
Introduction to Determinantal Point Processes

Jack Poulson (Hodge Star Scientific Computing)
Aussois, France, June 20, 2019

1 / 75

Overview
• We are nominally discussing them due to their popularization,

by [Kulesza/Taskar-2012], for the diversification step of a
recommendation system. But, in that context, set size is
typically only a few hundred.

• We will draw strong connection between techniques for
efficiently factoring matrices and for sampling structured
subsets of a ground set.

• The basic bridge: forming a Schur complement equates to
forming a representation of a conditional distribution.

• One can import HPC techniques [P-2019], such as
DAG-scheduled dense and sparse-direct blocked algorithms,
from factorizations to Determinantal Point Processes.

• Implementations are available in the permissively licensed,
header-only C++14 package Catamari [P-2018] available at
hodgestar.com/catamari and (partly) in DPPy
github.com/guilgautier/DPPy.

2 / 75

https://hodgestar.com/catamari
https://github.com/guilgautier/DPPy

Overview
• We are nominally discussing them due to their popularization,

by [Kulesza/Taskar-2012], for the diversification step of a
recommendation system. But, in that context, set size is
typically only a few hundred.

• We will draw strong connection between techniques for
efficiently factoring matrices and for sampling structured
subsets of a ground set.

• The basic bridge: forming a Schur complement equates to
forming a representation of a conditional distribution.

• One can import HPC techniques [P-2019], such as
DAG-scheduled dense and sparse-direct blocked algorithms,
from factorizations to Determinantal Point Processes.

• Implementations are available in the permissively licensed,
header-only C++14 package Catamari [P-2018] available at
hodgestar.com/catamari and (partly) in DPPy
github.com/guilgautier/DPPy.

2 / 75

https://hodgestar.com/catamari
https://github.com/guilgautier/DPPy

Overview
• We are nominally discussing them due to their popularization,

by [Kulesza/Taskar-2012], for the diversification step of a
recommendation system. But, in that context, set size is
typically only a few hundred.

• We will draw strong connection between techniques for
efficiently factoring matrices and for sampling structured
subsets of a ground set.

• The basic bridge: forming a Schur complement equates to
forming a representation of a conditional distribution.

• One can import HPC techniques [P-2019], such as
DAG-scheduled dense and sparse-direct blocked algorithms,
from factorizations to Determinantal Point Processes.

• Implementations are available in the permissively licensed,
header-only C++14 package Catamari [P-2018] available at
hodgestar.com/catamari and (partly) in DPPy
github.com/guilgautier/DPPy.

2 / 75

https://hodgestar.com/catamari
https://github.com/guilgautier/DPPy

Overview
• We are nominally discussing them due to their popularization,

by [Kulesza/Taskar-2012], for the diversification step of a
recommendation system. But, in that context, set size is
typically only a few hundred.

• We will draw strong connection between techniques for
efficiently factoring matrices and for sampling structured
subsets of a ground set.

• The basic bridge: forming a Schur complement equates to
forming a representation of a conditional distribution.

• One can import HPC techniques [P-2019], such as
DAG-scheduled dense and sparse-direct blocked algorithms,
from factorizations to Determinantal Point Processes.

• Implementations are available in the permissively licensed,
header-only C++14 package Catamari [P-2018] available at
hodgestar.com/catamari and (partly) in DPPy
github.com/guilgautier/DPPy.

2 / 75

https://hodgestar.com/catamari
https://github.com/guilgautier/DPPy

Overview
• We are nominally discussing them due to their popularization,

by [Kulesza/Taskar-2012], for the diversification step of a
recommendation system. But, in that context, set size is
typically only a few hundred.

• We will draw strong connection between techniques for
efficiently factoring matrices and for sampling structured
subsets of a ground set.

• The basic bridge: forming a Schur complement equates to
forming a representation of a conditional distribution.

• One can import HPC techniques [P-2019], such as
DAG-scheduled dense and sparse-direct blocked algorithms,
from factorizations to Determinantal Point Processes.

• Implementations are available in the permissively licensed,
header-only C++14 package Catamari [P-2018] available at
hodgestar.com/catamari and (partly) in DPPy
github.com/guilgautier/DPPy.

2 / 75

https://hodgestar.com/catamari
https://github.com/guilgautier/DPPy

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as ‘factoring’ a class of
matrices such that the j ’th pivot is the probability of including the
j ’th item.

Flip a coin weighted by the pivot to determine inclusion:

• If the item is kept, proceed as in an LU/LDL factorization.

• If the item is dropped, take the pivot’s complement in [0, 1]
and negate – i.e., subtract one – and proceed as normal.

The likelihood of the sample is thus the product of the absolute
value of the diagonal of the ‘factorization’.

Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.

3 / 75

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as ‘factoring’ a class of
matrices such that the j ’th pivot is the probability of including the
j ’th item.

Flip a coin weighted by the pivot to determine inclusion:

• If the item is kept, proceed as in an LU/LDL factorization.

• If the item is dropped, take the pivot’s complement in [0, 1]
and negate – i.e., subtract one – and proceed as normal.

The likelihood of the sample is thus the product of the absolute
value of the diagonal of the ‘factorization’.

Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.

3 / 75

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as ‘factoring’ a class of
matrices such that the j ’th pivot is the probability of including the
j ’th item.

Flip a coin weighted by the pivot to determine inclusion:

• If the item is kept, proceed as in an LU/LDL factorization.

• If the item is dropped, take the pivot’s complement in [0, 1]
and negate – i.e., subtract one – and proceed as normal.

The likelihood of the sample is thus the product of the absolute
value of the diagonal of the ‘factorization’.

Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.

3 / 75

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as ‘factoring’ a class of
matrices such that the j ’th pivot is the probability of including the
j ’th item.

Flip a coin weighted by the pivot to determine inclusion:

• If the item is kept, proceed as in an LU/LDL factorization.

• If the item is dropped, take the pivot’s complement in [0, 1]
and negate – i.e., subtract one – and proceed as normal.

The likelihood of the sample is thus the product of the absolute
value of the diagonal of the ‘factorization’.

Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.

3 / 75

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as ‘factoring’ a class of
matrices such that the j ’th pivot is the probability of including the
j ’th item.

Flip a coin weighted by the pivot to determine inclusion:

• If the item is kept, proceed as in an LU/LDL factorization.

• If the item is dropped, take the pivot’s complement in [0, 1]
and negate – i.e., subtract one – and proceed as normal.

