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Sparse-direct DPP factorizations
We have so-far discussed analogues of dense factorizations, and
sparse-direct analogues are a natural extension.

Catamari implements templated, real and complex, Cholesky / LDLH /
LDLT – switching between DAG-scheduled, right-looking supernodal
and up-looking simplicial based upon arithmetic intensity
[Chen/Davis/Hager/Rajamanickam-2008].

A variant of the sparse-direct LDLH is provided for sparse DPPs.

(Unpivoted) sparse-direct LU and LDLT DPP sampling is a

straight-forward extension.
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Complex sparse LDLT on i9-7960x (16-core)

3D Helmholtz w/ PML and trilinear,
hexahedral elements
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Minimum Degree reorderings

Consider the Schur complement elimination of the first index of a
matrix with sparsity pattern:
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x x x x x


,

where the fill-in has been marked in red.

If we refer to the number of edges connected to a node as its
degree – in this case, the degree of the first index is 4 – we notice
the square of the degree is an upper-bound for the amount of fill
from its elimination.
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Minimum Degree reorderings

Whereas, if we swapped the first and last indices as:

x x
x x

x x
x

x x
x

x x x x x


,

a full factorization could complete with no fill-in.

Such an ordering can be seen to have sequentially chosen an index
of minimal degree after each step of elimination. This is the idea
behind minimum degree reordering, which was introduced by
[Tinney/Walker-1967] as a symmetric analogue of
[Markowitz-1957].
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Minimum Degree reorderings
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Minimum Degree: select 0
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Minimum Degree: eliminate 2
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Minimum Degree: eliminate 3
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Minimum Degree: select 4
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Minimum Degree: eliminate 4
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Minimum Degree: select 5
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Minimum Degree: eliminate 5
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Minimum Degree: select 6
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Minimum Degree: eliminate 6
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Minimum Degree: select 7
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Minimum Degree: eliminate 7

8

9

Eliminated nodes:
[0, 1, 2, 3, 4, 5, 6, 7]

Then we select 8, then 9...
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Approximate Minimum Degree reorderings

Such a naive Minimum Degree reordering is not competitive in
practice: the cost of explicitly maintaining the elimination graph
would rival that of a numeric factorization.

The de facto standard (e.g., in MATLAB and in most
mathematical programming) is the Approximate Minimum
Degree reordering algorithm [Amestoy/Davis/Duff-1996], which
uses a fast but accurate approximation of the degree and
continually probes for cliques within the elimination graph
(actually, in the quotient graph) in order to reduce complexity.
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Quotient graphs
Let us reconsider the elimination
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
,

which we see requires much more storage for the resulting elimination graph
than the original graph.

But each Schur complement introduces a clique of size k in the elimination
graph, which we could represent with k indices instead of k2.

[George/Liu-1981] formalized such an approach called the quotient graph
(originally elimination graph) and showed that it never requires more storage
than the original graph.

The key idea is to maintain a graph with two separate types of vertices:

variables, which are of the standard type, and elements, which are the

mechanism for efficiently representing cliques.
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Quotient graphs
The result of the elimination
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could be represented via the quotient graph

0
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To determine the adjacency of a variable in the elimination graph from the

quotient graph, each connection to an element is replaced with connections to

all of the variables adjacent to the element.
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Quotient graph elimination
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Quotient graph elimination: eliminate 0
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Quotient graph elimination: eliminate 1

Elimination graph:
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Notice that we were able to delete the (4, 8) edge in the quotient
graph.
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Quotient graph elimination: eliminate 2
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This time, we could delete the (4, 6) edge from the quotient graph.
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Quotient graph elimination: eliminate 3

Elimination graph:
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Quotient graph:
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We were able to delete element 0 since its contribution to the
elimination graph was contained in that of element 3. We also
deleted redundant edge (6, 7) from quotient graph.
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Quotient graph elimination: eliminate 4

Elimination graph:
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We were able to absorb elements 2 and 3 into element 4.
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Quotient graph elimination: eliminate 5

Elimination graph:
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We were able to absorb elements 1 and 4 and delete edges (6, 8)
and (7, 8).

