A “CS Systems View” of the real world
Vision and strategy for tomorrow's challenges
CITRIS/INRIA joint workshop
David E. Culler
University of California, Berkeley
May 23, 2011
Where we are... an inward view

FABULOUSLY EXPENSIVE
The cost of new facilities is soaring.

New fab construction costs
$5.0 billion

1965 Actual Data
1975 Projection
Microprocessor
Memory
MOS Logic 1975 Actual Data
Grad Window
You are here!
Where we are... an outward view

 ARPANet

 Internet

 WWW

 2.0 B 1/26/11

 RFC 675 TCP/IP

 1969 1974

 HTTP 0.9

 1.5 B

 1 B

 0.5 B

 United States

 World

 Internet users
 People with access to the Internet. More info »

 Data source: World Bank, World Development Indicators - Last updated December 21, 2010
Confluence across immense scale

Bell’s Law: new computer class per 10 years

Computers Per Person

- $1:10^6$
- $1:10^3$
- $1:1$
- $10^3:1$

years

Mainframe
Mini
Workstation
PC
Laptop
PDA
Cell
Mote!

- 1:10
- 6
System innovation perspective

- Pace and form of innovation driven by emergence of computer classes
 - 70’s shared server
 - 80’s personal, networked, workstation, SMP & MPP
 - 90’s cluster, 00’s internet service, data center
- Hugely effective research community turned inward toward highly competitive conferences
- So far has missed the personal mobile revolution
 - If it looks like a mid-80’s PC “Unix will run on it” and always did
- Industry led the Cloud / Analytics revolution, but research community running fast to catch up
- Just begun to really look at the real world
A different “Graduation Window”

<table>
<thead>
<tr>
<th>Global temperature change (relative to pre-industrial era)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Food</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Ecosystems</td>
</tr>
<tr>
<td>Weather</td>
</tr>
<tr>
<td>Feedback</td>
</tr>
</tbody>
</table>

Food
- **Today**: Crop yields fall

Water
- **Today**: Glaciers melt
- **1°C**: Water shortages
- **2°C**: Rising seas

Ecosystems
- **Today**: Reefs damaged
- **2°C**: Species extinction

Weather
- **Today**: Storms, droughts, fires, heat waves

Feedback
- **Today**: Abrupt climate change

Global Temperature and Carbon Dioxide

- **CO2 in parts per million**
- **Global Temperature**
- **1880** to **2000**
Towards an “Aware” Energy Infrastructure

Baseline + Dispatchable Tiers

Oblivious Loads

Non-Dispatchable Sources

Aware Interactive Loads

Communication

LoCal

Generation

Transmission

Distribution

Demand

Communication
Cyber-Physical Systems: A Cooperative Grid

- Availability
- Pricing
- Planning

Monitor, Model, Mitigate
- Deep instrumentation
- Waste elimination
- Efficient Operation
- Shifting, Scheduling, Adaptation

- Forecasting
- Tracking
- Market
Where to Start?

Buildings
- 72% of electrical consumption (US),
- 40-50% of total consumption,
- 42% of GHG footprint
- US commercial building consumption doubled 1980-2000, 1.5x more by 2025 [NREL]

Where Coal is used
Prime target of opportunity for renewable supplies
Our Buildings

Annual Consumption

Environmental \hspace{1cm} Operational

- LSA
- Cory
- McCone
- Soda
- Koshland

Soda Hall Power Consumption: 494 KW

Chart by amCharts.com

Custom period: 2009-01-18 22:00 - 2009-01-24 22:45

Zoom: 1D, 1W, 2W, MAX

CPS 2011 4/12/11
Soda Hall

Annual Consumption

<table>
<thead>
<tr>
<th>kWh/sq ft</th>
<th>LSA</th>
<th>Cory</th>
<th>Stanley</th>
<th>McCone</th>
<th>Soda</th>
<th>Koshland</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National average

Soda Hall Power Consumption: 494 kW

Chart by amCharts.com

Lighting
HVAC
IT and Plug Load
PDUs, CRACs
Servers

Custom period: 2009-01-18 22:00 - 2009-01-24 22:45
Zoom: 1D, 1W, 2W, MAX

CPS 2011
Power-Proportional Buildings?

Stanley Hall: Office + BioScience - 13 NMRs

Min = 72% of Max

Stanley Hall Power (kw) - week

1.45 MW

2.02 MW

Annual Consumption

kwh

kwh/sq ft

National average

Stanley

Cory

McCon

Soda

Koshland

CPS 2011 4/12/11
Power-Proportional Buildings?

LeConte Hall: Office

Min = 31% of Max

Annual Consumption

CPS 2011 4/12/11
Energy Transparent Building

MCL equip

Whole Bldg

DOP HVAC

Central vent

office HVAC

MCL infra

MCL vac

servers

Plug loads

Lighting

Parking Lot

CPS 2011 4/12/11
Intelligence in lo-tech places

Whole Bldg

Energy Data
- Thermostat
- Sensor Data
- Weather Forecast
- Internet

LoCal Server
- Sensor Data
- AC Control

Control Computer
- Sensor Data
- sMAP

Equipment and Occupants
- AC Signal
- Room
- Cool Air

CPS 2011 4/12/11
Learning-Based Model Predictive Control

Experimental Hysteresis Control: 31.7 kWh Consumed

Simulated LBMPC: 19.0 kWh Consumed (estimated)

LBMPC adjusts for internal dynamics, avoids over-cooling, trades off duty cycle and switching frequency

(Aswani, Master, Taneja, Culler, Tomlin, 2011, submitted)
Cyber / Physical Buildings

- Cyber
 - Building Integrated Operating System
 - Activity Models
 - Physical Models
 - BIM
 - Multi-Objective Model-Driven Control
 - Fault, Attack, Anomaly Detect & Management
- Physical Building
 - Human-Building Interface
 - Electrical
 - HVAC
 - Building Management System (BMS)

Control Plan and Schedule
- Activity/Usage Streams
- Pervasive Sensing
- Legacy Instrumentation & Control Interfaces
CPS contributions … ???

- Pervasive Embedded Monitoring Networks
- Power Proportional Design Techniques
- Application Independent Physical Information Representation
- Modeling and Analysis
- Multi-objective Intelligent Control
- Human-Centric Optimization
- Robust, Scalable Infrastructure Architecture
Research as “Time Travel”
- the secret formula

- **Imagine** a technologically plausible future
- **Create** an approximation of that vision using technology that exists.
- Discover what is **True** in that world
 - Empirical experience
 - Bashing your head, stubbing your toe, reaching epiphany
 - Quantitative measurement and analysis
 - Analytics and Foundations
- Courage to ‘break trail’ and discipline to do the hard science on problems that matter