The likelihood of the sample is thus the product of the absolute
value of the diagonal of the ‘factorization’.

Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.

3 / 75

What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

4 / 75

What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

4 / 75

What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

4 / 75

What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

4 / 75

What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

4 / 75

What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

4 / 75

Aztec diamond: d = 5

$. / a z t e c d i a m o n d −−d i a m o n d s i z e=5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

5 / 75

Aztec diamond: d = 5

$. / a z t e c d i a m o n d −−d i a m o n d s i z e=5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

6 / 75

Aztec diamond: d = 5

$. / a z t e c d i a m o n d −−d i a m o n d s i z e=5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

7 / 75

Aztec diamond: d = 5

$. / a z t e c d i a m o n d −−d i a m o n d s i z e=5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

8 / 75

Aztec diamond: d = 5

$. / a z t e c d i a m o n d −−d i a m o n d s i z e=5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

9 / 75

Aztec diamond: d = 10

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =10

Complex non-Hermitian kernel; Sample likelihoods: exp(−38.1231)

10 / 75

Aztec diamond: d = 10

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =10

Complex non-Hermitian kernel; Sample likelihoods: exp(−38.1231)

11 / 75

Aztec diamond: d = 10

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =10

Complex non-Hermitian kernel; Sample likelihoods: exp(−38.1231)

12 / 75

Aztec diamond: d = 10

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =10

Complex non-Hermitian kernel; Sample likelihoods: exp(−38.1231)

13 / 75

Aztec diamond: d = 10

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =10

Complex non-Hermitian kernel; Sample likelihoods: exp(−38.1231)

14 / 75

Aztec diamond: d = 40

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =40

Complex non-Hermitian kernel; Sample likelihoods: exp(−568.381)

15 / 75

Aztec diamond: d = 40

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =40

Complex non-Hermitian kernel; Sample likelihoods: exp(−568.381)

16 / 75

Aztec diamond: d = 40

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =40

Complex non-Hermitian kernel; Sample likelihoods: exp(−568.381)

17 / 75

Aztec diamond: d = 40

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =40

Complex non-Hermitian kernel; Sample likelihoods: exp(−568.381)

18 / 75

Aztec diamond: d = 40

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =40

Complex non-Hermitian kernel; Sample likelihoods: exp(−568.381)

19 / 75

Aztec diamond: d = 80

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =80

Complex non-Hermitian kernel; Sample likelihoods: exp(−2245.8)

20 / 75

Aztec diamond: d = 80

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =80

Complex non-Hermitian kernel; Sample likelihoods: exp(−2245.8)

21 / 75

Aztec diamond: d = 80

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =80

Complex non-Hermitian kernel; Sample likelihoods: exp(−2245.8)

22 / 75

Aztec diamond: d = 80

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =80

Complex non-Hermitian kernel; Sample likelihoods: exp(−2245.8)

23 / 75

Aztec diamond: d = 80

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =80

Complex non-Hermitian kernel; Sample likelihoods: exp(−2245.8)

24 / 75

The arctic circle

The phenomenon we just observed is referred to as the arctic
circle. From [Jockusch/Propp/Shor-1995], Random Domino
Tilings and the Arctic Circle Theorem:
“We show that when n is sufficiently large, the shape of the central
sub-region becomes arbitrarily close to a perfect circle of radius
n/
√

2 for all but a negligible proportion of the tilings.”

On the other hand, square (non-diamond) tilings
“are statistically homogeneous unless one looks quite close to the
boundary.”

25 / 75

The arctic circle

The phenomenon we just observed is referred to as the arctic
circle. From [Jockusch/Propp/Shor-1995], Random Domino
Tilings and the Arctic Circle Theorem:
“We show that when n is sufficiently large, the shape of the central
sub-region becomes arbitrarily close to a perfect circle of radius
n/
√

2 for all but a negligible proportion of the tilings.”

On the other hand, square (non-diamond) tilings
“are statistically homogeneous unless one looks quite close to the
boundary.”

25 / 75

Uniform Spanning Tree in Z2 (d = 10)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10

Real-symm’ elementary kernel; Sample likelihoods: exp(−98.448)

26 / 75

Uniform Spanning Tree in Z2 (d = 10)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10

Real-symm’ elementary kernel; Sample likelihoods: exp(−98.448)

27 / 75

Uniform Spanning Tree in Z2 (d = 10)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10

Real-symm’ elementary kernel; Sample likelihoods: exp(−98.448)

28 / 75

Uniform Spanning Tree in Z2 (d = 10)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10

Real-symm’ elementary kernel; Sample likelihoods: exp(−98.448)

29 / 75

Uniform Spanning Tree in Z2 (d = 10)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10

Real-symm’ elementary kernel; Sample likelihoods: exp(−98.448)

30 / 75

Uniform Spanning Tree in Z2 (d = 40)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =40 −−y s i z e =40

Real-symm’ elementary kernel; Sample likelihoods: exp(−1794.24)

31 / 75

Uniform Spanning Tree in Z2 (d = 40)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =40 −−y s i z e =40

Real-symm’ elementary kernel; Sample likelihoods: exp(−1794.24)

32 / 75

Uniform Spanning Tree in Z2 (d = 40)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =40 −−y s i z e =40

Real-symm’ elementary kernel; Sample likelihoods: exp(−1794.24)

33 / 75

Uniform Spanning Tree in Z2 (d = 40)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =40 −−y s i z e =40

Real-symm’ elementary kernel; Sample likelihoods: exp(−1794.24)

34 / 75

Uniform Spanning Tree in Z2 (d = 40)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =40 −−y s i z e =40

Real-symm’ elementary kernel; Sample likelihoods: exp(−1794.24)

35 / 75

Uniform Spanning Tree in Z2 (d = 100)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =100 −−y s i z e =100

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 484.5)

36 / 75

Uniform Spanning Tree in Z2 (d = 100)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =100 −−y s i z e =100

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 484.5)

37 / 75

Uniform Spanning Tree in Z2 (d = 100)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =100 −−y s i z e =100

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 484.5)

38 / 75

Uniform Spanning Tree in Z2 (d = 100)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =100 −−y s i z e =100

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 484.5)

39 / 75

Uniform Spanning Tree in Z2 (d = 100)

$. / u n i f o r m s p a n n i n g t r e e −−x s i z e =100 −−y s i z e =100

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 484.5)

40 / 75

UST for hexagonal tiling of plane (d = 10)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−299.101)

41 / 75

UST for hexagonal tiling of plane (d = 10)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−299.101)

42 / 75

UST for hexagonal tiling of plane (d = 10)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−299.101)

43 / 75

UST for hexagonal tiling of plane (d = 10)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−299.101)

44 / 75

UST for hexagonal tiling of plane (d = 10)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−299.101)

45 / 75

UST for hexagonal tiling of plane (d = 60)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

46 / 75

UST for hexagonal tiling of plane (d = 60)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

47 / 75

UST for hexagonal tiling of plane (d = 60)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

48 / 75

UST for hexagonal tiling of plane (d = 60)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

49 / 75

UST for hexagonal tiling of plane (d = 60)

$. / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

50 / 75

Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex)
Hermitian matrix whose eigenvalues live in [0, 1].

