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The Existing Document Image classification Methods

Document Image 

Classification Methods

14/10/2022



The Existing Document Image classification Methods

Document Image 

Classification Methods

Textual-based 
Methods

Handcrafted linguistic 
rules-based methods

Word embedding-
based methods

OCRed Text

14/10/2022



The Existing Document Image classification Methods

Document Image 

Classification Methods

Visual-based 
Methods

Handcrafted feature-
based methods

Deep feature-
based methods

Textual-based 
Methods

Handcrafted linguistic 
rules-based methods

Word embedding-
based methods

OCRed Text

14/10/2022



The Existing Document Image classification Methods
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The Existing Document Image classification Methods
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The Need for a Supervised Hybrid « Multi-Modal » Method
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Challenges:High « Intra-class » Structural Variability
Low  « Inter-class » Discrimination
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Self-Attention-based Fusion Module
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Our Proposed EAML Network
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Our Proposed EAML Network
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Conventional Mutual Learning in Computer Vision

14/10/2022

Teacher

Student

One-way 
Knowledge 

Transfer

Knowledge Distillation-based approach

Student

Student

Bi-directional 
Knowledge 

Transfer

Conventional Mutual Learning-based approach

Zhang, Y., T. Xiang, Timothy M. Hospedales And Huchuan Lu.
“Deep Mutual Learning.” 2018 IEEE/CVF Conference On
Computer Vision And Pattern Recognition (2018): 4320-4328.

Hinton, Geoffrey E., Oriol Vinyals and J. Dean. “Distilling the
Knowledge in a Neural Network.” ArXiv abs/1503.02531
(2015): n. pag.



Conventional Mutual Learning in Computer Vision: Challenges

Encourages collaborative 
learning between modalities.
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Enables to minimize the difference 
in class probabilities produced by 
the two modalities


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Both modalitites can learn both
the positive & negative
information from one another



The introduction of the negative
knowledge from one modality to
another harms and weakens the
ongoing training.
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Our Proposed Positive Mutual Learning Strategy
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Our Proposed Positive Mutual Learning Strategy
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Enable to learn only the positive
knowledge from one modality
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

Prevent the negative knowledge to 
be introduced in the ongoing 
learning of the current modality.



Improve the quality of the final
predictions of the single-modal and
cross-modal modalities.
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Experimental Setup

> Datasets

- RVLCDIP

- Tobacco-3482

Ablation Study

> Intra-Dataset Evaluation

> Inter-Dataset Evaluation

> Intra-Dataset & Inter-Dataset Evaluation comparison

Experimental Setup & Ablation Study
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Experimental Setup: Datasets

RVLCDIP

• 400,000 gray-scale document images
• Dataset split:

o Training set: 320,000 images.
o Validation set: 40,000 images.
o Test set: 40,000 images.

• Samples of different document classes in the RVL-CDIP dataset. From left to right: Advertisement, Budget, Email,
File folder, Form, Handwritten, Invoice, Letter, Memo, News article, Presentation, Questionnaire, Resume, Scientific
publication, Scientific report, Specification.
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Experimental Setup: Datasets

Tobacco-3482

FormEmail

• 3482 gray-scale document images.
• Samples of different document classes in the Tobacco-3482 dataset. The 10 categories are: ADVE, Email, Form, Letter, Memo,

News, Notes, Report, Resume, Scientific.
• Dataset Split:

o 80% Training set
o 10% Validation set
o 10% Test set.
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Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches
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Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches

RVLCDIP Method Image Modality Text Modality Fusion Modality

Independent Learning 85.04 84.96 94.44

Conventional Mutual Learning 88.87 80.89 90.06

Positive Mutual Learning (Ours) 90.81 88.80 96.28

EAML 97.67 97.63 97.70
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Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches

Tobacco-3482 Method Image Modality Text Modality Fusion Modality

Independent Learning 96.17 96.02 96.95

Conventional Mutual Learning 93.69 88.82 94.84

Positive Mutual Learning (Ours) 97.70 96.27 98.28

EAML 97.99 96.27 98.57

14/10/2022



Ablation Study : Intra-Dataset Evalutation

Overall Classification Accuracy (%) on the proposed approaches

RVLCDIP Tobacco-3482
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Ablation Study: Inter-Dataset Evaluation Protocol

Inter-Dataset Train Test

RVLCDIP Tobacco-3482

Tobacco-3482 RVLCDIP
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Ablation Study : 

Intra-Dataset & Inter-Dataset Evaluation Comparison

Train on RVLCDIP  Test on Tobacco-3482

Method Image Modality Text Modality Fusion Modality

Positive Mutual Learning (Ours) 84.82 83.73 86.68

EAML 87.29 87.23 87.63
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Ablation Study : 

Intra-Dataset & Inter-Dataset Evaluation Comparison

Method Image Modality Text Modality Fusion Modality

EAML 97.67 97.63 97.70

Train on RVLCDIP  Test on RVLCDIP
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Method Image Modality Text Modality Fusion Modality

EAML 78.89 79.06 86.68

Train on Tobacco-3482  Test on RVLCDIP
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Current Work: Cross-Modal Learning (i.e. pre-training) to perform 
Document Classification (as a downstream task)

We approach the document classification problem by learning cross-modal
representations through language and vision cues, considering intra- and inter-
modality relationships.

Instead of merging features from different modalities into a common
representation space, we intend to exploit high-level interactions and learn
semantic information from effective attention flows within and across modalities.

The learning objective that we propose aims to enforce the compactness of intra-
class representations while separating inter-class features by contrasting positive
and negative sample pairs within and across each modality.
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Current Work: Cross-Modal Learning (i.e. pre-training) to perform 
Document Classification (as a downstream task)

Overview of the proposed cross-modal contrastive learning method. The network is
composed of InterMCA and IntraMSA modules with flexible attention mechanisms to learn
cross-modal representations in a cross-modal contrastive learning fashion.
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Current Work: Cross-Modal Alignment

We introduce the InterMCA and IntraMSA attention modules that capture intrinsic
patterns by modeling the inter-modality and intra-modality relationships for image
regions and texts.

Inter-Modal Alignment:
> The inter-modality cross-attention module InterMCA aims to enhance the cross-modal

features by embracing cross-modal interactions across image regions and texts. This
module aims to transfer the salient information from one modality to another.
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Current Work: Cross-Modal Alignment

Intra-Modal Alignment:
> The intra-modal self-attention module IntraMSA aims to update the vision and language

information and to capture inner-modality attention weights. For each modality, the
information is updated according to a feature fusion scheme.
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Current Work: Cross-Modal Alignment

Illustration of the InterMCA and IntraMSA attention modules. The visual and textual features
are transformed into query, key, and value vectors. They are jointly leveraged and are
further fused to transfer attention flows between modalities to update the original features.
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Current Work: Cross-Modal Alignment

Intra-Modality Learning Objective

Positive Pairs for each 
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Current Work: Cross-Modal Alignment

Inter-Modality Learning Objective

Positive Pairs for each 
Image are (IMGi , TEXTj )
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Current Work: Results
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Current Work: Results
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Essentially, we are exploring Self-Supervised Pre-training techniques to develop a 

more general and domain-agnostic multi-modal embedding network to  be fine-

tuned on downstream applications such as: few-shot document classification, 

document retrieval, domain generalization, etc.

Future Work
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