32 / 50



Quotient graph elimination: eliminate 5

Elimination graph:

67

8

9

Quotient graph:

5

67

8

9

We were able to absorb elements 1 and 4 and delete edges (6, 8)
and (7, 8).

32 / 50



Quotient graph elimination: eliminate 6

Elimination graph:
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We were able to absorb element 5 and delete edges (7, 9) and
(8, 9).
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Quotient graph elimination: eliminate 7

Elimination graph:
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We were able to absorb element 6.

Etc.
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Supervariable detection

An important performance optimization is detecting
indistinguishable variables, or supervariables: cliques within the
elimination graph where each member has the same external
adjacencies.

In practice, since we will only explicitly store the quotient graph,
we only attempt to detect the subset whose adjacency and element
lists are equivalent (modulo members of the supervariable).

Rather than performing all-pairs equivalence checks, we can
compute hashes of each variable’s adjacency and element lists and
only perform a full equivalence check if the hashes compare.

35 / 50



Supervariable detection

An important performance optimization is detecting
indistinguishable variables, or supervariables: cliques within the
elimination graph where each member has the same external
adjacencies.

In practice, since we will only explicitly store the quotient graph,
we only attempt to detect the subset whose adjacency and element
lists are equivalent (modulo members of the supervariable).

Rather than performing all-pairs equivalence checks, we can
compute hashes of each variable’s adjacency and element lists and
only perform a full equivalence check if the hashes compare.

35 / 50



Supervariable detection

An important performance optimization is detecting
indistinguishable variables, or supervariables: cliques within the
elimination graph where each member has the same external
adjacencies.

In practice, since we will only explicitly store the quotient graph,
we only attempt to detect the subset whose adjacency and element
lists are equivalent (modulo members of the supervariable).

Rather than performing all-pairs equivalence checks, we can
compute hashes of each variable’s adjacency and element lists and
only perform a full equivalence check if the hashes compare.

35 / 50



Supervariable detection

In our full elimination/quotient graph example process, a
supervariable of nodes {6, 7, 8} would be detected after the
elimination of variable 5:

Elimination graph:
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Quotient graph:
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Nested Dissection reordering

Minimum degree reordering is a greedy method, as it chooses
which index to eliminate based upon the fill-in upper bound, not
on its overall impact on the cost of the factorization.

On the opposite side of the spectrum is nested dissection
orderings, which, roughly speaking, recursively find small bisectors
which are placed at the end of the elimination order. Typically,
these approaches are most effective for graphs with low-dimensional
topology (e.g., from a finite element discretization).

For regular grids, these reorderings can easily be analytically
computed. More generally, multilevel graph partitioners such as
Chaco, METIS, and SCOTCH are the norm.
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Nested Dissection reordering

As an example, consider the planar graph:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 / 50



Nested Dissection reordering

which we can nodally bisect as:
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Nested Dissection reordering

and recurse:
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Scalar forest and structure
Once an ordering has been determined, the precise set of nonzero
indices in each column of the factorization – its structure – needs
to be computed.

The elimination parent of column j is the first below-diagonal
nonzero index of column j of the factor. Or, in other words, the
first column index which is effected by the elimination of column j .

The elimination forest is the implied forest structure.

Denoting the original below-diagonal structure of column j of the
sparse matrix A as Aj , and the structure of column j of the sparse
lower-triangular factor as Lj , we have that

Lj = Aj ∪c∈children(j) Lc \ {j}.

For each leaf column j , we have that Lj = Aj , and we can work
our way up the elimination forest to compute each column’s
structure.
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Fundamental supernodes
As we know from dense factorizations, unblocked factorizations spend their
time in memory-bandwidth constrained level 2 BLAS, whereas blocked
algorithms perform most of their work in level 3 BLAS.

One can, in linear time, identify an initial grouping, called a fundamental
supernode partition, of contiguous columns whose structures – modulo the
group itself – are identical.