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a
random variable Y over the power set of Y = {0, ..., n − 1} = [n] generated by
a n × n (Hermitian) marginal kernel matrix K via the rule

PK [Y ⊆ Y] = det(KY),

where KY is the |Y | × |Y | submatrix of K formed by restricting to the rows
and columns in the index set Y .

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its

marginal kernel matrix all lie in {0, 1}.

51 / 75

Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex)
Hermitian matrix whose eigenvalues live in [0, 1].

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a
random variable Y over the power set of Y = {0, ..., n − 1} = [n] generated by
a n × n (Hermitian) marginal kernel matrix K via the rule

PK [Y ⊆ Y] = det(KY),

where KY is the |Y | × |Y | submatrix of K formed by restricting to the rows
and columns in the index set Y .

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its

marginal kernel matrix all lie in {0, 1}.

51 / 75

Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex)
Hermitian matrix whose eigenvalues live in [0, 1].

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a
random variable Y over the power set of Y = {0, ..., n − 1} = [n] generated by
a n × n (Hermitian) marginal kernel matrix K via the rule

PK [Y ⊆ Y] = det(KY),

where KY is the |Y | × |Y | submatrix of K formed by restricting to the rows
and columns in the index set Y .

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its

marginal kernel matrix all lie in {0, 1}.

51 / 75

Star space

Generating the symmetric positive semi-definite DPP kernel
matrices for uniformly sampling spanning trees is accomplished
using an orthonormal basis of a vector space associated with an
arbitrary ordering of a graph called the star space
[Lyons/Peres-2017], Probability on Trees and Networks,
www.uni-due.de/ hm0110/book.pdf.

52 / 75

https://www.uni-due.de/~hm0110/book.pdf

Star space
Given a graph G = (V ,E) and an edge orientation

−→
E , we

associate with each oriented edge e = uv a unit flow along e,

χe(e ′) = [1uv − 1vu](e ′) =


1, e ′ = uv ,
−1, e ′ = vu,
0, otherwise

.

We can now define the star space of the oriented graph as:

S = span

{ ∑
u:uv∈E

χuv | v ∈ V

}
,

and its orthogonal complement, the cycle space:

C = span

{
n−1∑
i=0

χei | e0, ..., en−1is an oriented cycle

}
.

53 / 75

Star space
Given a graph G = (V ,E) and an edge orientation

−→
E , we

associate with each oriented edge e = uv a unit flow along e,

χe(e ′) = [1uv − 1vu](e ′) =


1, e ′ = uv ,
−1, e ′ = vu,
0, otherwise

.

We can now define the star space of the oriented graph as:

S = span

{ ∑
u:uv∈E

χuv | v ∈ V

}
,

and its orthogonal complement, the cycle space:

C = span

{
n−1∑
i=0

χei | e0, ..., en−1is an oriented cycle

}
.

53 / 75

Star space
Given a graph G = (V ,E) and an edge orientation

−→
E , we

associate with each oriented edge e = uv a unit flow along e,

χe(e ′) = [1uv − 1vu](e ′) =


1, e ′ = uv ,
−1, e ′ = vu,
0, otherwise

.

We can now define the star space of the oriented graph as:

S = span

{ ∑
u:uv∈E

χuv | v ∈ V

}
,

and its orthogonal complement, the cycle space:

C = span

{
n−1∑
i=0

χei | e0, ..., en−1is an oriented cycle

}
.

53 / 75

Burton/Pemantle Theorem

We can now define the transfer current matrix, P, of an oriented
graph G as the orthogonal projection onto its star space.

Theorem (Burton-Pemantle) Let T denote a uniformly random
spanning tree of a graph G . Then for any subset of edges
F = {e0, ..., ek−1},

P[F ⊆ T] = det(PF).

See [Lyons/Peres-2017] or [Burton/Pemantle-1993] for a proof.

Given a graph G , we can thus define the DPP kernel for uniformly
sampling its spanning trees as the Gramian of an orthonormal basis
for its star space.

54 / 75

Burton/Pemantle Theorem

We can now define the transfer current matrix, P, of an oriented
graph G as the orthogonal projection onto its star space.

Theorem (Burton-Pemantle) Let T denote a uniformly random
spanning tree of a graph G . Then for any subset of edges
F = {e0, ..., ek−1},

P[F ⊆ T] = det(PF).

See [Lyons/Peres-2017] or [Burton/Pemantle-1993] for a proof.

Given a graph G , we can thus define the DPP kernel for uniformly
sampling its spanning trees as the Gramian of an orthonormal basis
for its star space.

54 / 75

Burton/Pemantle Theorem

We can now define the transfer current matrix, P, of an oriented
graph G as the orthogonal projection onto its star space.

Theorem (Burton-Pemantle) Let T denote a uniformly random
spanning tree of a graph G . Then for any subset of edges
F = {e0, ..., ek−1},

P[F ⊆ T] = det(PF).

See [Lyons/Peres-2017] or [Burton/Pemantle-1993] for a proof.

Given a graph G , we can thus define the DPP kernel for uniformly
sampling its spanning trees as the Gramian of an orthonormal basis
for its star space.

54 / 75

Traditional Hermitian DPP sampling

Lemma 4 (Hough et al.-2006). Given any Y ∼ DPP(K), where K has
spectral decomposition QΛQ∗, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(QZ), where P(U) ≡ UU∗ and QZ

consists of the columns of Q with indices from Z ∼ DPP(Λ).

