Interior Point Methods

• Handling ill-conditioned/singular Gramians

• A Jordan-algebraic interpretation

13 / 16



Conic automorphisms and equilibration of
alternating WLS

• Why Gramians of optimal solutions are equal

• Equilibrating the factors via conic automorphisms

• Relationship to conic Interior Point Methods

• Handling ill-conditioned/singular Gramians

• A Jordan-algebraic interpretation

13 / 16



Lab: Synonyms via equilibrated AWLS and
diversification

We will incorporate a Determinantal Point Process diversification
process and Nesterov Todd equilibration into our AWLS method
for word embeddings.

14 / 16



Some readings
Determinantal Point Processes:

• Kulesza and Taskar, Determinantal point processes for
machine learning, arXiv:1207.6083.

• Hough, Krishnapur, Peres, and Virag, Determinantal
Processes and Independence, arXiv:math/0503110.

• Poulson, High-performance sampling of generic Determinantal
Point Processes, arxiv:1905.00165.

Background weights for recommenders:

• Pan and Scholz, Mind the gaps: weighting the unknowns in
large-scale one-class collaborative filtering, KDD, 2009.

Jordan algebras and conic IPMs:

• Alizadeh and Goldfarb, Second-Order Cone Programming,
2001.
http://rutcor.rutgers.edu/~alizadeh/CLASSES/

03sprNLP/Papers/allSurvey.pdf

15 / 16

https://arxiv.org/abs/1207.6083
https://arxiv.org/abs/math/0503110
https://arxiv.org/abs/1905.00165
http://rutcor.rutgers.edu/~alizadeh/CLASSES/03sprNLP/Papers/allSurvey.pdf
http://rutcor.rutgers.edu/~alizadeh/CLASSES/03sprNLP/Papers/allSurvey.pdf


Discussion

Slides are available at:
hodgestar.com/G2S3/

Chatroom at:
https://gitter.im/hodge_star/G2S3

16 / 16

https://hodgestar.com/G2S3/
https://gitter.im/hodge_star/G2S3