If the only child of column j is column j − 1, and the degree of column j is
exactly one less than column j − 1, then they are in the same fundamental
supernode.



x

x
x x

x
x x

x x x

 ,
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x

x

x x x
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
Such a process requires knowledge of the elimnination forest and structure

degrees, but importantly not the structure itself.
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Supernode relaxation

The fundamental supernodes imply a fundamental supernode
elimination forest, which leads to dense Cholesky factorizations
on the fundamental diagonal blocks and symmetric/Hermitian
rank-k updates when forming Schur complements.

But the fundamental supernodes towards the bottom of the
fundamental supernode elimination forest are often very lower
cardinality – often even of size 1 – despite neighboring structures
being mostly identical.

The process of supernode relaxation/amalgomation is
combining the supernodes of nodes in the fundamental supernode
elimination forest with their parents whenever acceptably small
percentages of nonzeros would be introduced.

Importantly, amalgomation does not require knowledge of the
fundamental supernode structure, only its degree.
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Multifrontal factorization
While the most popular sparse-direct Cholesky factorization implementation,
CHOLMOD [Davis et al.], is left-looking, we will discuss the right-looking
multifrontal equivalent because it is more amenable to parallelism.

Given a supernode with column indices sj = [j , ..., j + nj) and structure Lj , we
initialize its front as a symmetric/Hermitian matrix of order |sj |+ |Lj |:

Fj =

 Asj 0

ALj ,sj 0

 .

The term multifrontal refers to each supernode’s work being captured within
their front, which will be left containing

F̂j =

 Lsj 0

LLj ,sj Sj

 ,

where Sj is the Schur complement update −LLj ,sjL
′
Lj ,sj

.

Once all of a node’s children’s Schur complement updates have been formed,

the updates are added into the parent. The parent supernode’s portion of L

can then be computed in its front, as can its update.
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Right-looking sampling

Just as we could modify a dense LDLH factorization to sample a
DPP by decrementing pivots by one when their corresponding
index was not kept, we need only make the same modification for
sparse-direct DPP sampling.

In fact, we need only plug in our dense DPP sampler in place of
the dense LDLH factorizations of supernodal diagonal blocks!

An efficient interface for sparse-direct sampling from a DPP should
therefore cache the symbolic analysis and simply reinitialize the
fronts for each sample.
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Parallelization

At one point, shared-memory parallelization of a sparse-direct
solver was considered a heroic feat of software engineering.

But, with the introduction of OpenMP 4.0 task dependencies, one
can easily blend dynamic task scheduling for the factorizations of
the dense fronts with the embarrassing parallelism exposed by the
supernodal elimination forest.

We refer to [Hogg/Reid/Scott-2009] for an early implementation
of such an approach for sparse-direct factorization.

Due to our DPP factorization technique, the parallelization for
sparse-direct DPP sampling is essentially identical.
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(MAP) Sampling from 2D −σ∆

$ . / d p p s h i f t e d 2 d n e g a t i v e l a p l a c i a n \
−−x s i z e =200 −−y s i z e =200 −−s c a l e =0.72

Log-likelihood: -27472.2
Sample time: 0.0107 seconds

Log-likelihood: -26058
Sample time: 0.0112 seconds
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$ . / d p p s h i f t e d 2 d n e g a t i v e l a p l a c i a n \
−−x s i z e =200 −−y s i z e =200 −−s c a l e =0.75

Log-likelihood: -27612.6
Sample time: 0.0124 seconds

Log-likelihood: -26009
Sample time: 0.0114 seconds
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(MAP) Sampling from 2D −σ∆

$ . / d p p s h i f t e d 2 d n e g a t i v e l a p l a c i a n \
−−x s i z e =200 −−y s i z e =200 −−s c a l e =0.85

Log-likelihood: -27581.7
Sample time: 0.0114 seconds

Log-likelihood: -25765
Sample time: 0.0118 seconds
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Discussion

Availability:
Quotient is available under the Mozilla Public License 2.0 at
hodgestar.com/quotient/ and gitlab.com/hodge star/quotient.
This talk is based on version 0.3.

Catamari is available under the Mozilla Public License 2.0 at
hodgestar.com/catamari/ and gitlab.com/hodge star/catamari.
This talk is based on version 0.3.

These slides are available at:
hodgestar.com/G2S3/

Questions/comments?
Chatroom at:

https://gitter.im/hodge_star/G2S3
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