“Alg. 1 runs in time O(Nk3), where k is the number of eigenvectors selected
[...] the initial eigendecomposition of [K] is often the computational
bottleneck, requiring O(N3) time. Modern multi-core machines can compute
eigendecompositions up to N ≈ 1, 000 at interactive speeds of a few seconds,
or larger problems up to N ≈ 10, 000 in around ten minutes.”
[Kulesza/Taskar-2012]

[Gillenwater-2014] reduced the factored elementary DPP sampling down to

cubic complexity via what is equivalent to diagonally-pivoted Cholesky.1

1[Gillenwater-2014] Approximate inference for determinantal point processes
55 / 75

Traditional Hermitian DPP sampling

Lemma 4 (Hough et al.-2006). Given any Y ∼ DPP(K), where K has
spectral decomposition QΛQ∗, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(QZ), where P(U) ≡ UU∗ and QZ

consists of the columns of Q with indices from Z ∼ DPP(Λ).

“Alg. 1 runs in time O(Nk3), where k is the number of eigenvectors selected
[...] the initial eigendecomposition of [K] is often the computational
bottleneck, requiring O(N3) time. Modern multi-core machines can compute
eigendecompositions up to N ≈ 1, 000 at interactive speeds of a few seconds,
or larger problems up to N ≈ 10, 000 in around ten minutes.”
[Kulesza/Taskar-2012]

[Gillenwater-2014] reduced the factored elementary DPP sampling down to

cubic complexity via what is equivalent to diagonally-pivoted Cholesky.1

1[Gillenwater-2014] Approximate inference for determinantal point processes
55 / 75

Traditional Hermitian DPP sampling

Lemma 4 (Hough et al.-2006). Given any Y ∼ DPP(K), where K has
spectral decomposition QΛQ∗, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(QZ), where P(U) ≡ UU∗ and QZ

consists of the columns of Q with indices from Z ∼ DPP(Λ).

“Alg. 1 runs in time O(Nk3), where k is the number of eigenvectors selected
[...] the initial eigendecomposition of [K] is often the computational
bottleneck, requiring O(N3) time. Modern multi-core machines can compute
eigendecompositions up to N ≈ 1, 000 at interactive speeds of a few seconds,
or larger problems up to N ≈ 10, 000 in around ten minutes.”
[Kulesza/Taskar-2012]

[Gillenwater-2014] reduced the factored elementary DPP sampling down to

cubic complexity via what is equivalent to diagonally-pivoted Cholesky.1

1[Gillenwater-2014] Approximate inference for determinantal point processes
55 / 75

Rank-revealing Cholesky factorization

Algorithm 1: Unblocked, left-looking, diagonally-pivoted, Cholesky.
The computational cost is roughly O(nk2).

d := diag(A) ; o r i g i n d i c e s := [0 : n]
k = 0
f o r j i n range (n) :
Sample p i v o t ; pe r fo rm pe rmuta t i on s
++k
Draw index t from [j : n] t h a t max imizes dt
Perform Hermi t i an swap o f i n d i c e s j and t o f A
Swap p o s i t i o n s j and t o f o r i g i n d i c e s and d
i f dj < tolerance :

Aj := 0
break

Aj :=
√

dj
Form new column ; update d i a g on a l
A[j+1:n], j −= A[j+1:n], [0:j]A

H
j, [0:j]

f o r t i n range (j +1, n) :
At,j /= Aj

dt −= |At,j |2
r e t u r n o r i g i n d i c e s [0 : k] , A[0:k]

56 / 75

Elementary DPP sampler

Algorithm 2: Unblocked, left-looking, diagonally-pivoted,
Cholesky-based sampling of a Hermitian Determinantal Projection
Process. Returned matrix will contain the in-place Cholesky
factorization of KY . The computational cost is O(nk2).

A := K ; d := diag(K) ; o r i g i n d i c e s := [0 : n]
f o r j i n range (k) :
Sample p i v o t ; pe r fo rm pe rmuta t i on s
Draw index t from [j : n] w i th p r o b a b i l i t y dt/(k − j)
Perform Hermi t i an swap o f i n d i c e s j and t o f A
Swap p o s i t i o n s j and t o f o r i g i n d i c e s and d
Aj :=

√
dj

i f j == k − 1 :
break

Form new column ; update d i a g on a l
A[j+1:n], j −= A[j+1:n], [0:j]A

H
j, [0:j]

f o r t i n range (j +1, n) :
At,j /= Aj

dt −= |At,j |2
r e t u r n o r i g i n d i c e s [0 : k] , A[0:k]

57 / 75

Non-Hermitian DPP kernels

Definition 5. A (finite) Determinantal Point Process is a random
variable Y over the power set of Y = [n] generated by an admissible
K ∈ Cn×n that is consistent with the rule:

PK [Y ⊆ Y] = det(KY).

Proposition 1 (Brunel-2018) A matrix K ∈ Cn×n is admissible as a
DPP marginal kernel iff

(−1)|J|det(K − IJ) ≥ 0, ∀J ⊆ [n].

58 / 75

Non-Hermitian DPP kernels

Definition 5. A (finite) Determinantal Point Process is a random
variable Y over the power set of Y = [n] generated by an admissible
K ∈ Cn×n that is consistent with the rule:

PK [Y ⊆ Y] = det(KY).

Proposition 1 (Brunel-2018) A matrix K ∈ Cn×n is admissible as a
DPP marginal kernel iff

(−1)|J|det(K − IJ) ≥ 0, ∀J ⊆ [n].

58 / 75

Equivalence classes of DPP kernels

Proposition 2 (P-2019) The equivalence class of a structurally
symmetric DPP kernel K ∈ Cn×n is its orbit under the group of diagonal
similarity transformations, i.e.,

{D−1KD : D = diag(d), d ∈ (Cx)n}.

For complex Hermitian and real symmetric K , the entries of D must
respectively lie in U(1) and O(1).

Proposition 3 (P-2019) The equivalence class of a structurally
nonsymmetric DPP kernel K strictly contains its orbit under the group of
diagonal similarity transformations.

Proof.
If structural symmetry is broken at a 2× 2 submatrix, we need only
observe that:

DPP(

(
α 0
β γ

)
) ≡ DPP(

(
α 0
0 γ

)
),

but neither is contained in the orbit of the other.

59 / 75

Equivalence classes of DPP kernels

Proposition 2 (P-2019) The equivalence class of a structurally
symmetric DPP kernel K ∈ Cn×n is its orbit under the group of diagonal
similarity transformations, i.e.,

{D−1KD : D = diag(d), d ∈ (Cx)n}.

For complex Hermitian and real symmetric K , the entries of D must
respectively lie in U(1) and O(1).

Proposition 3 (P-2019) The equivalence class of a structurally
nonsymmetric DPP kernel K strictly contains its orbit under the group of
diagonal similarity transformations.

