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1. Non-burntag ssoking article: PREHIEEasT Do
L v Py it
" . Fra i e e e e
Additional work on this subject was done this month by examining the e e e e s o s SR
filtration effect of a cellulose acetate filter versus no filter. The e A e
sample examined was an IFF tobacco neutral fraction flavor. Fifty LT L S AT o T
microliters of the sample were applied to a piece of filter paper inside a T -E—-“"‘—; R e s
plastic tube like those used by Flavor Development for the non-burning T T R L L i
smoking article. Thirty-five ml puffs were withdrawn alternately at one end I e ....._._._:_._._t‘."-: I3 L1
containing a CA filter and at the other end, which was open. The results of i e e P e S o T ot i b et
chromatograms produced by samples taken in these ways showed that the later, e e i v e e
more polar, less volatile comp are reduced 1y when Pty Sy i e
puffed through the CA filter compared to a sample taken with no filter. w- o e P s
<< > This observation could have implications for the use of tobacco-identical M A I T plmTaT————
flavors in both burning and non-burning smoking products, since this flavor e ke s A
is apparently natural and therefore representative of tobacco-identical ‘-‘h-"-‘—"“""“"“"
flavors. LR Rt e e i i
No additional work is anticipated in this area unless it is desired R p——

by supervisors of the Chemical Research Division, as an aid to Divisional
goals or major R&D programs. However, a memo summarizing the observations
made to date is being written.

2. Setup of an electron capture detector:

Some additional work with the ECD (discussed last month) was done,
mostly to document the work on the PE data system. However in the course of
this work the lower limits of detectability of Lindane and Aldrin were
explored and more difinitively determined. It was found that approximately
300-400 femtograms (10-13 grams) of either pesticide could be detected at a
2:1 signal to noise ratio, but about half this amount could not. A minimum
of 15 picograms of each of the pesticides were detected in 3 microliters of
a bright tobacco extract. The accuracy of the concentration of the
pesticide standard being used was compared with a completely separate -

standard of Lindane, and the amounts from each source were found to e penes e e e
equal within normal experimental variability.
memo concerning this work is being written, and no further work Choere St nasrs et Seness

will be done in this area unless a need arises.
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pwel  Self-Attention-based Fusion Module
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Hinton, Geoffrey E., Oriol Vinyals and J. Dean. “Distilling the
Knowledge in a Neural Network" ArXiv abs/1503.02531
(2015): n. pag.
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Knowledge Distillation-based approach Conventional Mutual Learning-based approach

4 ) 4 )

[ Teacher [ Student
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Knowledge | mmm Knowledge
Transfer Transfer
[ Student ] [ Student ]

N\ / - J

Hinton, Geoffrey E., Oriol Vinyals and J. Dean. “Distilling the Zhang, Y., T. Xiang, Timothy M. Hospedales And Huchuan Lu.
Knowledge in a Neural Network" ArXiv abs/1503.02531 ‘Deep Mutual Learning.” 2018 IEEE/CVF Conference On
(2015): n. pag. Computer Vision And Pattern Recognition (2018): 4320-4328.
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Conventional Mutual Learning in Computer Vision: Challenges
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Studen Bi-
N .\ directional
Positive Negative Knowledge
v T f
Sidor rans erj

Encourages collaborative
learning between modalities.

Enables to minimize the difference
in class probabilities produced by
the two modalities

Both modalitites can learn both
the  positive & negative
information from one another

The introduction of the negative
knowledge from one modality to
another harms and weakens the
ongoing training.
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Our Proposed Positive Mutual Learning Strategy

Enable to learn only the positive

Conventional Mutual Positive Mutual — v knowledge from one modality
Learning-based approach Learning-based approach to another
4 N\ )
Student : Student :
direi'i'onal F gir Bt'i' al Prevent the negative knowledge to
Positive] i Negative] i o] ™==>{Positive| | Positive ool dse L 4 lloeea irm;Odgftehde ig utPrg rinr%gigaglit
Student Transferj K Student Transferj 9 Y
Improve the quality of the final
N V predictions of the single-modal and

cross-modal modalities.
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+ Ablation Study
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piwe  Experimental Setup: Datasets

() RVLCDIP

* 400,000 gray-scale document images
« Dataset split:

o Training set: 320,000 images.

o Validation set: 40,000 images.

o Test set 40,000 images.
« Samples of different document classes in the RVL-CDIP dataset. From left to right: Advertisement, Budget, Email,

