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Bayesian interpretation of SVD

An SVD approach to fitting a low-rank matrix XY T to a matrix A would be to
minimize

1

2
‖A− XY T‖2

F =
1

2

∑
i,j

(Ai,j − (XY T )i,j)
2.

Recall that the log-likelihood of a Gaussian of mean x0 and variance σ2 is

log((2πσ2)−1/2 exp(− 1

2σ2
(x − x0)2)) = − 1

2σ2
(x − x0)2 + C .

We can thus interpret minimizing the SVD loss as maximizing the likelihood if
the entries of A are independent standard normals centered about the
corresponding entry of XY T .

But what do we do if we only have observations for a small number of
entries of A?

Running SVD with the unobserved entries replaced with zero would spend most

of its skill fitting the zeros if there were only a few observations – the

homoscedastic assumption would be inappropriate.
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Bayesian interp’n of SVD on observeds
If we only observed a collection of entries with indices A ⊆ [n]× [n], we could
replace the objective with

1

2
‖1A ◦ (A− XY T )‖2

F =
1

2

∑
(i,j)∈A

(Ai,j − (XY T )i,j)
2,

where ◦ here represents the Hadamard product, and 1A is the binary indicator
over the sparsity pattern of the observed entries.

This model is thus equivalent to maximizing the likelihood of a low-rank matrix
XY T if the observed entries of A are independent standard normals centered
about the corresponding entry of XY T .

This is standard fare for compressed sensing, where the typical assumption is
that the observation locations are uniformly random.

But there is typically signal in an entry not being observed. Consider a
cooccurrence score for two words based upon the number of times (and
distance apart) they are in different passages from wikipedia.

It is useful information that two words were never observed in the same

context. But it does not mean that it would never happen.
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Gap SVD

Generalizing from an indicator entry weighting, we might consider

1

2
‖
√
W ◦ (A− XY T )‖2

F +
λX
2
‖X‖2

F +
λY
2
‖Y ‖2

F ,

where we can interpret as a maximum-likelihood model where each
Ai ,j ∼ N (0,W−1

i ,j ) is independent, with
√
W being an entry-wise

square-root, plus the prior of each entry of X being independently
drawn from N (0, 1/λX ) and Y from N (0, 1/λY ).

The simplest such extension is to set observed entries at a fixed
variance, say, 1, and the unobserved entries at a lower variance,
δ � 1, with a predetermined value (e.g., 0).

Then, generally, both W and A would be sparse plus rank-one, and
an efficient Alternating Weighted Least Squares (AWLS) solver
tailored to it was proposed in [Pan/Scholz-2009].
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AWLS for Gap SVD
Given the Lagrangian

L(X ,Y ) =
1

2
‖
√
W ◦ (A− XY T )‖2

F +
λX
2
‖X‖2

F +
λY
2
‖Y ‖2

F ,

let us consider the first-order optimality conditions if we froze X
about its current estimate to define LX (Y ) = L(X ,Y ).

(dYa,b
)(LX ) = (dYa,b

)(
1

2

∑
i ,j

Wi ,j(Ai ,j −
∑
k

Xi ,kYj ,k)2) + λYYa,b

=
1

2

∑
i

Wi ,a(dYa,b
)((Ai ,a −

∑
k

Xi ,kYa,k)2)) + λYYa,b

= −
∑
i

Wi ,aXi ,b(Ai ,a −
∑
k

Xi ,kYa,k) + λYa,b = 0.

Or, for row a of Y , ya,

(XTdiag(W:,a)X + λY I )y
T
a = XTdiag(W:,a)A:,a
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AWLS for Gap SVD
If freezing X to update Y , the update equation

(XTdiag(W:,a)X + λY I )y
T
a = XTdiag(W:,a)A:,a

is equivalent to the Weighted Least Squares problem

arg min
ya

∥∥∥∥(√diag(W:,a)X√
λY I

)
ya −

[√
diag(W:,a)A:,a

0

]∥∥∥∥2

F

.

Since W is decomposable as δ1m,n + W̃ , where W̃ has the same
sparsity pattern as the observations of A, we can reuse the
background Gramian GX := δXTX + λY I to save the bulk of the
work of forming the separate row Gramians.

The Gramian for row a is then:

G a
X = GX +

∑
i :(i ,a)∈A

W̃i ,ax
T
i xi ,

where the sum maps to a symmetric rank-k update (syrk) if we
absorb the square-root of W̃i ,a into each xi .
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AWLS for Gap SVD
The update for xa (while Y is frozen) is similar:

GY = δY TY + λX I

G a
Y = GY +

∑
j :(a,j)∈A

W̃a,jy
T
j yj

G a
Y xa = Y Tdiag(Wa,:)A

T
a,:.

In practice, one can randomly initialize and perform 10 pairs of
alternating updates.

Note that the λX I and λY I Gramian contributions provide a lower
bound on the smallest singular value of the Gramians due to the
zero-centered prior.

We could alternatively provide stabilization of the normal
equations via proximal regulazation with moving objective terms
of the form

λp
2 ‖X − X0‖2

F and
λp
2 ‖Y − Y0‖2

F .
7 / 17
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Column rescalings

For matrices with highly non-uniform row/column degrees, it can
be important to downweight high degree rows.

The easiest way to do so is to generalize our weight matrix:

W = δ1m,n + W̃ 7→ δ1m,n + diag(r)W̃ diag(c).

We simply need to use diag(r)W̃ diag(c) instead of W̃ for the
row-specific Gramian correction weights..

For a matrix like 0 0 0 x 0 x
x x x x x x
0 x 0 0 0 0


we may want to set the second entry of r lower than the others so
that the low-rank model does not overemphasize said row.
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Relaxing off sphere
The resulting factors X and Y will generally not have unit row
norms, and they roughly encode the popularity of their
corresponding item.