Proof.
If structural symmetry is broken at a 2× 2 submatrix, we need only
observe that:

DPP(

(
α 0
β γ

)
) ≡ DPP(

(
α 0
0 γ

)
),

but neither is contained in the orbit of the other.

59 / 75

Sequential thinning
Recently, authors are noticing connections to LDLH factorizations.23

In [Launay et al.-2018], timings are provided for the spectrally-preprocessed and
“sequentially thinned” algorithm for elementary real symmetric kernels of rank
20 and varying size (left) and varying rank and size 5000 (right):

We will discuss how to decrease runtimes by 100-1000x, for more general

kernels, by importing dense factorization techniques. We then extend to

non-Hermitian and, in the next lecture, sparse-direct analogues.
2[Chen et al.-2017] Fast Greedy MAP inference for Det’ Point Processes
3[Launay et al.-2018] Exact sampling of determinantal point processes

without eigendecomposition. arxiv.org/abs/1802.08429v3
60 / 75

https://arxiv.org/abs/1802.08429v3

Sequential thinning
Recently, authors are noticing connections to LDLH factorizations.23

In [Launay et al.-2018], timings are provided for the spectrally-preprocessed and
“sequentially thinned” algorithm for elementary real symmetric kernels of rank
20 and varying size (left) and varying rank and size 5000 (right):

We will discuss how to decrease runtimes by 100-1000x, for more general

kernels, by importing dense factorization techniques. We then extend to

non-Hermitian and, in the next lecture, sparse-direct analogues.
2[Chen et al.-2017] Fast Greedy MAP inference for Det’ Point Processes
3[Launay et al.-2018] Exact sampling of determinantal point processes

without eigendecomposition. arxiv.org/abs/1802.08429v3
60 / 75

https://arxiv.org/abs/1802.08429v3

Conditioning on inclusion
Proposition Given disjoint subsets A,B ⊆ [n] of the ground set of a DPP with
marginal kernel K , almost surely

P[B ⊆ Y|A ⊆ Y] = det(KB − KB,AK
−1
A KA,B).

Proof.
If A ⊆ Y, then det(KA) = P[A ⊆ Y] > 0 almost surely, so we may perform a
two-by-two block LU decomposition(

KA KA,B

KB,A KB

)
=

(
I 0

KB,AK
−1
A KB − KB,AK

−1
A KA,B

)(
KA KA,B

0 I

)
.

That det : GL(n,C) 7→ (C,×) is a homomorphism yields

det(KA∪B) = det(KA) det(KB − KB,AK
−1
A KA,B).

The result then follows from the definition of conditional probabilities for a
DPP:

P[B ⊆ Y|A ⊆ Y] =
P[A,B ⊆ Y]

P[A ⊆ Y]
=

det(KA∪B)

det(KA)
.

61 / 75

Conditioning on inclusion
Proposition Given disjoint subsets A,B ⊆ [n] of the ground set of a DPP with
marginal kernel K , almost surely

P[B ⊆ Y|A ⊆ Y] = det(KB − KB,AK
−1
A KA,B).

Proof.
If A ⊆ Y, then det(KA) = P[A ⊆ Y] > 0 almost surely, so we may perform a
two-by-two block LU decomposition(

KA KA,B

KB,A KB

)
=

(
I 0

KB,AK
−1
A KB − KB,AK

−1
A KA,B

)(
KA KA,B

0 I

)
.

That det : GL(n,C) 7→ (C,×) is a homomorphism yields

det(KA∪B) = det(KA) det(KB − KB,AK
−1
A KA,B).

The result then follows from the definition of conditional probabilities for a
DPP:

P[B ⊆ Y|A ⊆ Y] =
P[A,B ⊆ Y]

P[A ⊆ Y]
=

det(KA∪B)

det(KA)
.

61 / 75

Conditioning on inclusion
Proposition Given disjoint subsets A,B ⊆ [n] of the ground set of a DPP with
marginal kernel K , almost surely

P[B ⊆ Y|A ⊆ Y] = det(KB − KB,AK
−1
A KA,B).

Proof.
If A ⊆ Y, then det(KA) = P[A ⊆ Y] > 0 almost surely, so we may perform a
two-by-two block LU decomposition(

KA KA,B

KB,A KB

)
=

(
I 0

KB,AK
−1
A KB − KB,AK

−1
A KA,B

)(
KA KA,B

0 I

)
.

That det : GL(n,C) 7→ (C,×) is a homomorphism yields

det(KA∪B) = det(KA) det(KB − KB,AK
−1
A KA,B).

The result then follows from the definition of conditional probabilities for a
DPP:

P[B ⊆ Y|A ⊆ Y] =
P[A,B ⊆ Y]

P[A ⊆ Y]
=

det(KA∪B)

det(KA)
.

61 / 75

Conditioning on inclusion
Proposition Given disjoint subsets A,B ⊆ [n] of the ground set of a DPP with
marginal kernel K , almost surely

P[B ⊆ Y|A ⊆ Y] = det(KB − KB,AK
−1
A KA,B).

Proof.
If A ⊆ Y, then det(KA) = P[A ⊆ Y] > 0 almost surely, so we may perform a
two-by-two block LU decomposition(

KA KA,B

KB,A KB

)
=

(
I 0

KB,AK
−1
A KB − KB,AK

−1
A KA,B

)(
KA KA,B

0 I

)
.

That det : GL(n,C) 7→ (C,×) is a homomorphism yields

det(KA∪B) = det(KA) det(KB − KB,AK
−1
A KA,B).

The result then follows from the definition of conditional probabilities for a
DPP:

P[B ⊆ Y|A ⊆ Y] =
P[A,B ⊆ Y]

P[A ⊆ Y]
=

det(KA∪B)

det(KA)
.

61 / 75

Conditioning on element exclusion
Proposition Given disjoint a ∈ [n] and B ⊂ [n] for a ground set [n] of a DPP
with marginal kernel K , almost surely

P[B ⊂ Y|a /∈ Y] = det(KB − KB,a(Ka − 1)−1Ka,B).

Proof.

P[B ⊂ Y|a /∈ Y] =
P[a /∈ Y|B ⊂ Y]P[B ⊂ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊂ Y])P[B ⊂ Y]

1− P[a ∈ Y]

=
det(KB)− det(Ka∪B)

1− Ka

= det(KB)(1− Ka,B
KB
−1

Ka − 1
KB,a)

= det(KB − KB,a(Ka − 1)−1Ka,B),

where the last equality makes use of the Matrix Determinant Lemma. The
formulae are well-defined almost surely.