File folder, Form, Handwritten, Invoice, Letter, Memo, News article, Presentation, Questionnaire, Resume, Scientific
publication, Scientific report, Specification.
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my  Experimental Setup: Datasets

O Tobacco-3482

Form

* 3482 gray-scale document images.
+  Samples of different document classes in the Tobacco-3482 dataset. The 10 categories are: ADVE, Email, Form, Letter, Memo,
News, Notes, Report, Resume, Scientific.
* Dataset Split:
o 80% Training set
o 10% Validation set
o 10% Test set.
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Overall Classification Accuracy (%) on the proposed approaches

RVLCDIP m Image Modality | Text Modality | Fusion Modality

Independent Learning 85.04 84.96 94.44
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Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches

RVLCDIP m Image Modality | Text Modality | Fusion Modality

Independent Learning 85.04 84.96 94.44
Conventional Mutual Learning 88.87 80.89 90.06
Positive Mutual Learning (Ours) 90.81 88.80 96.28
EAML 97.67 97.63 97.70
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Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches

ITobacco-3482Im Image Modality | Text Modality | Fusion Modality

Independent Learning 96.17 96.02 96.95
Conventional Mutual Learning 93.69 88.82 94.84
Positive Mutual Learning (Ours) 97.70 96.27 98.28
EAML 97.99 96.27 98.57
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O RVLCDIP Method Model Accuracy(%)
Image 89.1
Text Nicolas et al. [7] 74.6
Multi-modal 90.6
Image 90.24
Text Dauphinee et al. [17] 82.23
Multi-Modal 93.07
Image 91.45
Text Cross-Modal [11] 84.96
Multi-modal 97.05
Image 97.67
Text EAMLr,_ kLD, , (Ours) 97.63
Multi-Modal 97.70

Harley et al. [25] 89.80

Csurka et al. [15] 90.70

Tensmeyer et al. [56] 90.94

Baselines Azfal et al. [2] 90.97
Das et al. [16] 91.11

Das et al. [16] 92.21

Ferrando et al. [21] 92.31

Xu et al. [61] 94.42

Xu et al. [62] 95.64

Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches

() Tobacco-3482

Method Model Accuracy(%)
Image 84.5
Text Nicolas et al. [7] 73.8
Multi-modal 87.8
Image 93.2
Text Asim et al. [6] 87.1
Multi-modal 95.8
Image 94.04
Text Ferrando et al. [21] -
Multi-modal 94.90
Image 96.25
Text Cross-Modal [10] 97.18
Multi-modal 99.71
Image 97.99
Text EAMLr,_kLD,,, (Ours) 96.27
Multi-modal 98.57
Kumar et al. [34] 43.8
Kang et al. [30] 65.37
Baselines Afzal et al. [1] 76.6
Harley et al. [25] 79.9
Noce et al. [43] 79.8
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Intra-Dataset & Inter-Dataset Evaluation Comparison

O Train on Tobacco-3482 » » Test on Tobacco-3482

m Image Modality Text Modality Fusion Modality

Positive Mutual Learning (Ours) 97.70 96.27 98.28
EAML 97.99 96.27 98.57

() Trainon RVLCDIP » » Test on Tobacco-3482

m Image Modality Text Modality Fusion Modality

Positive Mutual Learning (Ours) 84.82 83.73 86.68
EAML 87.29 87.23 87.63
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Intra-Dataset & Inter-Dataset Evaluation Comparison

() Trainon RVLCDIP » » Test on RVLCDIP

m Image Modality Text Modality Fusion Modality

EAML 97.67 97.63 97.70

() Train on Tobacco-3482 » » Test on RVLCDIP

m Image Modality Text Modality Fusion Modality

EAML 78.89 79.06 86.68
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piE  Current Work: Cross-Modal Learning (i.e. pre-training) to perform
Document Classification (as a downstream task)

+ We approach the document classification problem by learning cross-modal
representations through language and vision cues, considering intra- and inter-
modality relationships.

+ Instead of merging features from different modalities into a common
representation space, we intend to exploit high-level interactions and learn
semantic information from effective attention flows within and across modalities.