Cosine similarity,

cos(x , y) =
xT y

‖x‖2‖y‖2

is scale invariant, so vectors are often normalized to live on the
unit sphere.

But we may want to at least preserve some small portion of the
norms, e.g., by dividing by ‖x‖p2 , 0 < p < 1, so that we may
penalize recommendations of rare items from common items:

xT y

‖x‖2 max(‖x‖2, ‖y‖2)
.

But one could argue this is performing a reranker function in the
retrieval. 9 / 17
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Convex cones

In order to prep for the next lecture, we will talk about some of the
background mathematics on symmetric cones and Jordan algebras.
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Convex cones

Definition 1. A cone is a subset K of a vector space V which, for any x ∈ K
and α > 0, satisfies αx ∈ K .

Proposition 1. A convex cone is a subset K of a vector space V which, for
any x , y ∈ K and α, β > 0, satisfies αx + βy ∈ K .

Proof.
Suppose x , y ∈ K and α, β > 0. Then, choosing t ∈ (0, 1),

αx + βy = t
(α
t
x
)

+ (1− t)

(
β

1− t
y

)
is a convex combination of members of the convex cone, so it is also in the
cone.

Question: What is the simplest example you can think of which is a nonconvex
cone?

Proposition 2. The sets of symmetric positive-definite and symmetric positive

semidefinite matrices of given order are convex cones.
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Dual cones

Definition 2. The dual of a convex cone K in a vector space V is

K ∗ = {v ∈ V : 〈w , v〉 > 0, ∀ w ∈ K} .

Question: What is the dual of the convex cone R+?

Question: What is the dual of the convex cone Rn
+?

Question: What is the dual of the closed upper-half plane of R2?

Question: What are the duals of the convex cones Sn
+ and Sn

++?
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Symmetric cones

Definition 3. The automorphism group of an open convex cone
K in a vector space V is

Aut(K ) = {g ∈ GL(V )|gK = K}.

Definition 4. A group G is said to be transitive on a set F ⊆ G if
F is non-empty and, for each x , y ∈ F , there exists g ∈ G such
that g · x = y .

Definition 5. An open convex cone is said to be homogeneous if
Aut(K ) acts transitively on K .

Definition 6. An open convex cone is said to be symmetric if it is
homogeneous and self-dual.

Proposition 3. The SPD and HPD cones are symmetric.
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Jordan algebra
Definition 7. A Jordan algebra J is a nonassociative algebra over a field
which, for any x , y ∈ J, and Jordan product ◦, satisfies:

• x ◦ y = y ◦ x [commutativity],

• (x ◦ y)(x ◦ x) = x ◦ (y ◦ (x ◦ x)) [the Jordan identity].

Definition 8. A Jordan algebra J is called formally real, or Euclidean, if, for
x1, ..., xk ∈ J, x2

1 + ...+ x2
k = 0 if and only if xj = 0 for all j .

The standard example of a formally real Euclidean Jordan algebra is the set of
Hermitian n × n matrices equipped with standard addition and the Jordan
product:

A ◦ B =
1

2
(AB + BA).

Proposition 4. Given a member x of a formally real Jordan algebra J, there
exists a unique spectral decomposition

x =
∑
i

λiPi ,

where each Pi is idempotent – i.e., P2
i = Pi – and the λi ’s are real and

distinct. See [Faraut/Koranyi-1994] for proof.
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Jordan algebra
Proposition 5. Every symmetric cone is the subset of members of a particular
Jordan algebra with all positive eigenvalues. Again, see [Faraut/Koranyi-1994]
for proof.

This is trivial for the Hermitian positive-definite cone and the Jordan algebra of
Hermitian matrices, where the spectral decomposition of the Jordan algebra is
the standard one.

This is, by reduction, also trivial for the positive orthant, where the Jordan
algebra is the Cartesian product of the 1x1 Hermitian case and the spectral
decomposition of a vector x ∈ Rn

++, whose entries take on the values
Λ(x) = {xi : i = 0, ..., n − 1},

x =
∑
λ∈Λ(x)

λ(
∑
j :xj=λ

ej).

Definition 9. The second-order cone of order n ≥ 1 is the set

Qn = {(χ0, x1) ⊆ R+ × Rn−1 : χ0 ≥ ‖x1‖2}.

There is an associated Jordan algebra, of spin or Clifford type,

(χ0, x1) ◦ (η0, y1) = (χ0η0 + xT
1 y1, χ0y1 + η0x1), whose positive components

yield the second-order cone (which is symmetric).
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Discussion

These slides are available at:
hodgestar.com/G2S3/

Questions/comments?
Chatroom at:

https://gitter.im/hodge_star/G2S3

16 / 17

https://hodgestar.com/G2S3
https://gitter.im/hodge_star/G2S3


Lab 2: Word embeddings

1 Generate dictionary keyed on pairs of terms with values equal
to the sum of interaction scores within each sentence of the
normalized terms – convert all letters to lowercase and replace
strings with digits, e.g., “50th“ becomes “DDth“.

2 Compute dictionary keyed on source (target) term with values
equal to the sum of interaction terms with said source
(target).

3 Truncate down to the top MAX_SOURCE_TERMS and
MAX_TARGET_TERMS source and target terms.

4 Build a sparse matrix on the remaining sources and targets by
transforming the interaction sources via log(ci ,j + 1).

5 Perform 10 pairs of iterations of randomly-initialized rank 100
AWLS, printing the objective function after each of the 20
updates.

6 Return the nearest neighbors – via cosine similarity – of:
“france”, “music”, “holiday”, “summer”, and “mountain”.
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