62 / 75

Conditioning on element exclusion
Proposition Given disjoint a ∈ [n] and B ⊂ [n] for a ground set [n] of a DPP
with marginal kernel K , almost surely

P[B ⊂ Y|a /∈ Y] = det(KB − KB,a(Ka − 1)−1Ka,B).

Proof.

P[B ⊂ Y|a /∈ Y] =
P[a /∈ Y|B ⊂ Y]P[B ⊂ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊂ Y])P[B ⊂ Y]

1− P[a ∈ Y]

=
det(KB)− det(Ka∪B)

1− Ka

= det(KB)(1− Ka,B
KB
−1

Ka − 1
KB,a)

= det(KB − KB,a(Ka − 1)−1Ka,B),

where the last equality makes use of the Matrix Determinant Lemma. The
formulae are well-defined almost surely.

62 / 75

Conditioning on element exclusion
Proposition Given disjoint a ∈ [n] and B ⊂ [n] for a ground set [n] of a DPP
with marginal kernel K , almost surely

P[B ⊂ Y|a /∈ Y] = det(KB − KB,a(Ka − 1)−1Ka,B).

Proof.

P[B ⊂ Y|a /∈ Y] =
P[a /∈ Y|B ⊂ Y]P[B ⊂ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊂ Y])P[B ⊂ Y]

1− P[a ∈ Y]

=
det(KB)− det(Ka∪B)

1− Ka

= det(KB)(1− Ka,B
KB
−1

Ka − 1
KB,a)

= det(KB − KB,a(Ka − 1)−1Ka,B),

where the last equality makes use of the Matrix Determinant Lemma. The
formulae are well-defined almost surely.

62 / 75

Conditioning on element exclusion
Proposition Given disjoint a ∈ [n] and B ⊂ [n] for a ground set [n] of a DPP
with marginal kernel K , almost surely

P[B ⊂ Y|a /∈ Y] = det(KB − KB,a(Ka − 1)−1Ka,B).

Proof.

P[B ⊂ Y|a /∈ Y] =
P[a /∈ Y|B ⊂ Y]P[B ⊂ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊂ Y])P[B ⊂ Y]

1− P[a ∈ Y]

=
det(KB)− det(Ka∪B)

1− Ka

= det(KB)(1− Ka,B
KB
−1

Ka − 1
KB,a)

= det(KB − KB,a(Ka − 1)−1Ka,B),

where the last equality makes use of the Matrix Determinant Lemma. The
formulae are well-defined almost surely.

62 / 75

Conditioning on element exclusion
Proposition Given disjoint a ∈ [n] and B ⊂ [n] for a ground set [n] of a DPP
with marginal kernel K , almost surely

P[B ⊂ Y|a /∈ Y] = det(KB − KB,a(Ka − 1)−1Ka,B).

Proof.

P[B ⊂ Y|a /∈ Y] =
P[a /∈ Y|B ⊂ Y]P[B ⊂ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊂ Y])P[B ⊂ Y]

1− P[a ∈ Y]

=
det(KB)− det(Ka∪B)

1− Ka

= det(KB)(1− Ka,B
KB
−1

Ka − 1
KB,a)

= det(KB − KB,a(Ka − 1)−1Ka,B),

where the last equality makes use of the Matrix Determinant Lemma. The
formulae are well-defined almost surely.

62 / 75

Conditioning on set exclusion

The previous two propositions are enough to derive our direct DPP sampling
algorithm. But, for the sake of symmetry:
Proposition Given disjoint subsets A,B ⊂ Y, almost surely

P[B ⊆ Y|A ⊆ Yc] = det(KB − KB,A(KA − I)−1KA,B).

Proof.
The claim follows from recursive formulation of conditional marginal kernels
using the previous proposition. The resulting kernel is equivalent to the Schur
complement produced from the block LU factorization(
KA − I KA,B

KB,A KB

)
=

(
I 0

KB,A(KA − I)−1 KB − KB,A(KA − I)−1KA,B

)(
KA − I KA,B

0 I

)
,

as the subtraction of 1 from each eliminated pivot commutes with the outer
product updates.

63 / 75

Conditioning on set exclusion

The previous two propositions are enough to derive our direct DPP sampling
algorithm. But, for the sake of symmetry:
Proposition Given disjoint subsets A,B ⊂ Y, almost surely

P[B ⊆ Y|A ⊆ Yc] = det(KB − KB,A(KA − I)−1KA,B).

Proof.
The claim follows from recursive formulation of conditional marginal kernels
using the previous proposition. The resulting kernel is equivalent to the Schur
complement produced from the block LU factorization(
KA − I KA,B

KB,A KB

)
=

(
I 0

KB,A(KA − I)−1 KB − KB,A(KA − I)−1KA,B

)(
KA − I KA,B

0 I

)
,

as the subtraction of 1 from each eliminated pivot commutes with the outer
product updates.

63 / 75

Unblocked LU factorization

Algorithm 3: Unblocked, right-looking, LU factorization.

f o r j i n range (n) :
A[j+1:n], j /= Aj

A[j+1:n] −= A[j+1:n], j Aj, [j+1:n]

r e t u r n A

Due to the lack of pivoting, completion is not guaranteed over GLn(R) or
GLn(C).

The majority of the work is in rank-1 updates.

64 / 75

Unblocked DPP sampling factorization

Algorithm 4: Unblocked, right-looking, non-Hermitian DPP
sampling. Returned matrix A contains in-place LU factorization of
K − IY C , where IY C is diagonal indicator for entries not in sample.

sample := [] ; A := K
f o r j i n range (n) :

sample . append (j) i f B e r n o u l l i (Aj) e l s e Aj −= 1
A[j+1:n], j /= Aj

A[j+1:n] −= A[j+1:n], j Aj, [j+1:n]

r e t u r n sample , A

Small tweak of unblocked, unpivoted LU factorization – completes almost
surely. Specializable to LDLH and LDLT for Hermitian and complex symmetric
matrices.

The majority of the work is in rank-1 updates. And the standard optimizations
apply (e.g., blocking and sparse-direct factorization)!

The likelihood of the sample is equal to the product of the absolute value of

the diagonal of the result.
65 / 75

Factorization-based DPP sampling

Theorem (Factorization-based DPP sampling) Given a marginal kernel K
of order n, the unblocked DPP factorization almost surely provides a sample
from DPP(K). And the likelihood of any returned sample will be given by the
product of the absolute value of the diagonal of the result.