+ The learning objective that we propose aims to enforce the compactness of intra-
class representations while separating inter-class features by contrasting positive
and negative sample pairs within and across each modality.
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Current Work: Cross-Modal Learning (i.e. pre-training) to perform
Document Classification (as a downstream task)
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+ Overview of the proposed cross-modal contrastive learning method. The network is
composed of InterMCA and IntraMSA modules with flexible attention mechanisms to learn

14/10/2022

cross-modal representations in a cross-modal contrastive learning fashion.
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+ We introduce the InterMCA and IntraMSA attention modules that capture Iintrinsic

patterns by modeling the inter-modality and intra-modality relationships for image
regions and texts.

+ Inter-Modal Alignment:

> The inter-modality cross-attention module InterMCA aims to enhance the cross-modal
features by embracing cross-modal interactions across image regions and texts. This
module aims to transfer the salient information from one modality to another.

Jd

[ : QLIJC‘::E
InterMCAy_,1, (L") = softmax i Wy (2)
k

s - vk,
InterMCA| _ v (V') = softmax Vi (1)
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+ Intra-Modal Alignment:

> The intra-modal self-attention module IntraMSA aims to update the vision and language
information and to capture inner-modality attention weights. For each modality, the
information is updated according to a feature fusion scheme.

IntraMSAy_,v = softmax Yol Vo (9)

IntraMSA; .| = softmax L . (10)



rie  Current Work: Cross-Modal Alignment
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+ llustration of the InterMCA and IntraMSA attention modules. The visual and textual features
are transformed into query, kRey, and value vectors. They are jointly leveraged and are

- further fused to transfer attention flows between modalities to update the original features.

14/10/2022



La Rochelle

mved  Current Work: Cross-Modal Alignment

+ Intra-Modality Learning Objective
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+ Inter-Modality Learning Objective
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pwel  Current Work: Results

Pre-training setting IntraMSA InterMCA #Param Acc.(%)

-w/o lang modality

Model Accuracy (%)

T—R R—=T R—=N

w/o language modality
- EAML [Bakkali et al., 2021] 78.89  84.82 -
- CMDoC 79.04 89.73  99.99

198M  85.71

v 20IM  86.66

v/ 209M  87.20

A V. 217TM 9094

-w/o visn modality

198M  86.01

v 20IM 8631

v/, 209M  87.50

v v 217TM 90.62

w/o vision modality
- EAML [Bakkali er al., 20211 79.06 83.72 -
- CMDoC 81.96 89.88 99.99

Table 1: Ablation study on CMDoC on cross-modality attention

components, pre-trained on Tobacco dataset

Table 3: Cross-dataset test on datasets with different size and doc-
ument types. TR, and N denote Tobacco, RVL-CDIP, and NIST
datasets. T — R denotes fine-tune on Tobacco, and test on RVL-
CDIP.
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Method Accuracy(%)

vision only methods

VGG-16 [Afzal et al, 2017] 00.31

AlexNet [Tensmeyer and Martinez, 2017] 00.94

Ensemble [Das et al., 2018] 02.21 ,

language only methods CMDoC (V+L) wio language 92,64
BERT ... |Devlin er al., 2019] 26.10 CMDoC (V+L) w/o vision 91.37
RoBERTag,,. [Liueral, 2019] 00.94 iomal lavout method

LayoutLM ggs. [Xu er al., 2020] 00.11 Vistonrianguage rrayout mernoas

. TILT o.. |Powalski et al., 20211 03.50
vision+language methods SelfDoc [Li et al.. 2021] 93 81
w/o language LayoutLM g, .. [Xu er al., 2020] 04.42
- Multimodal [Audebert et al., 2019] 80.1 LayoutLMv2 .. [Xu er al., 2022] 05.25
- Ensemble [Dauphinee er al., 2019] 01.45 DocFormerg, .. [Appalaraju et al., 2021] 06.17
- EAML [Bakkali et al., 2021] 00.81

w/o vision Table 4: Top-1 accuracy (%) comparison results of different docu-
- Multimodal [Audebert er al., 2019] 74.6 ment classification methods evaluated on the of RVL-CDIP dataset.
- Ensemble [Dauphinee er al.. 2019] 82.23 V+L denotes vision+language modalities

- EAML [Bakkali et al., 2021] 88.80

CMDoC (V+L) w/o language 92.64

CMDoC (V+L) w/o vision 91.37



vl Future Work

+ Essentially, we are exploring Self-Supervised Pre-training techniques to develop a
more general and domain-agnostic multi-modal embedding network to be fine-

tuned on downstream applications such as: few-shot document classification,

document retrieval, domain generalization, etc.
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