Proof.
We show the sampling claim by induction on the loop invariant that, at the
start of iteration j , A[j :n] represents equivalence class for the DPP over indices
[j : n] conditioned on the inclusion decisions for indices 0, ..., j − 1.

Since the diagonal entries represent the likelihoods of the corresponding index
being in the sample, the invariant implies that index j is kept with the correct
conditional probability. Our conditional inclusion prop’n shows that the loop
invariant is almost surely maintained when the Bernoulli draw is successful, and
our conditional element exclusion prop’n handles the alternative.

When a draw for a diagonal entry pj is successful, its probability was pj , and,
when unsuccessful, 1− pj . In both cases, the multiplicative contribution is the
absolute value of the final state of the j ’th diagonal entry.

66 / 75

Factorization-based DPP sampling

Theorem (Factorization-based DPP sampling) Given a marginal kernel K
of order n, the unblocked DPP factorization almost surely provides a sample
from DPP(K). And the likelihood of any returned sample will be given by the
product of the absolute value of the diagonal of the result.

Proof.
We show the sampling claim by induction on the loop invariant that, at the
start of iteration j , A[j :n] represents equivalence class for the DPP over indices
[j : n] conditioned on the inclusion decisions for indices 0, ..., j − 1.

Since the diagonal entries represent the likelihoods of the corresponding index
being in the sample, the invariant implies that index j is kept with the correct
conditional probability. Our conditional inclusion prop’n shows that the loop
invariant is almost surely maintained when the Bernoulli draw is successful, and
our conditional element exclusion prop’n handles the alternative.

When a draw for a diagonal entry pj is successful, its probability was pj , and,
when unsuccessful, 1− pj . In both cases, the multiplicative contribution is the
absolute value of the final state of the j ’th diagonal entry.

66 / 75

Factorization-based DPP sampling

Theorem (Factorization-based DPP sampling) Given a marginal kernel K
of order n, the unblocked DPP factorization almost surely provides a sample
from DPP(K). And the likelihood of any returned sample will be given by the
product of the absolute value of the diagonal of the result.

Proof.
We show the sampling claim by induction on the loop invariant that, at the
start of iteration j , A[j :n] represents equivalence class for the DPP over indices
[j : n] conditioned on the inclusion decisions for indices 0, ..., j − 1.

Since the diagonal entries represent the likelihoods of the corresponding index
being in the sample, the invariant implies that index j is kept with the correct
conditional probability. Our conditional inclusion prop’n shows that the loop
invariant is almost surely maintained when the Bernoulli draw is successful, and
our conditional element exclusion prop’n handles the alternative.

When a draw for a diagonal entry pj is successful, its probability was pj , and,
when unsuccessful, 1− pj . In both cases, the multiplicative contribution is the
absolute value of the final state of the j ’th diagonal entry.

66 / 75

Factorization-based DPP sampling

Theorem (Factorization-based DPP sampling) Given a marginal kernel K
of order n, the unblocked DPP factorization almost surely provides a sample
from DPP(K). And the likelihood of any returned sample will be given by the
product of the absolute value of the diagonal of the result.

Proof.
We show the sampling claim by induction on the loop invariant that, at the
start of iteration j , A[j :n] represents equivalence class for the DPP over indices
[j : n] conditioned on the inclusion decisions for indices 0, ..., j − 1.

Since the diagonal entries represent the likelihoods of the corresponding index
being in the sample, the invariant implies that index j is kept with the correct
conditional probability. Our conditional inclusion prop’n shows that the loop
invariant is almost surely maintained when the Bernoulli draw is successful, and
our conditional element exclusion prop’n handles the alternative.

When a draw for a diagonal entry pj is successful, its probability was pj , and,
when unsuccessful, 1− pj . In both cases, the multiplicative contribution is the
absolute value of the final state of the j ’th diagonal entry.

66 / 75

Unblocked, greedy, MAP DPP sampling

Algorithm 5: Unblocked, right-looking, non-Hermitian, greedy
maximum-likelihood DPP sampling. Returned matrix A will
contain in-place LU factorization of K − IY C , where IY C is diagonal
indicator for entries not in sample.

sample := [] ; A := K
f o r j i n range (n) :

sample . append (j) i f Aj ≥ 1
2

e l s e Aj −= 1
A[j+1:n], j /= Aj

A[j+1:n] −= A[j+1:n], j Aj, [j+1:n]

r e t u r n sample , A

Greedy MAP sampling is a trivial tweak of the standard sampler, and the
blocked extension is essentially identical.

The likelihood of the sample is equal to the product of the absolute value of

the diagonal of the result.

67 / 75

Blocked LU factorization

Algorithm 6: Blocked LU factorization without pivoting.

j := 0
whi le j < n :

bsize := min(blocksize, n − j)
J1 = [j : j + bsize] ; J2 = [j + bsize : n]
AJ1 = unblocked lu(AJ1)
AJ2, J1 := AJ2, J1 triu(AJ1)−1

AJ1, J2 := unit tril(AJ1)−1 AJ1, J2

AJ2 −= AJ2, J1 AJ1, J2

j += bsize
r e t u r n sample , A

Due to lack of pivoting, not guaranteed to complete over GLn(R) or GLn(C).

OpenMP 4.0 tasks – say, with tile sizes of 128 – can be readily used to provide

shared-memory, DAG-scheduled parallelism [Agullo/Langou/Luszczek-2010,

Yarkhan et al.-2011, Chan et al.-2007].
68 / 75

https://www.openmp.org/uncategorized/openmp-40/

Blocked non-Hermitian DPP factorization

Algorithm 7: Returned matrix A will contain in-place LU
factorization of K − IY C , where IY C is diagonal indicator for entries
not in sample, Y.

sample := [] ; A := K; j := 0
w h i l e j < n :

bsize := min(blocksize, n − j)
J1 = [j : j + bsize] ; J2 = [j + bsize : n]
subsample,AJ1 = unblocked dpp(AJ1)
sample . append (subsample + j)
AJ2, J1 := AJ2, J1 triu(AJ1)

−1

AJ1, J2 := unit tril(AJ1)
−1 AJ1, J2

AJ2 −= AJ2, J1 AJ1, J2
j += bsize

r e t u r n sample , A

OpenMP 4.0 tasks – say, with tile sizes of 128 – can be readily
used to provide shared-memory, DAG-scheduled parallelism
[Agullo/Langou/Luszczek-2010, Yarkhan et al.-2011, Chan et
al.-2007].

69 / 75

https://www.openmp.org/uncategorized/openmp-40/

Full-rank real symmetric DPP on i9-7960x (16-core)

Dense, real LDLH-based DPP sampler [P-2019].

For comparison, stock DPPy v0.1.0 [Gautier-2019] takes 250 seconds for

each sample when n = 5000.

$ OMP NUM THREADS=16 . / dense dpp

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Matrix size (in thousands)

T
F

lo
p

/
s

32-bit DPP

32-bit LDLH

64-bit DPP

64-bit LDLH

1 2 3 4 5 6 7 8 9 10

10−2

10−1

Matrix size (in thousands)

S
ec

o
n

d
s

32-bit DPP

32-bit LDLH

64-bit DPP

64-bit LDLH

70 / 75

Full-rank complex, non-Herm’ DPP on i9-7960x

Dense, complex LU-based DPP sampler [P-2019].*

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

Matrix size (in thousands)

T
F

lo
p

/
s

32-bit DPP
64-bit DPP

1 2 3 4 5 6 7 8 9 10

10−2

10−1

100

Matrix size (in thousands)

S
ec

o
n

d
s

32-bit DPP
64-bit DPP

*E.g., generated from the Kenyon formula over the Kasteleyn matrix [Chhita et

al.-2015].

71 / 75

Low precision corrupting sampling

$. / a z t e c d i a m o n d −−d i a m o n d s i z e =80

Double-precision sample
Single-precision sample (visibly
erroneous)

72 / 75

Basic questions for DPP factorizations
Given the close connection between DPP sampling and dense
factorization:

• One should be able to probabilistically generalize element
growth and numerical stability bounds.

• Use maximum-entropy diagonal pivot selection? Minimizes
worst case pivot.

• High-performance techniques for backpropagating through
Cholesky are now known [Murray-2016].4 Do these blocked
algorithms extend to DPPs?

• Extension to Permanental Point Process factorization? The
2× 2 permanent

perm(

(
α0,0 α0,1

α1,0 α1,1

)
) = α0,0α1,1 + α1,0α0,1,

which suggests negating the sign of the Schur complement.
4[Murray-2016] Differentiation of the Cholesky decomposition.

arxiv.org/abs/1602.07527
73 / 75

https://arxiv.org/abs/1602.07527

Basic questions for DPP factorizations
Given the close connection between DPP sampling and dense
factorization:

• One should be able to probabilistically generalize element
growth and numerical stability bounds.

• Use maximum-entropy diagonal pivot selection? Minimizes
worst case pivot.

• High-performance techniques for backpropagating through
Cholesky are now known [Murray-2016].4 Do these blocked
algorithms extend to DPPs?

• Extension to Permanental Point Process factorization? The
2× 2 permanent

perm(

(
α0,0 α0,1

α1,0 α1,1

)
) = α0,0α1,1 + α1,0α0,1,

which suggests negating the sign of the Schur complement.
4[Murray-2016] Differentiation of the Cholesky decomposition.

arxiv.org/abs/1602.07527
73 / 75

https://arxiv.org/abs/1602.07527

Basic questions for DPP factorizations
Given the close connection between DPP sampling and dense
factorization:

• One should be able to probabilistically generalize element
growth and numerical stability bounds.

• Use maximum-entropy diagonal pivot selection? Minimizes
worst case pivot.

• High-performance techniques for backpropagating through
Cholesky are now known [Murray-2016].4 Do these blocked
algorithms extend to DPPs?

• Extension to Permanental Point Process factorization? The
2× 2 permanent

perm(

(
α0,0 α0,1

α1,0 α1,1

)
) = α0,0α1,1 + α1,0α0,1,

which suggests negating the sign of the Schur complement.
4[Murray-2016] Differentiation of the Cholesky decomposition.

arxiv.org/abs/1602.07527
73 / 75

https://arxiv.org/abs/1602.07527

Basic questions for DPP factorizations
Given the close connection between DPP sampling and dense
factorization:

• One should be able to probabilistically generalize element
growth and numerical stability bounds.

• Use maximum-entropy diagonal pivot selection? Minimizes
worst case pivot.

• High-performance techniques for backpropagating through
Cholesky are now known [Murray-2016].4 Do these blocked
algorithms extend to DPPs?

• Extension to Permanental Point Process factorization? The
2× 2 permanent

perm(

(
α0,0 α0,1

α1,0 α1,1

)
) = α0,0α1,1 + α1,0α0,1,

which suggests negating the sign of the Schur complement.
4[Murray-2016] Differentiation of the Cholesky decomposition.

arxiv.org/abs/1602.07527
73 / 75

https://arxiv.org/abs/1602.07527

More on Permanental Point Process
factorization

If one works out the negated Schur complement for a 3× 3
example, two second-order α−10,0 terms remain, rather than
cancelling out as they do for the determinantal case.

One could handle the 3× 3 case via dual numbers, with the
second component introduced for the Schur complement updates.

But computing the permanent is]P-hard; the determinant is
polynomial because it is a homomorphism over GLn(C).

74 / 75

More on Permanental Point Process
factorization

If one works out the negated Schur complement for a 3× 3
example, two second-order α−10,0 terms remain, rather than
cancelling out as they do for the determinantal case.

One could handle the 3× 3 case via dual numbers, with the
second component introduced for the Schur complement updates.

But computing the permanent is]P-hard; the determinant is
polynomial because it is a homomorphism over GLn(C).

74 / 75

More on Permanental Point Process
factorization

If one works out the negated Schur complement for a 3× 3
example, two second-order α−10,0 terms remain, rather than
cancelling out as they do for the determinantal case.

One could handle the 3× 3 case via dual numbers, with the
second component introduced for the Schur complement updates.

But computing the permanent is]P-hard; the determinant is
polynomial because it is a homomorphism over GLn(C).

74 / 75

Discussion

Availability:
Catamari is available under the Mozilla Public License 2.0 at
hodgestar.com/catamari/ and gitlab.com/hodge star/catamari.
This talk is based on version 0.3.

These slides are available at:
hodgestar.com/G2S3/

Acknowledgements:

• Alex Kulesza and Jenny Gillenwater:
For answering my initial DPP sampling questions.

Questions/comments?
Chatroom at:

https://gitter.im/hodge_star/G2S3

75 / 75

https://hodgestar.com/catamari/
https://gitlab.com/hodge_star/catamari
https://hodgestar.com/G2S3/
https://gitter.im/hodge_star/G2S3

